Landscape Evolution

  • Andrew Fowler
Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 36)


Chapter 6 describes a model for the evolution of hillslope topography by means of fluvial erosion. Coupled equations for the hillslope elevation and depth of water flow represent conservation of sediment and water mass, respectively. A uniform downhill slope is unstable to the Smith–Bretherton rilling instability, and this is regularised at large wave number by a singular term involving the ratio of water depth to hillslope elevation. The same theory is then used to describe the form and evolution of finite depth channels. These can be described by a nonlinear diffusion equation coupled with an integral constraint, the combination of which appears to give a well-posed problem for the channel depth; in addition, the channel profile selects its own width automatically. The issue of combining channel dynamics with longer term hillslope erosion is then discussed.


Sediment Transport Water Flux Froude Number Sediment Flux Tectonic Uplift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baldwin P (1985) Zeros of generalized Airy functions. Mathematika 32:104–117 MATHCrossRefMathSciNetGoogle Scholar
  2. Bender CM, Orszag SA (1978) Advanced mathematical methods for scientists and engineers. McGraw-Hill, New York MATHGoogle Scholar
  3. Carrier GF, Krook M, Pearson CE (1966) Functions of a complex variable. McGraw-Hill, New York MATHGoogle Scholar
  4. Davis WM (1899) The geographical cycle. Geogr J 14:481–504 CrossRefGoogle Scholar
  5. Drazin PG, Reid WH (1981) Hydrodynamic stability. Cambridge University Press, Cambridge MATHGoogle Scholar
  6. Fowler AC (1997) Mathematical models in the applied sciences. Cambridge University Press, Cambridge Google Scholar
  7. Fowler AC, Kopteva N, Oakley C (2007) The formation of river channels. SIAM J Appl Math 67:1016–1040 MATHCrossRefMathSciNetGoogle Scholar
  8. Hack JT (1957) Studies of longitudinal profiles in Virginia and Maryland. USGS Prof Paper, 294-B Google Scholar
  9. Hershenov J (1976) Solutions of the differential equation u‴+λ 2 zu′+(α−1)λ 2 u=0. Stud Appl Math 55:301–314 MATHMathSciNetGoogle Scholar
  10. Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Bull Geol Soc Am 56:275–370 CrossRefGoogle Scholar
  11. Howard AD (1994) A detachment-limited model of drainage basin evolution. Water Resour Res 30:2261–2285 CrossRefGoogle Scholar
  12. Izumi N, Parker G (1995) Inception of channelization and drainage basin formation: upstream-driven theory. J Fluid Mech 283:341–363 MATHCrossRefMathSciNetGoogle Scholar
  13. Izumi N, Parker G (2000) Linear stability analysis of channel inception: downstream-driven theory. J Fluid Mech 419:239–262 MATHCrossRefMathSciNetGoogle Scholar
  14. Julien PY (1995) Erosion and sedimentation. Cambridge University Press, Cambridge Google Scholar
  15. Kramer S, Marder M (1992) Evolution of river networks. Phys Rev Lett 68:205–208 CrossRefGoogle Scholar
  16. Lakin WD, Ng BS, Reid WH (1978) Approximations to the eigenvalue relation for the Orr-Sommerfeld problem. Philos Trans R Soc 289:347–371 CrossRefMathSciNetMATHGoogle Scholar
  17. Loewenherz DS (1991) Stability and the initiation of channelized surface drainage: a reassessment of the short wavelength limit. J Geophys Res 96:8453–8464 CrossRefGoogle Scholar
  18. Loewenherz-Lawrence DS (1994) Hydrodynamic description for advective sediment transport processes and rill initiation. Water Resour Res 30:3203–3212 CrossRefGoogle Scholar
  19. Marsh SP, Glicksman ME (1996) Overview of geometric effects on coarsening of mushy zones. Metall Mater Trans 27A:557–567 CrossRefGoogle Scholar
  20. Meyer-Peter E, Müller R (1948) Formulas for bed-load transport. In: Proc int assoc hydraul res, 3rd annual conference, Stockholm, pp 39–64 Google Scholar
  21. Orme AR (2007) The rise and fall of the Davisian cycle of erosion: prelude, fugue, coda, and sequel. Phys Geogr 28:474–506 CrossRefGoogle Scholar
  22. Reid WH (1972) Composite approximations to the solutions of the Orr-Sommerfeld equation. Stud Appl Math 51:341–368 MATHGoogle Scholar
  23. Rodríguez-Iturbe I, Rinaldo A (1997) Fractal river basins. Cambridge University Press, Cambridge Google Scholar
  24. Samarskii AA, Galaktionov VA, Kurdyumov SP, Mikhailov AP (1995) Blow-up in quasilinear parabolic equations. de Gruyter expositions in mathematics, vol 19. de Gruyter, Berlin MATHGoogle Scholar
  25. Selby MJ (1993) Hillslope materials and processes, 2nd edn. Oxford University Press, Oxford Google Scholar
  26. Shields A (1936) Anwendung der Ähnlichkeits mechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitteilung der Preussischen Versuchanstalt für Wasserbau und Schiffbau, Heft 26, Berlin Google Scholar
  27. Smith TR (2010) A theory for the emergence of channelized drainage. J Geophys Res 115:F02023. doi: 10.1029/2008JF001114 CrossRefGoogle Scholar
  28. Smith TR, Bretherton FP (1972) Stability and the conservation of mass in drainage basin evolution. Water Resour Res 8:1506–1529 CrossRefGoogle Scholar
  29. Smith TR, Birnir B, Merchant GE (1997a) Towards an elementary theory of drainage basin evolution: I. The theoretical basis. Comput Geosci 23:811–822 CrossRefGoogle Scholar
  30. Smith TR, Birnir B, Merchant GE (1997b) Towards an elementary theory of drainage basin evolution: II. A computational evaluation. Comput Geosci 23:823–849 CrossRefGoogle Scholar
  31. Strahler AN (1952) Hypsometric (area altitude) analysis of erosional topography. Geol Soc Amer Bull 63:1117–1142 CrossRefGoogle Scholar
  32. Tucker GE, Slingerland RL (1994) Erosional dynamics, flexural isostasy, and long-lived escarpments: a numerical modeling study. J Geophys Res 99:12229–12243 CrossRefGoogle Scholar
  33. Turcotte DL (1992) Fractals and chaos in geology and geophysics. Cambridge University Press, Cambridge Google Scholar
  34. Van Rijn LC (1984) Sediment transport. Part II. Suspended load transport. J Hydraul Eng 110:1613–1641 CrossRefGoogle Scholar
  35. Willett SD, Brandon MT (2002) On steady states in mountain belts. Geology 30:175–178 CrossRefGoogle Scholar
  36. Willgoose G (2005) Mathematical modeling of whole landscape evolution. Annu Rev Earth Sci 33:443–459 CrossRefMathSciNetGoogle Scholar
  37. Willgoose G, Bras RL, Rodríguez-Iturbe I (1991) A coupled channel network growth and hillslope evolution model: I. Theory. Water Resour Res 27:1671–1684 CrossRefGoogle Scholar
  38. Winstanley H (2001) The formation of river networks. MSc dissertation, Oxford University Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.MACSI, Department of Mathematics & StatisticsUniversity of LimerickLimerickIreland

Personalised recommendations