Climate Dynamics

Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 36)


Chapter 2 treats simple models of climate dynamics. It begins by describing radiative transfer in the atmosphere, with particular attention to the simple case of a grey, one-dimensional atmosphere. Following this, the convective temperature structure of the troposphere is discussed. The latter part of the chapter deals with energy balance models, in particular with a view to understanding ice age causes. This introduces successively the ice-albedo feedback mechanism, the carbon cycle in atmosphere and ocean, and the rôle of bicarbonate buffering in the ocean.


Dissolve Inorganic Carbon Radiative Heat Transfer Deep Water Formation Heinrich Event Planetary Albedo 


  1. Agustin L et al. (EPICA community) (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628 CrossRefGoogle Scholar
  2. Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU (1997) Holocene climatic instability: a prominent, widespread event 8200 years ago. Geology 25:483–486 CrossRefGoogle Scholar
  3. Andrews DG (2000) An introduction to atmospheric physics. Cambridge University Press, Cambridge Google Scholar
  4. Arrhenius S (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philos Mag 41:237–275 Google Scholar
  5. Berner RA, Lasaga AC, Garrels RM (1983) The carbonate–silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci 283:641–683 CrossRefGoogle Scholar
  6. Bigg G (2003) The oceans and climate, 2nd edn. Cambridge University Press, Cambridge Google Scholar
  7. Bolshakov VA (2003) Modern climatic data for the Pleistocene: implications for a new concept of the orbital theory of paleoclimate. Russ J Earth Sci 5:125–143 CrossRefGoogle Scholar
  8. Bond GC, Showers W, Cheseby M, Lotti R, Almasi P, de Menocal P, Priore P, Cullen H, Hajdas I, Bonani G (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1257–1266 CrossRefGoogle Scholar
  9. Bond GC, Showers W, Elliott M, Evans M, Lotti R, Hajdas I, Bonani G, Johnson S (1999) The North Atlantic’s 1–2 kyr climate rhythm: relation to Heinrich events, Dansgaard/Oeschger cycles and Little Ice Age. In: Clark PU, Webb RS, Keigwin LD (eds) Mechanisms of global climate change. Geophys monogr, vol 112. AGU, Washington, pp 35–58 Google Scholar
  10. Broecker WS, Bond G, Klas M (1990) A salt oscillator in the glacial Atlantic? I: the concept. Paleoceanography 5:469–477 CrossRefGoogle Scholar
  11. Budyko MI (1969) The effect of solar radiation variations on the climate of the Earth. Tellus 21:611–619 CrossRefGoogle Scholar
  12. Calov R, Ganopolski A, Petoukhov V, Claussen M, Greve R (2002) Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model. Geophys Res Lett 29(24):69. doi: 10.1029/2002GL016078 CrossRefGoogle Scholar
  13. Chandler MA, Sohl LE (2000) Climate forcings and the initiation of low-latitude ice sheets during the Neoproterozoic Varanger glacial interval. J Geophys Res D 105(10):20737–20756 CrossRefGoogle Scholar
  14. Chandrasekhar S (1960) Radiative transfer. Dover, New York Google Scholar
  15. Chapman S (1930) A theory of upper atmospheric ozone. Mem R Meteorol Soc 3:103–125 Google Scholar
  16. Crowley TJ, Baum SK (1993) Effect of decreased solar luminosity on late Precambrian ice extent. J Geophys Res 98(D9):16723–16732 CrossRefGoogle Scholar
  17. Emerson SR, Hedges JI (2008) Chemical oceanography and the marine carbon cycle. Cambridge University Press, Cambridge CrossRefGoogle Scholar
  18. Evatt G, Fowler AC, Clark CD, Hulton N (2006) Subglacial floods beneath ice sheets. Philos Trans R Soc 364:1769–1794 CrossRefMathSciNetGoogle Scholar
  19. Fowler AC, Schiavi E (1998) A theory of ice sheet surges. J Glaciol 44:104–118 Google Scholar
  20. Fricker HA, Scambos T, Bindschadler R, Padman L (2007) An active subglacial water system in West Antarctica mapped from space. Science 315:1544–1548 CrossRefGoogle Scholar
  21. Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409:153–158 CrossRefGoogle Scholar
  22. Gill AE (1982) Atmosphere-ocean dynamics. Academic Press, San Diego Google Scholar
  23. Goodwin ID (1988) The nature and origin of a jökulhlaup near Casey Station, Antarctica. J Glaciol 34:95–101 Google Scholar
  24. Harland WB (1964) Critical evidence for a great infra-Cambrian glaciation. Geol Rundsch 54:45–61 CrossRefGoogle Scholar
  25. Harland WB (2007) Origins and assessment of snowball Earth hypotheses. Geol Mag 144:633–642 CrossRefGoogle Scholar
  26. Heinrich H (1988) Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130000 years. Quat Res 29:142–152 CrossRefGoogle Scholar
  27. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A Neoproterozoic snowball Earth. Science 281:1342–1346 CrossRefGoogle Scholar
  28. Houghton JT (2002) The physics of atmospheres, 3rd edn. Cambridge University Press, Cambridge Google Scholar
  29. Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) (1996) Climate change 1995: the science of climate change. Cambridge University Press, Cambridge Google Scholar
  30. Hyde WT, Crowley TJ, Baum SK, Peltier WR (2000) Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice sheet model. Nature 405:425–429 CrossRefGoogle Scholar
  31. Johnsen SJ, Clausen HB, Dansgaard W, Fuhrer K, Gundestrup N, Hammer CU, Iversen P, Jouzel J, Stauffer B, Steffensen JP (1992) Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359:311–313 CrossRefGoogle Scholar
  32. Kasting JF (1989) Long-term stability of the Earth’s climate. Palaeogeogr Palaeoclimatol Palaeoecol 75:83–95 CrossRefGoogle Scholar
  33. Kasting JF, Ackermann TP (1986) Climatic consequences of very high carbon dioxide levels in Earth’s early atmosphere. Science 234:1383–1385 CrossRefGoogle Scholar
  34. Kaye GWC, Laby TH (1960) Physical and chemical constants, 12th edn. Longman, Harlow Google Scholar
  35. Köhler P, Fischer H (2006) Simulating low frequency changes in atmospheric CO2 during the last 740000 years. Clim Past 2:57–78 CrossRefGoogle Scholar
  36. Köhler P, Fischer H, Munhoven G, Zeebe RE (2005) Quantitative interpretation of atmospheric carbon records over the last glacial termination. Glob Biogeochem Cycles 19:GB4020. doi: 10.1029/2004GB002345 CrossRefGoogle Scholar
  37. Krauskopf KB, Bird DK (1995) Introduction to geochemistry. McGraw-Hill, New York Google Scholar
  38. Lang C, Leuenberger M, Schwander J, Johnsen S (1999) 16°C rapid temperature variation in central Greenland 70000 years ago. Science 286:934–937 CrossRefGoogle Scholar
  39. Lasaga AC, Berner RA, Garrels RM (1985) An improved geochemical model of atmospheric CO2 fluctuations over the past 100 million years. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations Archaen to present. AGU, Washington, pp 397–411 Google Scholar
  40. Leuenberger MC, Lang C, Schwander J (1999) Delta 15N measurements as a calibration tool for the paleothermometer and gas–ice age differences: a case study for the 8200 BP event on GRIP ice. J Geophys Res 104(D18):22163–22170 CrossRefGoogle Scholar
  41. Liou KN (2002) An introduction to atmospheric radiation, 2nd edn. Academic Press, San Diego Google Scholar
  42. MacAyeal DR (1993) Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic’s Heinrich events. Paleoceanography 8:775–784 CrossRefGoogle Scholar
  43. Manabe S, Stouffer RJ (1995) Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature 378:165–167 CrossRefGoogle Scholar
  44. Marshall HG, Walker JCG, Kuhn WR (1988) Long term climate change and the geochemical cycle of carbon. J Geophys Res 93:791–801 CrossRefGoogle Scholar
  45. Massey BS (1986) Measures in science and engineering. Ellis Horwood, Chichester MATHGoogle Scholar
  46. Millero FJ (1995) Thermodynamics of the carbon dioxide system in the oceans. Geochim Cosmochim Acta 59:661–677 CrossRefGoogle Scholar
  47. Munhoven G, François LM (1996) Glacial–interglacial variability of atmospheric CO2 due to changing continental silicate rock weathering: a model study. J Geophys Res 101:21423–21437 CrossRefGoogle Scholar
  48. North GR (1975a) Analytical solution to a simple climate model with diffusive heat transport. J Atmos Sci 32:1301–1307 CrossRefGoogle Scholar
  49. North GR (1975b) Theory of energy-balance climate models. J Atmos Sci 32:2033–2043 CrossRefGoogle Scholar
  50. North GR, Mengel JG, Short DA (1983) Simple energy balance model resolving the season and continents: applications to astronomical theory of ice ages. J Geophys Res 88:6576–6586 CrossRefGoogle Scholar
  51. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica. Nature 399:429–436 CrossRefGoogle Scholar
  52. Pierrehumbert RT (2004) High atmospheric carbon dioxide necessary for the termination of global glaciation. Nature 429:646–648 CrossRefGoogle Scholar
  53. Rahmstorf S (1995) Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378:145–149 CrossRefGoogle Scholar
  54. Rahmstorf S (2002) Ocean circulation and climate during the past 120000 years. Nature 419:207–214 CrossRefGoogle Scholar
  55. Ruddiman WF (2001) Earth’s climate: past and future. Freeman, New York Google Scholar
  56. Schmidt MW, Vautravers MJ, Spero HJ (2006) Rapid subtropical North Atlantic salinity oscillations across Dansgaard–Oeschger cycles. Nature 443:561–564 CrossRefGoogle Scholar
  57. Sellers WD (1969) A climate model based on the energy balance of the Earth-atmosphere system. J Appl Meteorol 8:392–400 CrossRefGoogle Scholar
  58. Severinghaus JP, Brook EJ (1999) Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286:930–934 CrossRefGoogle Scholar
  59. Solomon S (1999) Stratospheric ozone depletion: a review of concepts and history. Rev Geophys 37:275–316 CrossRefGoogle Scholar
  60. Sparrow EM, Cess RD (1978) Radiation heat transfer. Hemisphere, Belmont Google Scholar
  61. Stocker TF, Johnsen SJ (2003) A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18:1087. doi: 10.1029/2003PA000920 CrossRefGoogle Scholar
  62. Stommel H (1961) Thermohaline convection with two stable régimes of flow. Tellus 13:224–230 CrossRefGoogle Scholar
  63. Strutt JW (Lord Rayleigh) (1871) On the light from the sky, its polarization and colour. Phil Mag 41:107–120 Google Scholar
  64. Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res II 49:1601–1622 CrossRefGoogle Scholar
  65. Taylor KC, Lamorey GW, Doyle GA, Alley RB, Grootes PM, Mayewski PA, White JWC, Barlow LK (1993) The ‘flickering switch’ of late Pleistocene climate change. Nature 361:432–436 CrossRefGoogle Scholar
  66. Taylor KC, Mayewski PA, Alley RB, Brook EJ, Gow AJ, Grootes PM, Meese DA, Saltzman ES, Severinghaus JP, Twickler MS, White JWC, Whitlow S, Zielinski GA (1997) The Holocene–Younger Dryas transition recorded at Summit, Greenland. Science 278:825–827 CrossRefGoogle Scholar
  67. Thomas GE, Stamnes K (1999) Radiative transfer in the atmosphere and ocean. Cambridge University Press, Cambridge CrossRefGoogle Scholar
  68. Toggweiler JR, Russell JL, Carson SR (2006) Mid-latitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21:PA2005. doi: 10.1029/2005PA001154 CrossRefGoogle Scholar
  69. Walker JCG, Hays PB, Kasting JF (1981) A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J Geophys Res 86(C10):9776–9782 CrossRefGoogle Scholar
  70. Wingham DJ, Siegert MJ, Shepherd A, Muir AS (2006) Rapid discharge connects Antarctic subglacial lakes. Nature 440:1033–1037 CrossRefGoogle Scholar
  71. Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, Amsterdam Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.MACSI, Department of Mathematics & StatisticsUniversity of LimerickLimerickIreland

Personalised recommendations