Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 36)


Chapter 11 studies the Nye model of the subglacial floods known as jökulhlaups. First it is shown that the model can explain the observations at Grímsvötn on the ice cap Vatnajökull in Iceland. Then floods below ice sheets are discussed; in particular the mechanics of a sagging ice cauldron are analysed. The possibility of paleo-floods underneath Antarctica and the Laurentide Ice Sheet is discussed.


Lake Level Hydraulic Gradient Peak Discharge Effective Pressure Beam Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU (1997) Holocene climatic instability: a prominent, widespread event 8200 years ago. Geology 25:483–486 CrossRefGoogle Scholar
  2. Alley RB, Anandakrishnan S, Jung P (2001) Stochastic resonance in the North Atlantic. Paleoceanography 16(2):190–198 CrossRefGoogle Scholar
  3. Baker VR (2001) Water and the martian landscape. Nature 412:228–236 CrossRefGoogle Scholar
  4. Baker VR, Milton DJ (1974) Erosion by catastrophic floods on Mars and Earth. Icarus 23:27–41 CrossRefGoogle Scholar
  5. Björnsson H (1974) Explanation of jökulhlaups from Grímsvötn, Vatnajökull, Iceland. Jökull 24:1–26 Google Scholar
  6. Björnsson H (1988) Hydrology of ice caps in volcanic regions. Societas Scientarium Islandica, University of Iceland, Reykjavik Google Scholar
  7. Björnsson H (1992) Jökulhlaups in Iceland: prediction, characteristics and simulation. Ann Glaciol 16:95–106 Google Scholar
  8. Bretz JH (1923) The channeled scablands of the Columbia Plateau. J Geol 31:617–649 Google Scholar
  9. Bretz JH (1969) The Lake Missoula floods and the Channeled Scabland. J Geol 77:505–543 Google Scholar
  10. Chapman MG, Gudmundsson MT, Russell AJ, Hare TM (2003) Possible Juventae Chasma sub-ice volcanic eruptions and Maja Valles ice outburst floods, Mars: implications of Mars Global Surveyor crater densities, geomorphology, and topography. J Geophys Res 108(E10):5113. doi: 10.1029/2002JE002009 CrossRefGoogle Scholar
  11. Clague JJ, Mathews WH (1973) The magnitude of jökulhlaups. J Glaciol 12:501–504 Google Scholar
  12. Clark PU, Walder JS (1994) Subglacial drainage, eskers, and deforming beds beneath the Laurentide and Eurasian ice sheets. Geol Soc Amer Bull 106:304–314 CrossRefGoogle Scholar
  13. Clarke GKC (1982) Glacier outburst floods from ‘Hazard Lake’, Yukon Territory, and the problem of flood magnitude prediction. J Glaciol 28:3–21 Google Scholar
  14. Clarke GKC (2003) Hydraulics of subglacial outburst floods: new insights from the Spring-Hutter formulation. J Glaciol 49:299–313 CrossRefGoogle Scholar
  15. Clarke GKC, Leverington DW, Teller JT, Dyke AS (2004) Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 BP cold event. Quat Sci Rev 23:389–407 CrossRefGoogle Scholar
  16. Clarke GKC, Leverington DW, Teller JT, Dyke AS, Marshall SJ (2005) Fresh arguments against the Shaw megaflood hypothesis. A reply to comments by David Sharpe on “Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 BP cold event”. Quat Sci Rev 24:1533–1541 CrossRefGoogle Scholar
  17. Coleman NM (2003) Aqueous flows carved the outflow channels on Mars. J Geophys Res 108(E5):5039 CrossRefGoogle Scholar
  18. Denton GH, Sugden DE (2005) Meltwater features that suggest Miocene ice-sheet overriding of the Transantarctic Mountains in Victoria Land, Antarctica. Geogr Ann 87A:67–85 CrossRefGoogle Scholar
  19. Erlingsson U (2006) Lake Vostok behaves like a ‘captured lake’ and may be near to creating an Antarctic jökulhlaup. Geogr Ann 88A:1–7 CrossRefGoogle Scholar
  20. Fowler AC (2009) Dynamics of subglacial floods. Proc R Soc A 465:1809–1828. doi: 10.1098/rspa.2008.0488 MATHCrossRefMathSciNetGoogle Scholar
  21. Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409:153–158 CrossRefGoogle Scholar
  22. Ganopolski A, Rahmstorf S (2002) Abrupt glacial climate changes due to stochastic resonance. Phys Rev Lett 88(3):038501. doi: 10.1103/PhysRevLett.88.038501 CrossRefGoogle Scholar
  23. Goodwin ID (1988) The nature and origin of a jökulhlaup near Casey Station, Antarctica. J Glaciol 34:95–101 Google Scholar
  24. Gudmundsson MT, Sigmundsson F, Björnsson H (1997) Ice-volcano interaction of the 1996 Gjálp subglacial eruption, Vatnajökull, Iceland. Nature 389:954–957 CrossRefGoogle Scholar
  25. Gudmundsson MT, Sigmundsson F, Björnsson H, Högnadóttir T (2004) The 1996 eruption at Gjálp, Vatnajökull ice cap, Iceland: efficiency of heat transfer, ice deformation and subglacial water pressure. Bull Volcanol 66:46–65 CrossRefGoogle Scholar
  26. Hoffman N (2000) White Mars: a new model for Mars’ surface and atmosphere based on CO2. Icarus 146:326–342 CrossRefGoogle Scholar
  27. Hooke RLeB, Laumann T, Kohler J (1990) Subglacial water pressures and the shape of subglacial conduits. J Glaciol 36:67–71 Google Scholar
  28. Howell PD (1996) Models for thin viscous sheets. Eur J Appl Math 7:321–343 MATHCrossRefMathSciNetGoogle Scholar
  29. Jóhannesson T (2002a) The initiation of the 1996 jökulhlaup from Lake Grímsvötn, Iceland. In: Snorrason Á, Finnsdóttir HP, Moss ME (eds) The extremes of the extremes: extraordinary floods. IASH publ, vol 271, pp 57–64 Google Scholar
  30. Jóhannesson T (2002b) Propagation of a subglacial flood wave during the initiation of a jökulhlaup. Hydrol Sci J 47:417–434 CrossRefGoogle Scholar
  31. Kargel JS (2004) Mars—a warmer, wetter planet. Springer, Berlin Google Scholar
  32. Ng F, Björnsson H (2003) On the Clague-Mathews relation for jökulhlaups. J Glaciol 49:161–172 CrossRefGoogle Scholar
  33. Nye JF (1953) The flow law of ice from measurements in glacier tunnels, laboratory experiments and the Jungfraufirn borehole experiment. Proc R Soc Lond A 219:477–489 CrossRefGoogle Scholar
  34. Nye JF (1976) Water flow in glaciers: jökulhlaups, tunnels, and veins. J Glaciol 17:181–207 Google Scholar
  35. Paterson WSB (1994) The physics of glaciers, 3rd edn. Pergamon, Oxford MATHGoogle Scholar
  36. Roberts MJ (2005) Jökulhlaups: a reassessment of floodwater flow through glaciers. Rev Geophys 43:RG1002 CrossRefGoogle Scholar
  37. Sharpe D (2005) Comments on: “Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 BP cold event” by Clarke et al. [Quat Sci Rev 23:389–407 (2004)]. Quat Sci Revs 24:1529–1532 Google Scholar
  38. Shaw J (1983) Drumlin formation related to inverted meltwater erosional marks. J Glaciol 29:461–479 Google Scholar
  39. Shaw J, Kvill D, Rains B (1989) Drumlins and catastrophic subglacial floods. Sediment Geol 62:177–202 CrossRefGoogle Scholar
  40. Siegert MJ (2005) Lakes beneath the ice sheet: the occurrence, analysis, and future exploration of Lake Vostok and other Antarctic subglacial lakes. Annu Rev Earth Planet Sci 33:215–245 CrossRefGoogle Scholar
  41. Siegert MJ, Dowdeswell JA, Gorman MR, McIntyre NF (1996) An inventory of Antarctic sub-glacial lakes. Antarct Sci 8:281–286 CrossRefGoogle Scholar
  42. Siegert MJ, Ellis-Evans JC, Tranter M, Mayer C, Petit J-R, Salamatin A, Priscu JC (2001) Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414:603–608 CrossRefGoogle Scholar
  43. Spring U, Hutter K (1981) Numerical studies of jökulhlaups. Cold Reg Sci Technol 4:227–244 CrossRefGoogle Scholar
  44. Spring U, Hutter K (1982) Conduit flow of a fluid through its solid phase and its application to intraglacial channel flow. Int J Eng Sci 20:327–363 MATHCrossRefMathSciNetGoogle Scholar
  45. Stocker TF, Wright DG (1991) Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature 351:729–732 CrossRefGoogle Scholar
  46. Sugden D, Denton G (2004) Cenozoic landscape evolution of the Convoy Range to Mackay Glacier area, Transantarctic Mountains: onshore to offshore synthesis. Geol Soc Am Bull 116:840–857 CrossRefGoogle Scholar
  47. Teichman J, Mahadevan L (2003) The viscous catenary. J Fluid Mech 478:71–80 MATHCrossRefMathSciNetGoogle Scholar
  48. Waitt RB Jr (1984) Periodic jökulhlaups from Pleistocene Glacial Lake Missoula—new evidence from varved sediment in Northern Idaho and Washington. Quat Res 22:46–58 CrossRefGoogle Scholar
  49. Walder JS, Costa JE (1996) Outburst floods from glacier-dammed lakes: the effect of mode of lake drainage on flood magnitude. Earth Surf Proc Landf 21:701–723 CrossRefGoogle Scholar
  50. Wingham DJ, Siegert MJ, Shepherd A, Muir AS (2006) Rapid discharge connects Antarctic subglacial lakes. Nature 440:1033–1037 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.MACSI, Department of Mathematics & StatisticsUniversity of LimerickLimerickIreland

Personalised recommendations