Skip to main content

Mathematical Modelling

  • Chapter
Mathematical Geoscience

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 36))

  • 3340 Accesses

Abstract

Chapter 1 is a condensed overview of a raft of techniques which are used in applied mathematics in studying natural phenomena. The chapter focusses on phenomena which occur in continuous systems, modelled by differential equations. Non-dimensionalisation and scaling are treated. For ordinary differential equations, oscillations, hysteresis and resonance are discussed; for partial differential equations, topics covered are waves, nonlinear diffusion, blow-up and reaction–diffusion equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We can understand why T follows the equilibrium curve as follows. We can write (1.26) in terms of suitable dimensionless variables as \(\dot{\Delta}=T_{0}-g(\Delta)\), where g(Δ) is a cubic-like curve similar to the function T 0(Δ) depicted in Fig. 1.9. if T 0 is slowly varying, then T 0=T 0(δt) where δ≪1, and putting τ=δt, we have δdΔ/=T 0(τ)−g(Δ); thus on the slow time scale τ, Δ will tend rapidly to a (quasi-equilibrium) zero of the right hand side.

  2. 2.

    Note that as T 0T c , (1.43) matches with (1.40).

  3. 3.

    We need \(u \mbox{ \raisebox{-.9ex}{$\stackrel{\textstyle<}{\sim}$} }O (\frac{1}{x^{2}} )\) in order that the second term in (1.81) be significant (otherwise we regain (1.82)), and in fact we need the two terms to be approximately equal, so that 0<u<1: hence (1.83).

  4. 4.

    Geomorphologists would call this surface convex; see Chap. 6.

  5. 5.

    Ice sheets and their marginal movement are discussed further in Chap. 10.

  6. 6.

    We use the summation convention, which implies summation over repeated suffixes.

  7. 7.

    Physicists call (1.212) the KPZ equation (after Kardar et al. 1986). The substitution \(u=\exp(\bar{\alpha}\psi)\) reduces it to the diffusion equation for u; this is the Hopf–Cole transformation (see Whitham 1974).

  8. 8.

    See Watson (1944, pp. 199 f.) for these results.

References

  • Aris R (1975) Mathematical theory of diffusion and reaction in permeable catalysts. Two volumes. Oxford University Press, Oxford

    Google Scholar 

  • Barnard JA, Bradley JN (1985) Flame and combustion, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Bebernes J, Eberly D (1989) Mathematical problems from combustion theory. Springer, New York

    MATH  Google Scholar 

  • Bender CM, Orszag SA (1978) Advanced mathematical methods for scientists and engineers. McGraw-Hill, New York

    MATH  Google Scholar 

  • Bowden FP, Yoffe YD (1985) Initiation of growth of explosion in liquids and solids. Cambridge University Press, Cambridge

    Google Scholar 

  • Buckmaster JD, Ludford GSS (1982) Theory of laminar flames. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Burgers JM (1948) A mathematical model illustrating the theory of turbulence. Adv Appl Mech 1:171–199

    Article  MathSciNet  Google Scholar 

  • Dold JW (1985) Analysis of the early stage of thermal runaway. Q J Mech Appl Math 38:361–387

    Article  MATH  Google Scholar 

  • Drazin PG, Johnson RS (1989) Solitons: an introduction. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Edelstein-Keshet L (2005) Mathematical models in biology. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7:353–369

    Google Scholar 

  • Fowkes ND, Mahony JJ (1994) An introduction to mathematical modelling. Wiley, Chichester

    MATH  Google Scholar 

  • Fowler AC (1997) Mathematical models in the applied sciences. Cambridge University Press, Cambridge

    Google Scholar 

  • Glassman I (1987) Combustion, 2nd edn. Academic Press, Orlando

    Google Scholar 

  • Gray P, Scott SK (1990) Chemical oscillators and instabilities: non-linear chemical kinetics. Clarendon, Oxford

    Google Scholar 

  • Grindrod P (1991) Patterns and waves. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Haberman R (1998) Mathematical models. Society for Industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  • Hinch EJ (1991) Perturbation methods. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Holmes MH (1995) Introduction to perturbation theory. Springer, New York

    Google Scholar 

  • Holmes MH (2009) Introduction to the foundations of applied mathematics. Springer, Dordrecht

    Book  MATH  Google Scholar 

  • Hoppensteadt F (1975) Mathematical theories of populations: demographics, genetics and epidemics. Society for Industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  • Howard LN, Kopell N (1977) Slowly varying waves and shock structures in reaction-diffusion equations. Stud Appl Math 56:95–145

    MATH  MathSciNet  Google Scholar 

  • Howison SD (2005) Practical applied mathematics: modelling, analysis, approximation. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Kardar M, Parisi G, Zhang YC (1986) Dynamic scaling of growing interfaces. Phys Rev Lett 56:889–892

    Article  MATH  Google Scholar 

  • Keener JP (1980) Waves in excitable media. SIAM J Appl Math 39:528–548

    Article  MATH  MathSciNet  Google Scholar 

  • Keener JP (1986) A geometrical theory for spiral waves in excitable media. SIAM J Appl Math 46:1039–1056

    Article  MATH  MathSciNet  Google Scholar 

  • Kevorkian J, Cole JD (1981) Perturbation methods in applied mathematics. Springer, Berlin

    MATH  Google Scholar 

  • Kopell N, Howard LN (1973) Plane wave solutions to reaction-diffusion equations. Stud Appl Math 42:291–328

    MathSciNet  Google Scholar 

  • Korteweg DJ, de Vries G (1895) On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos Mag Ser 5 39:422–443

    Google Scholar 

  • Lin CC, Segel LA (1974) Mathematics applied to deterministic problems in the natural sciences. MacMillan, New York

    MATH  Google Scholar 

  • Liñán A, Williams FA (1993) Fundamental aspects of combustion. Oxford University Press, Oxford

    Google Scholar 

  • Meinhardt H (1982) Models of biological pattern formation. Academic Press, New York

    Google Scholar 

  • Meinhardt H (1995) The algorithmic beauty of sea shells. Springer, Berlin

    Google Scholar 

  • Murray JD (2002) Mathematical biology, 2 volumes. Springer, Berlin

    MATH  Google Scholar 

  • Nayfeh AH (1973) Perturbation methods. Wiley-Interscience, New York

    MATH  Google Scholar 

  • Newell AC (1985) Solitons in mathematics and physics. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  • Samarskii AA, Galaktionov VA, Kurdyumov SP, Mikhailov AP (1995) Blow-up in quasilinear parabolic equations. de Gruyter expositions in mathematics, vol 19. de Gruyter, Berlin

    MATH  Google Scholar 

  • Tayler AB (1986) Mathematical models in applied mechanics. Clarendon, Oxford

    MATH  Google Scholar 

  • Van Dyke MD (1975) Perturbation methods in fluid mechanics. Parabolic Press, Stanford

    MATH  Google Scholar 

  • Watson GN (1944) A treatise on the theory of Bessel functions, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Whitham GB (1974) Linear and nonlinear waves. Wiley, New York

    MATH  Google Scholar 

  • Williams FA (1985) Combustion theory, 2nd edn. Benjamin/Cummings, Menlo Park

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Fowler .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Fowler, A. (2011). Mathematical Modelling. In: Mathematical Geoscience. Interdisciplinary Applied Mathematics, vol 36. Springer, London. https://doi.org/10.1007/978-0-85729-721-1_1

Download citation

Publish with us

Policies and ethics