Ovarian/Primary Peritoneal Carcinoma

  • Ben Davidson


The epidemiology, clinical presentation, and therapeutic aspects of ovarian carcinoma, as well as the morphology and differential diagnosis of this cancer, are discussed in Chap. 3.


Vascular Endothelial Growth Factor Solid Lesion Telomeric Repeat Amplification Protocol Telomeric Repeat Amplification Protocol Malignant Effusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Shirayoshi Y, Hatta K, Hosoda M, Tsunasawa S, Sakiyama F, Takeichi M. Cadherin cell adhesion molecules with distinct binding specificities share a common structure. EMBO J. 1986;5:2485-2488.PubMedGoogle Scholar
  2. 2.
    Behrens J. Cadherins and catenins: role in signal transduction and tumor progression. Cancer Metastasis Rev. 1999;18:15-30.PubMedCrossRefGoogle Scholar
  3. 3.
    Vleminckx K, Vakaet L Jr, Mareel M, Fiers W, van Roy F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell. 1991;66:107-119.PubMedCrossRefGoogle Scholar
  4. 4.
    Hajra KM, Fearon ER. Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer. 2002;34:255-268.PubMedCrossRefGoogle Scholar
  5. 5.
    Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119:1429-1437.PubMedCrossRefGoogle Scholar
  6. 6.
    Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7:415-428.PubMedCrossRefGoogle Scholar
  7. 7.
    Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420-1428.PubMedCrossRefGoogle Scholar
  8. 8.
    Risinger JI, Berchuck A, Kohler MF, Boyd J. Mutations of the E-cadherin gene in human gynecologic cancers. Nat Genet. 1994;7:98-102.PubMedCrossRefGoogle Scholar
  9. 9.
    Palacios J, Gamallo C. Mutations in the beta-catenin gene (CTNNB1) in endometrioid ovarian carcinomas. Cancer Res. 1998;58:1344-1347.PubMedGoogle Scholar
  10. 10.
    Davidson B, Berner A, Nesland JM, et al. E-cadherin and α-, β- and γ-catenin protein expression is up-regulated in ovarian carcinoma cells in serous effusions. J Pathol. 2000;192:460-469.PubMedCrossRefGoogle Scholar
  11. 11.
    Sivertsen S, Berner A, Michael C, Bedrossian B, Davidson B. Ovarian carcinoma and malignant mesothelioma cells in effusions have comparable cadherin expression. Acta Cytol. 2006;50:603-607.PubMedCrossRefGoogle Scholar
  12. 12.
    Patel IS, Madan P, Getsios S, Bertrand MA, MacCalman CD. Cadherin switching in ovarian cancer progression. Int J Cancer. 2003;106:172-177.PubMedCrossRefGoogle Scholar
  13. 13.
    Elloul S, Bukholt Elstrand M, Nesland JM, et al. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer. 2005;103:1631-1643.PubMedCrossRefGoogle Scholar
  14. 14.
    Elloul S, Silins I, Trope’ CG, Benshushan A, Davidson B, Reich R. Site-dependent expression of E-cadherin transcriptional regulators in ovarian carcinoma. Virchows Arch. 2006;449:520-528.PubMedCrossRefGoogle Scholar
  15. 15.
    Elloul S, Vaksman O, Tuft Stavnes H, Tropé CG, Davidson B, Reich R. Mesenchymal-to-epithelial transition determinants as characteristics of ovarian carcinoma effusions. Clin Exp Metastasis. 2010;27:161-172.PubMedCrossRefGoogle Scholar
  16. 16.
    Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002;2:91-100.PubMedCrossRefGoogle Scholar
  17. 17.
    Sanders RJ, Mainiero F, Giancotti FP. The role of integrins in tumorigenesis and metastasis. Cancer Invest. 1998;16:329-344.PubMedCrossRefGoogle Scholar
  18. 18.
    Moser TL, Pizzo SV, Bafetti LM, Fishman DA, Stack MS. Evidence for preferential adhesion of ovarian epithelial carcinoma cells to type I collagen mediated by the α2β1 integrin. Int J Cancer. 1996;67:695-701.PubMedCrossRefGoogle Scholar
  19. 19.
    Strobel T, Cannistra SA. β1-integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitro. Gynecol Oncol. 1999;73:362-367.PubMedCrossRefGoogle Scholar
  20. 20.
    Lessan K, Aguiar DJ, Oegema T, Siebenson L, Skubitz AP. CD44 and β1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. Am J Pathol. 1999;154:1525-1537.PubMedCrossRefGoogle Scholar
  21. 21.
    Skubitz APN, Bast RC Jr, Wayner EA, Letourneau PC, Wilke MS. Expression of α6 and β4 integrins in serous ovarian carcinoma correlates with expression of the basement membrane protein laminin. Am J Pathol. 1996;148:1445-1461.PubMedGoogle Scholar
  22. 22.
    Cannistra SA, Ottensmeier C, Niloff J, Orta B, DiCarlo J. Expression and function of β1 and αvβ3 integrins in ovarian cancer. Gynecol Oncol. 1995;58:216-225.PubMedCrossRefGoogle Scholar
  23. 23.
    Davidson B, Goldberg I, Reich R, et al. αv and β1 integrin subunits are commonly expressed in malignant effusions from ovarian carcinoma patients. Gynecol Oncol. 2003;90:248-257.PubMedCrossRefGoogle Scholar
  24. 24.
    Goldberg I, Davidson B, Reich R, et al. αV integrin is a novel marker of poor prognosis in advanced-stage ovarian carcinoma. Clin Cancer Res. 2001;7:4073-4079.PubMedGoogle Scholar
  25. 25.
    Byers LJ, Osborne JL, Carson LF, et al. Increased levels of laminin in ascitic fluid of patients with ovarian cancer. Cancer Lett. 1995;88:67-72.PubMedCrossRefGoogle Scholar
  26. 26.
    Givant-Horwitz V, Davidson B, van de Putte G, et al. Expression of the 67 kDa laminin receptor and the α6 integrin subunit in serous ovarian carcinoma. Clin Exp Metastasis. 2003;20:599-609.PubMedCrossRefGoogle Scholar
  27. 27.
    Ahmed N, Riley C, Oliva K, Rice G, Quinn M. Ascites induces modulation of alpha6beta1 integrin and urokinase plasminogen activator receptor expression and associated functions in ovarian carcinoma. Br J Cancer. 2005;92:1475-1485.PubMedCrossRefGoogle Scholar
  28. 28.
    Bar JK, Grelewski P, Popiela A, Noga L, Rabczyñski J. Type IV collagen and CD44v6 expression in benign, malignant primary and metastatic ovarian tumors: correlation with Ki-67 and p53 immunoreactivity. Gynecol Oncol. 2004;95:23-31.PubMedCrossRefGoogle Scholar
  29. 29.
    Cracchiolo BM, Hanauske-Abel HM, Schwartz PE, Chambers JT, Holland B, Chambers SK. Procollagen-derived biomarkers in malignant ascites of ovarian cancer. Independent prognosticators for progression-free interval and survival. Gynecol Oncol. 2002;87:24-33.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhu GG, Risteli J, Puistola U, Kauppila A, Risteli L. Progressive ovarian carcinoma induces synthesis of type I and type III procollagens in the tumor tissue and peritoneal cavity. Cancer Res. 1993;53:5028-5032.PubMedGoogle Scholar
  31. 31.
    Kohn EC, Travers LA, Kassis J, Broome U, Klominek J. Malignant effusions are sources of fibronectin and other promigratory and proinvasive components. Diagn Cytopathol. 2005;33:300-308.PubMedCrossRefGoogle Scholar
  32. 32.
    Olt G, Berchuck A, Soisson AP, Boyer CM, Bast RC Jr. Fibronectin is an immunosuppressive substance associated with epithelial ovarian cancer. Cancer. 1992;70:2137-2142.PubMedCrossRefGoogle Scholar
  33. 33.
    Menzin AW, Loret de Mola JR, Bilker WB, Wheeler JE, Rubin SC, Feinberg RF. Identification of oncofetal fibronectin in patients with advanced epithelial ovarian cancer: detection in ascitic fluid and localization to primary sites and metastatic implants. Cancer. 1998;82:152-158.PubMedCrossRefGoogle Scholar
  34. 34.
    González-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol. 2003;81:1-44.PubMedCrossRefGoogle Scholar
  35. 35.
    Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2001;2:285-293.PubMedCrossRefGoogle Scholar
  36. 36.
    Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Annu Rev Physiol. 2006;68:403-429.PubMedCrossRefGoogle Scholar
  37. 37.
    Morita K, Furuse M, Fujimoto K, Tsukita S. Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Pro Natl Acad Sci USA. 1999;96:511-516.CrossRefGoogle Scholar
  38. 38.
    Tassi RA, Bignotti E, Falchetti M, et al. Claudin-7 expression in human epithelial ovarian cancer. Int J Gynecol Cancer. 2008;18:1262-1271.PubMedCrossRefGoogle Scholar
  39. 39.
    Davidson B, Zhang Z, Kleinberg L, et al. Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from diffuse malignant peritoneal mesothelioma. Clin Cancer Res. 2006;12:5944-5950.PubMedCrossRefGoogle Scholar
  40. 40.
    Kleinberg L, Holth A, Fridman E, Schwartz I, Shih IeM, Davidson B. The diagnostic role of claudins in serous effusions. Am J Clin Pathol. 2007;127:928-937.PubMedCrossRefGoogle Scholar
  41. 41.
    Kleinberg L, Holth A, Trope’ CG, Reich R, Davidson B. Claudin upregulation in ovarian carcinoma effusions is associated with poor survival. Hum Pathol. 2008;39:747-757.PubMedCrossRefGoogle Scholar
  42. 42.
    Underhill C. CD44: the hyaluronan receptor. J Cell Sci. 1992;103:293-298.PubMedGoogle Scholar
  43. 43.
    Orian-Rousseau V. CD44, a therapeutic target for metastasising tumours. Eur J Cancer. 2010;46:1271-1277.PubMedCrossRefGoogle Scholar
  44. 44.
    Fong MY, Kakar SS. The role of cancer stem cells and the side population in epithelial ovarian cancer. Histol Histopathol. 2010;25:113-120.PubMedGoogle Scholar
  45. 45.
    Slomiany MG, Dai L, Tolliver LB, Grass GD, Zeng Y, Toole BP. Inhibition of functional hyaluronan-CD44 interactions in CD133-positive primary human ovarian carcinoma cells by small hyaluronan oligosaccharides. Clin Cancer Res. 2009;15:7593-7601.PubMedCrossRefGoogle Scholar
  46. 46.
    Cannistra SA, Kansas GS, Niloff J, DeFranzo B, Kim Y, Ottensmeier C. Binding of ovarian cancer cells to peritoneal mesothelium in vitro is partly mediated by CD44H. Cancer Res. 1993;53:3830-3838.PubMedGoogle Scholar
  47. 47.
    Meunier L, Puiffe ML, Le Page C, et al. Effect of ovarian cancer ascites on cell migration and gene expression in an epithelial ovarian cancer in vitro model. Transl Oncol. 2010;3:230-238.PubMedGoogle Scholar
  48. 48.
    Yang W, Toffa SE, Lohn JW, Seifalian AM, Winslet MC. Malignant ascites increases the antioxidant ability of human ovarian (SKOV-3) and gastric adenocarcinoma (KATO-III) cells. Gynecol Oncol. 2005;96:430-438.PubMedCrossRefGoogle Scholar
  49. 49.
    Berner HS, Davidson B, Berner A, Risberg B, Nesland JM. Differential expression of CD44s and CD44v3-10 in adenocarcinoma cells and reactive mesothelial cells in effusions. Virchows Arch. 2000;436:330-335.PubMedCrossRefGoogle Scholar
  50. 50.
    Berner HS, Davidson B, Berner A, et al. Expression of CD44 in effusions of patients diagnosed with serous ovarian carcinoma- diagnostic and prognostic implications. Clin Exp Metastasis. 2000;18:197-202.PubMedCrossRefGoogle Scholar
  51. 51.
    Dong WG, Sun XM, Yu BP, Luo HS, Yu JP. Role of VEGF and CD44v6 in differentiating benign from malignant ascites. World J Gastroenterol. 2003;9:2596-2600.PubMedGoogle Scholar
  52. 52.
    Taylor DD, Gercel-Taylor C, Gall SA. Expression and shedding of CD44 variant isoforms in patients with gynecologic malignancies. J Soc Gynecol Investig. 1996;3:289-294.PubMedCrossRefGoogle Scholar
  53. 53.
    Byrd JC, Bresalier RS. Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev. 2004;23:77-99.PubMedCrossRefGoogle Scholar
  54. 54.
    Carraway KL 3rd, Funes M, Workman HC, Sweeney C. Contribution of membrane mucins to tumor progression through modulation of cellular growth signaling pathways. Curr Top Dev Biol. 2007;78:1-22.PubMedCrossRefGoogle Scholar
  55. 55.
    Singh AP, Chaturvedi P, Batra SK. Emerging roles of MUC4 in cancer: a novel target for diagnosis and therapy. Cancer Res. 2007;67:433-436.PubMedCrossRefGoogle Scholar
  56. 56.
    Davidson B, Baekelandt M, Shih IeM. MUC4 is upregulated in ovarian carcinoma effusions and differentiates carcinoma cells from mesothelial cells. Diagn Cytopathol. 2007;35:756-760.PubMedCrossRefGoogle Scholar
  57. 57.
    Iacono KT, Brown AL, Greene MI, Saouaf SJ. CD147 immunoglobulin superfamily receptor function and role in pathology. Exp Mol Pathol. 2007;83:283-295.PubMedCrossRefGoogle Scholar
  58. 58.
    Davidson B, Goldberg I, Berner A, Kristensen GB, Reich R. EMMPRIN (extracellular matrix metalloproteinase inducer) is a novel marker of poor outcome in serous ovarian carcinoma. Clin Exp Metastasis. 2003;20:161-169.PubMedCrossRefGoogle Scholar
  59. 59.
    Davidson B, Givant-Horwitz V, Lazarovici P, et al. Matrix metalloproteinases (MMP), EMMPRIN (extracellular matrix metalloproteinase inducer) and mitogen-activated protein kinases (MAPK): co-expression in metastatic serous ovarian carcinoma. Clin Exp Metastasis. 2003;20:621-631.PubMedCrossRefGoogle Scholar
  60. 60.
    Davidson B, Goldberg I, Givant-Horwitz V, et al. Caveolin-1 expression in ovarian carcinoma is MDR1 independent. Am J Clin Pathol. 2002;117:225-234.PubMedCrossRefGoogle Scholar
  61. 61.
    Patapoutian A, Reichardt LF. Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol. 2001;11:272-280.PubMedCrossRefGoogle Scholar
  62. 62.
    Teng KK, Hempstead BL. Neurotrophins and their receptors: signaling trios in complex biological systems. Cell Mol Life Sci. 2004;61:35-48.PubMedCrossRefGoogle Scholar
  63. 63.
    Nakagawara A. Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett. 2001;169:107-114.PubMedCrossRefGoogle Scholar
  64. 64.
    Fanburg-Smith JC, Miettinen M. Low-affinity nerve growth factor receptor (p75) in dermatofibrosarcoma protuberans and other nonneuronal tumors: a study of 1,150 tumors and fetal and adult normal tissues. Hum Pathol. 2001;32:976-983.PubMedCrossRefGoogle Scholar
  65. 65.
    Davidson B, Lazarovici P, Ezersky A, et al. Expression levels of the NGF receptors TrkA and p75 in effusions and solid tumors of serous ovarian carcinoma patients. Clin Cancer Res. 2001;7:3457-3464.PubMedGoogle Scholar
  66. 66.
    Davidson B, Reich R, Lazarovici P, et al. Expression and activation of the nerve growth factor receptor TrkA in serous ovarian carcinoma. Clin Cancer Res. 2003;9:2248-2259.PubMedGoogle Scholar
  67. 67.
    Yu X, Liu L, Cai B, He Y, Wan X. Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. Cancer Sci. 2008;99:543-552.PubMedCrossRefGoogle Scholar
  68. 68.
    Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2:161-174.PubMedCrossRefGoogle Scholar
  69. 69.
    Bjorklund M, Koivunen E. Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta. 2005;1755:37-69.PubMedGoogle Scholar
  70. 70.
    Young TN, Rodriguez GC, Rinehart AR, Bast RC Jr, Pizzo SV, Stack MS. Characterization of gelatinases linked to extracellular matrix invasion in ovarian adenocarcinoma: purification of matrix metalloproteinase 2. Gynecol Oncol. 1996;62:89-99.PubMedCrossRefGoogle Scholar
  71. 71.
    Fishman DA, Bafetti LM, Banionis S, Kearns AS, Chilukuri K, Stack MS. Production of extracellular matrix-degrading proteinases by primary cultures of human epithelial ovarian carcinoma cells. Cancer. 1997;80:1457-1463.PubMedCrossRefGoogle Scholar
  72. 72.
    Fishman DA, Bafetti LM, Stack MS. Membrane-type matrix metalloproteinase expression and matrix metalloproteinase-2 activation in primary human ovarian epithelial carcinoma cells. Invasion Metastasis. 1996;16:150-159.PubMedGoogle Scholar
  73. 73.
    Sun XM, Dong WG, Yu BP, Luo HS, Yu JP. Detection of type IV collagenase activity in malignant ascites. World J Gastroenterol. 2003;9:2592-2595.PubMedGoogle Scholar
  74. 74.
    Davidson B, Reich R, Berner A, et al. Ovarian carcinoma cells in serous effusions show altered MMP-2 and TIMP-2 mRNA levels. Eur J Cancer. 2001;37:2040-2049.PubMedCrossRefGoogle Scholar
  75. 75.
    Davidson B, Goldberg I, Berner A, et al. Expression of membrane-type 1,2 and 3 matrix metalloproteinases messenger RNA in ovarian carcinoma cells in serous effusions. Am J Clin Pathol. 2001;115:517-524.PubMedCrossRefGoogle Scholar
  76. 76.
    Duffy MJ, Duggan C. The urokinase plasminogen activator system: a rich source of tumour markers for the individualized management of patients with cancer. Clin Biochem. 2004;37:541-548.PubMedCrossRefGoogle Scholar
  77. 77.
    Blasi F, Carmeliet P. uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol. 2002;3:932-942.PubMedCrossRefGoogle Scholar
  78. 78.
    Young TN, Rodriguez GC, Moser TL, Bast RC Jr, Pizzo SV, Stack MS. Coordinate expression of urinary-type plasminogen activator and its receptor accompanies malignant transformation of the ovarian surface epithelium. Am J Obstet Gynecol. 1994;170:1285-1296.PubMedGoogle Scholar
  79. 79.
    Sier CF, Stephens R, Bizik J, et al. The level of urokinase-type plasminogen activator receptor is increased in serum of ovarian cancer patients. Cancer Res. 1998;58:1843-1849.PubMedGoogle Scholar
  80. 80.
    Sier CF, Nicoletti I, Santovito ML, et al. Metabolism of tumour-derived urokinase receptor and receptor fragments in cancer patients and xenografted mice. Thromb Haemost. 2004;91:403-411.PubMedGoogle Scholar
  81. 81.
    Chambers SK, Gertz RE Jr, Ivins CM, Kacinski BM. The significance of urokinase- type plasminogen activator, its inhibitors, and its receptor in ascites of patients with epithelial ovarian cancer. Cancer. 1995;75:1627-1633.PubMedCrossRefGoogle Scholar
  82. 82.
    Price FV, Chambers SK, Chambers JT, et al. Colony-stimulating factor-1 in primary ascites of ovarian cancer is a significant predictor of survival. Am J Obstet Gynecol. 1993;168:520-527.PubMedGoogle Scholar
  83. 83.
    Kobayashi H, Hirashima Y, Sun GW, Ohi H, Fujie M, Terao T. Identification and characterization of a Kunitz-type protease inhibitor in ascites fluid from patients with ovarian carcinoma. Int J Cancer. 2000;87:44-54.PubMedCrossRefGoogle Scholar
  84. 84.
    Yousef GM, Diamandis EP. The new human kallikrein gene family: structure, function, and association to disease. Endocr Rev. 2001;22:184-204.PubMedCrossRefGoogle Scholar
  85. 85.
    Clements J, Hooper J, Dong Y, Harvey T. The expanded human kallikrein gene family: genomic organisation, tissue-specific expression and potential functions. Biol Chem. 2001;382:5-14.PubMedCrossRefGoogle Scholar
  86. 86.
    Shih IeM, Salani R, Fiegl M, et al. Ovarian cancer specific kallikrein profile in effusions. Gynecol Oncol. 2007;105:501-507.PubMedCrossRefGoogle Scholar
  87. 87.
    Davidson B, Xi Z, Klokk TI, et al. Kallikrein 4 expression is upregulated in ovarian carcinoma cells in effusions. Am J Clin Pathol. 2005;123:360-368.PubMedCrossRefGoogle Scholar
  88. 88.
    Dong Y, Tan OL, Loessner D, et al. Kallikrein-related peptidase 7 promotes multicellular aggregation via the alpha(5)beta(1) integrin pathway and paclitaxel chemoresistance in serous epithelial ovarian carcinoma. Cancer Res. 2010;70:2624-2633.PubMedCrossRefGoogle Scholar
  89. 89.
    Kassis J, Klominek J, Kohn EC. Tumor microenvironment: what can effusions teach us? Diagn Cytopathol. 2005;33:316-319.PubMedCrossRefGoogle Scholar
  90. 90.
    Sachdev D, Yee D. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol Cancer Ther. 2007;6:1-12.PubMedCrossRefGoogle Scholar
  91. 91.
    Guvakova MA. Insulin-like growth factors control cell migration in health and disease. Int J Biochem Cell Biol. 2007;39:890-909.PubMedCrossRefGoogle Scholar
  92. 92.
    Denley A, Cosgrove LJ, Booker GW, Wallace JC, Forbes BE. Molecular interactions of the IGF system. Cytokine Growth Factor Rev. 2005;16:421-439.PubMedCrossRefGoogle Scholar
  93. 93.
    Bach LA, Headey SJ, Norton RS. IGF-binding proteins–the pieces are falling into place. Trends Endocrinol Metab. 2005;16:228-234.PubMedCrossRefGoogle Scholar
  94. 94.
    Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev. 2002;23:824-854.PubMedCrossRefGoogle Scholar
  95. 95.
    Beauchamp MC, Yasmeen A, Knafo A, Gotlieb WH. Targeting insulin and insulin-like growth factor pathways in epithelial ovarian cancer. J Oncol. 2010;2010:257058.PubMedCrossRefGoogle Scholar
  96. 96.
    Kim K, Visintin I, Alvero AB, Mor G. Development and validation of a protein-based signature for the detection of ovarian cancer. Clin Lab Med. 2009;29:47-55.PubMedCrossRefGoogle Scholar
  97. 97.
    Slipicevic A, Øy GF, Askildt IC, et al. The diagnostic and prognostic role of the insulin growth factor pathway members IGF-II and IGFBP3 in serous effusions. Hum Pathol. 2009;40:527-537.PubMedCrossRefGoogle Scholar
  98. 98.
    Fidler IJ, Ellis LM. The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell. 1994;79:185-188.PubMedCrossRefGoogle Scholar
  99. 99.
    Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987;235:442-447.PubMedCrossRefGoogle Scholar
  100. 100.
    Roy H, Bhardwaj S, Yla-Herttuala S. Biology of vascular endothelial growth factors. FEBS Lett. 2006;580:2879-2887.PubMedCrossRefGoogle Scholar
  101. 101.
    Campos SM, Ghosh S. A current review of targeted therapeutics for ovarian cancer. J Oncol. 2010;2010:149362.PubMedCrossRefGoogle Scholar
  102. 102.
    Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol. 2001; 2:REVIEWS3005.Google Scholar
  103. 103.
    Grose R, Dickson C. Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev. 2005;16:179-186.PubMedCrossRefGoogle Scholar
  104. 104.
    Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005;16:159-178.PubMedCrossRefGoogle Scholar
  105. 105.
    Wilson J, Balkwill F. The role of cytokines in the epithelial cancer microenvironment. Semin Cancer Biol. 2002;12:113-120.PubMedCrossRefGoogle Scholar
  106. 106.
    Homey B, Müller A, Zlotnik A. Chemokines: agents for the immunotherapy of cancer? Nat Rev Immunol. 2002;2:175-184.PubMedCrossRefGoogle Scholar
  107. 107.
    Olson TA, Mohanraj D, Carson LF, Ramakrishnan S. Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Res. 1994;54:276-280.PubMedGoogle Scholar
  108. 108.
    Boocock CA, Charnock-Jones DS, Sharkey AM, et al. Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J Natl Cancer Inst. 1995;87:506-516.PubMedCrossRefGoogle Scholar
  109. 109.
    Barton DP, Cai A, Wendt K, Young M, Gamero A, De Cesare S. Angiogenic protein expression in advanced epithelial ovarian cancer. Clin Cancer Res. 1997;3:1579-1586.PubMedGoogle Scholar
  110. 110.
    Santin AD, Hermonat PL, Ravaggi A, Cannon MJ, Pecorelli S, Parham GP. Secretion of vascular endothelial growth factor in ovarian cancer. Eur J Gynaecol Oncol. 1999;20:177-181.PubMedGoogle Scholar
  111. 111.
    Kraft A, Weindel K, Ochs A, et al. Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease. Cancer. 1999;85:178-187.PubMedCrossRefGoogle Scholar
  112. 112.
    Davidson B, Reich R, Kopolovic J, et al. Interleukin-8 and vascular endothelial growth factor mRNA levels are down-regulated in ovarian carcinoma cells in serous effusions. Clin Exp Metastasis. 2002;19:135-144.PubMedCrossRefGoogle Scholar
  113. 113.
    Bernfield M, Götte M, Park PW, et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729-777.PubMedCrossRefGoogle Scholar
  114. 114.
    Parish CR, Freeman C, Hulett MD. Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta. 2001;1471:M99-M108.PubMedGoogle Scholar
  115. 115.
    Vlodavsky I, Friedmann Y. Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest. 2001;108:341-347.PubMedGoogle Scholar
  116. 116.
    Davidson B, Shafat I, Ilan N, Trope’ CG, Vlodavsky I, Reich R. Heparanase expression correlates with poor survival in metastatic ovarian carcinoma. Gynecol Oncol. 2007;104:311-319.PubMedCrossRefGoogle Scholar
  117. 117.
    Ong CHP, Bateman A. Progranulin (Granulin-epithelin precursor, PC-cell derived growth factor, Acrogranin) in proliferation and tumorigenesis. Histol Histopathol. 2003;18:1275-1288.PubMedGoogle Scholar
  118. 118.
    Kamrava M, Simpkins F, Alejandro E, Michener C, Meltzer E, Kohn EC. Lysophosphatidic acid and endothelin-induced proliferation of ovarian cancer cell lines is mitigated by neutralization of granulin-epithelin precursor (GEP), a prosurvival factor for ovarian cancer. Oncogene. 2005;24:7084-7093.PubMedCrossRefGoogle Scholar
  119. 119.
    Davidson B, Alejandro E, Flørenes VA, et al. Granulin-epithelin precursor (GEP) is a novel prognostic marker in epithelial ovarian cancer. Cancer. 2004;100:2139-2147.PubMedCrossRefGoogle Scholar
  120. 120.
    Steele IA, Edmondson RJ, Bulmer JN, Bolger BS, Leung HY, Davies BR. Induction of FGF receptor 2-IIIb expression and response to its ligands in epithelial ovarian cancer. Oncogene. 2001;20:5878-5887.PubMedCrossRefGoogle Scholar
  121. 121.
    Matei D, Emerson RE, Lai YC, et al. Autocrine activation of PDGFR alpha promotes the progression of ovarian cancer. Oncogene. 2006;25:2060-2069.PubMedCrossRefGoogle Scholar
  122. 122.
    Saltzman AK, Hartenbach EM, Carter JR, et al. Transforming growth factor-alpha levels in the serum and ascites of patients with advanced epithelial ovarian cancer. Gynecol Obstet Invest. 1999;47:200-204.PubMedCrossRefGoogle Scholar
  123. 123.
    Richardson M, Gunawan J, Hatton MW, Seidlitz E, Hirte HW, Singh G. Malignant ascites fluid (MAF), including ovarian-cancer-associated MAF, contains angiostatin and other factor(s) which inhibit angiogenesis. Gynecol Oncol. 2002;86:279-287.PubMedCrossRefGoogle Scholar
  124. 124.
    Kleinberg L, Pradhan M, Trope’ CG, Nesland JM, Davidson D, Risberg B. Ovarian carcinoma cells in effusions show increased S-phase fraction compared to corresponding primary tumors. Diagn Cytopathol. 2008;36:637-644.PubMedCrossRefGoogle Scholar
  125. 125.
    Deshpande A, Sicinski P, Hinds PW. Cyclins and cdks in development and cancer: a perspective. Oncogene. 2005;24:2909-2915.PubMedCrossRefGoogle Scholar
  126. 126.
    Cordon-Cardo C. Mutations of cell cycle regulators. Biological and clinical implications for human neoplasia. Am J Pathol. 1995;147:545-560.PubMedGoogle Scholar
  127. 127.
    Graña X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene. 1995;11:211-219.PubMedGoogle Scholar
  128. 128.
    Watson JE, Gabra H, Taylor KJ, et al. Identification and characterization of a homozygous deletion found in ovarian ascites by representational difference analysis. Genome Res. 1999;9:226-233.PubMedGoogle Scholar
  129. 129.
    Goto T, Takano M, Hirata J, et al. p16INK4a expression in cytology of ascites and response to chemotherapy in advanced ovarian cancer. Int J Cancer. 2009;125:339-344.PubMedCrossRefGoogle Scholar
  130. 130.
    Davidson B, Risberg B, Berner A, et al. Expression of cell cycle proteins in ovarian carcinoma cells in serous effusions- biological and prognostic implications. Gynecol Oncol. 2001;83:249-256.PubMedCrossRefGoogle Scholar
  131. 131.
    Davidson B, Skrede M, Silins I, Shih IeM, Trope’ CG, Flørenes VA. Low molecular weight cyclin E forms differentiate ovarian carcinoma from cells of mesothelial origin and are associated with poor survival in ovarian carcinoma. Cancer. 2007;110:1264-1271.PubMedCrossRefGoogle Scholar
  132. 132.
    Salani R, Davidson B, Fiegl M, et al. Measurement of cyclin E genomic copy number and strand length in cell-free DNA distinguish malignant versus benign effusions. Clin Cancer Res. 2007;13:5805-5809.PubMedCrossRefGoogle Scholar
  133. 133.
    Provencher DM, Lounis H, Fink D, Drouin P, Mes-Masson AM. Discordance in p53 mutations when comparing ascites and solid tumors from patients with serous ovarian cancer. Tumour Biol. 1997;18:167-174.PubMedCrossRefGoogle Scholar
  134. 134.
    Kappes S, Milde-Langosch K, Kressin P, et al. p53 mutations in ovarian tumors, detected by temperature-gradient gel electrophoresis, direct sequencing and immunohistochemistry. Int J Cancer. 1995;64:52-59.PubMedCrossRefGoogle Scholar
  135. 135.
    Angelopoulou K, Diamandis EP. Detection of the TP53 tumour suppressor gene product and p53 auto-antibodies in the ascites of women with ovarian cancer. Eur J Cancer. 1997;33:115-121.PubMedCrossRefGoogle Scholar
  136. 136.
    Abendstein B, Marth C, Müller-Holzner E, Widschwendter M, Daxenbichler G, Zeimet AG. Clinical significance of serum and ascitic p53 autoantibodies in epithelial ovarian carcinoma. Cancer. 2000;88:1432-1437.PubMedCrossRefGoogle Scholar
  137. 137.
    Montenarh M, Harloziñska A, Bar JK, Kartarius S, Günther J, Sedlaczek P. p53 autoantibodies in the sera, cyst and ascitic fluids of patients with ovarian cancer. Int J Oncol. 1998;13:605-610.PubMedGoogle Scholar
  138. 138.
    Ashkenazi A. Targeting death and decoy receptors of the tumor-necrosis factor superfamily. Nat Rev Cancer. 2002;2:420-430.PubMedCrossRefGoogle Scholar
  139. 139.
    Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45-65.PubMedCrossRefGoogle Scholar
  140. 140.
    Takeda K, Stagg J, Yagita H, Okumura K, Smyth MJ. Targeting death-inducing receptors in cancer therapy. Oncogene. 2007;26:3745-3757.PubMedCrossRefGoogle Scholar
  141. 141.
    Reichmann E. The biological role of the Fas/FasL system during tumor formation and progression. Semin Cancer Biol. 2002;12:309-315.PubMedCrossRefGoogle Scholar
  142. 142.
    Balkwill F. TNF-α in promotion and progression of cancer. Cancer Metastasis Rev. 2006;25:409-416.PubMedCrossRefGoogle Scholar
  143. 143.
    Lane D, Goncharenko-Khaider N, Rancourt C, Piché A. Ovarian cancer ascites protects from TRAIL-induced cell death through alphavbeta5 integrin-mediated focal adhesion kinase and Akt activation. Oncogene. 2010;29:3519-3531.PubMedCrossRefGoogle Scholar
  144. 144.
    Lane D, Matte I, Rancourt C, Piché A. The prosurvival activity of ascites against TRAIL is associated with a shorter disease-free interval in patients with ovarian cancer. J Ovarian Res. 2010;3:1.PubMedCrossRefGoogle Scholar
  145. 145.
    Connor JP, Felder M. Ascites from epithelial ovarian cancer contain high levels of functional decoy receptor 3 (DcR3) and is associated with platinum resistance. Gynecol Oncol. 2008;111:330-335.PubMedCrossRefGoogle Scholar
  146. 146.
    Abrahams VM, Straszewski SL, Kamsteeg M, et al. Epithelial ovarian cancer cells secrete functional Fas ligand. Cancer Res. 2003;63:5573-5581.PubMedGoogle Scholar
  147. 147.
    Ciaravino G, Bhat M, Manbeian CA, Teng NN. Differential expression of CD40 and CD95 in ovarian carcinoma. Eur J Gynaecol Oncol. 2004;25:27-32.PubMedGoogle Scholar
  148. 148.
    Dong HP, Kleinberg L, Silins I, et al. Death receptor expression is associated with poor response to chemotherapy and shorter survival in metastatic ovarian carcinoma. Cancer. 2008;112:84-93.PubMedCrossRefGoogle Scholar
  149. 149.
    Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2002;2:277-288.PubMedCrossRefGoogle Scholar
  150. 150.
    Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9:231-241.PubMedCrossRefGoogle Scholar
  151. 151.
    Dong HP, Kleinberg L, Davidson B, Risberg B. Methods for simultaneous measurement of apoptosis and cell surface phenotype of epithelial cells in effusions by flow cytometry. Nat Protoc. 2008;3:955-964.PubMedCrossRefGoogle Scholar
  152. 152.
    Kleinberg L, Dong HP, Holth A, et al. Cleaved caspases and NF-κB are prognostic factors in metastatic ovarian carcinoma. Hum Pathol. 2009;40:795-806.PubMedCrossRefGoogle Scholar
  153. 153.
    Schimmer AD. Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res. 2004;64:7183-7190.PubMedCrossRefGoogle Scholar
  154. 154.
    Liston P, Fong WG, Korneluk RG. The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene. 2003;22:8568-8580.PubMedCrossRefGoogle Scholar
  155. 155.
    Altieri DC. Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene. 2003;22:8581-8589.PubMedCrossRefGoogle Scholar
  156. 156.
    Wu M, Yuan S, Szporn AH, Gan L, Shtilbans V, Burstein DE. Immunohistochemical detection of XIAP in body cavity effusions and washes. Mod Pathol. 2005;18:1618-1622.PubMedGoogle Scholar
  157. 157.
    Kleinberg L, Flørenes VA, Silins I, et al. Nuclear expression of survivin is associated with improved survival in metastatic ovarian carcinoma. Cancer. 2007;109:228-238.PubMedCrossRefGoogle Scholar
  158. 158.
    Danial NN. Bcl-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res. 2007;13:7254-7263.PubMedCrossRefGoogle Scholar
  159. 159.
    Liu JR, Fletcher B, Page C, Hu C, Nunez G, Baker V. Bcl-xL is expressed in ovarian carcinoma and modulates chemotherapy-induced apoptosis. Gynecol Oncol. 1998;70:398-403.PubMedCrossRefGoogle Scholar
  160. 160.
    Bunkholt Elstrand M, Kleinberg L, Kohn EC, Tropé CG, Davidson B. Expression and clinical role of anti-apoptotic proteins of the bag, heat shock and Bcl-2 families in effusions, primary tumors and solid metastases in ovarian carcinoma. Int J Gynecol Pathol. 2009;28:211-221.CrossRefGoogle Scholar
  161. 161.
    Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive and treatment implications. Cell Stress Chaperones. 2005;10:86-103.PubMedCrossRefGoogle Scholar
  162. 162.
    Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G. Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle. 2006;5:2592-2601.PubMedCrossRefGoogle Scholar
  163. 163.
    Beere HM. “The stress of dying”: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci. 2004;117:2641-2651.PubMedCrossRefGoogle Scholar
  164. 164.
    Doong H, Vrailas A, Kohn EC. What’s in the ‘BAG’? – a functional domain analysis of the BAG-family proteins. Cancer Lett. 2002;188:25-32.PubMedCrossRefGoogle Scholar
  165. 165.
    Takayama S, Sato T, Krajewski S, et al. Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell. 1995;80:279-284.PubMedCrossRefGoogle Scholar
  166. 166.
    Luo LY, Herrera I, Soosaipillai A, Diamandis EP. Identification of heat shock protein 90 and other proteins as tumour antigens by serological screening of an ovarian carcinoma expression library. Br J Cancer. 2002;87:339-343.PubMedCrossRefGoogle Scholar
  167. 167.
    Vidal CI, Mintz PJ, Lu K, et al. An HSP90-mimic peptide revealed by fingerprinting the pool of antibodies from ovarian cancer patients. Oncogene. 2004;23:8859-8867.PubMedCrossRefGoogle Scholar
  168. 168.
    Dong HP, Holth A, Kleinberg L, et al. Evaluation of cell surface expression of phosphatidylserine in ovarian carcinoma effusions using the Annexin-V/7-AAD assay - clinical relevance and comparison to other apoptosis parameters. Am J Clin Pathol. 2009;132:756-762.PubMedCrossRefGoogle Scholar
  169. 169.
    Fumita Y, Tanaka F, Saji F, Nakamuro K. Immunosuppressive factors in ascites fluids from ovarian cancer patients. Am J Reprod Immunol. 1984;6:175-178.PubMedGoogle Scholar
  170. 170.
    Akyol S, Gercel-Taylor C, Reynolds LC, Taylor DD. HSP-10 in ovarian cancer: expression and suppression of T-cell signaling. Gynecol Oncol. 2006;101:481-486.PubMedCrossRefGoogle Scholar
  171. 171.
    Taylor DD, Gerçel-Taylor C. Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br J Cancer. 2005;92:305-311.PubMedGoogle Scholar
  172. 172.
    Gordon IO, Freedman RS. Defective antitumor function of monocyte-derived macrophages from epithelial ovarian cancer patients. Clin Cancer Res. 2006;12:1515-1524.PubMedCrossRefGoogle Scholar
  173. 173.
    Lai P, Rabinowich H, Crowley-Nowick PA, Bell MC, Mantovani G, Whiteside TL. Alterations in expression and function of signal-transducing proteins in tumor-associated T and natural killer cells in patients with ovarian carcinoma. Clin Cancer Res. 1996;2:161-173.PubMedGoogle Scholar
  174. 174.
    Loercher AE, Nash MA, Kavanagh JJ, Platsoucas CD, Freedman RS. Identification of an IL-10-producing HLA-DR-negative monocyte subset in the malignant ascites of patients with ovarian carcinoma that inhibits cytokine protein expression and proliferation of autologous T cells. J Immunol. 1999;163:6251-6260.PubMedGoogle Scholar
  175. 175.
    Takaishi K, Komohara Y, Tashiro H, et al. Involvement of M2-polarized macrophages in the ascites from advanced epithelial ovarian carcinoma in tumor progression via Stat3 activation. Cancer Sci. 2010;101:2128-2136.PubMedCrossRefGoogle Scholar
  176. 176.
    Webb TJ, Giuntoli RL 2nd, Rogers O, Schneck J, Oelke M. Ascites specific inhibition of CD1d-mediated activation of natural killer T cells. Clin Cancer Res. 2008;14:7652-7658.PubMedCrossRefGoogle Scholar
  177. 177.
    Bainbridge D, Ellis S, Le Bouteiller P, Sargent I. HLA-G remains a mystery. Trends Immunol. 2001;10:548-552.CrossRefGoogle Scholar
  178. 178.
    Wischhusen J, Waschbisch A, Wiendl H. Immune-refractory cancers and their little helpers- an extended role for immunetolerogenic MHC molecules HLA-G and HLA-E? Semin Cancer Biol. 2007;17:459-468.PubMedCrossRefGoogle Scholar
  179. 179.
    Singer G, Rebmann V, Chen YC, et al. HLA-G is a potential tumor marker in malignant ascites. Clin Cancer Res. 2003;9:4460-4464.PubMedGoogle Scholar
  180. 180.
    Davidson B, Bukholt Elstrand M, McMaster MT, et al. HLA-G expression in effusions is a possible marker of tumor susceptibility to chemotherapy in ovarian carcinoma. Gynecol Oncol. 2005;96:42-47.PubMedCrossRefGoogle Scholar
  181. 181.
    Naylor MS, Stamp GW, Foulkes WD, Eccles D, Balkwill FR. Tumor necrosis factor and its receptors in human ovarian cancer. Potential role in disease progression. J Clin Invest. 1993;91:2194-2206.PubMedCrossRefGoogle Scholar
  182. 182.
    Stadlmann S, Amberger A, Pollheimer J, et al. Ovarian carcinoma cells and IL-1beta-activated human peritoneal mesothelial cells are possible sources of vascular endothelial growth factor in inflammatory and malignant peritoneal effusions. Gynecol Oncol. 2005;97:784-789.PubMedCrossRefGoogle Scholar
  183. 183.
    Hurteau JA, Simon HU, Kurman C, Rubin L, Mills GB. Levels of soluble interleukin-2 receptor-alpha are elevated in serum and ascitic fluid from epithelial ovarian cancer patients. Am J Obstet Gynecol. 1994;170:918-928.PubMedGoogle Scholar
  184. 184.
    Barton DP, Blanchard DK, Michelini-Norris B, Nicosia SV, Cavanagh D, Djeu JY. High serum and ascitic soluble interleukin-2 receptor alpha levels in advanced epithelial ovarian cancer. Blood. 1993;81:424-429.PubMedGoogle Scholar
  185. 185.
    Garg R, Wollan M, Galic V, et al. Common polymorphism in interleukin 6 influences survival of women with ovarian and peritoneal carcinoma. Gynecol Oncol. 2006;103:793-796.PubMedCrossRefGoogle Scholar
  186. 186.
    Schröder W, Ruppert C, Bender HG. Concomitant measurements of interleukin-6 (IL-6) in serum and peritoneal fluid of patients with benign and malignant ovarian tumors. Eur J Obstet Gynecol Reprod Biol. 1994;56:43-46.PubMedCrossRefGoogle Scholar
  187. 187.
    Moradi MM, Carson LF, Weinberg B, Haney AF, Twiggs LB, Ramakrishnan S. Serum and ascitic fluid levels of interleukin-1, interleukin-6, and tumor necrosis factor-alpha in patients with ovarian epithelial cancer. Cancer. 1993;72:2433-2440.PubMedCrossRefGoogle Scholar
  188. 188.
    Plante M, Rubin SC, Wong GY, Federici MG, Finstad CL, Gastl GA. Interleukin-6 level in serum and ascites as a prognostic factor in patients with epithelial ovarian cancer. Cancer. 1994;73:1882-1888.PubMedCrossRefGoogle Scholar
  189. 189.
    Ripley D, Shoup B, Majewski A, Chegini N. Differential expression of interleukins IL-13 and IL-15 in normal ovarian tissue and ovarian carcinomas. Gynecol Oncol. 2004;92:761-768.PubMedCrossRefGoogle Scholar
  190. 190.
    Zeimet AG, Widschwendter M, Knabbe C, et al. Ascitic interleukin-12 is an independent prognostic factor in ovarian cancer. J Clin Oncol. 1998;16:1861-1868.PubMedGoogle Scholar
  191. 191.
    Mustea A, Pirvulescu C, Könsgen D, et al. Decreased IL-1 RA concentration in ascites is associated with a significant improvement in overall survival in ovarian cancer. Cytokine. 2008;42:77-84.PubMedCrossRefGoogle Scholar
  192. 192.
    Mantovani A, Savino B, Locati M, Zammataro L, Allavena P, Bonecchi R. The chemokine system in cancer biology and therapy. Cytokine Growth Factor Rev. 2010;21:27-39.PubMedCrossRefGoogle Scholar
  193. 193.
    Lazennec G, Richmond A. Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med. 2010;16:133-144.PubMedCrossRefGoogle Scholar
  194. 194.
    Scotton CJ, Wilson JL, Milliken D, Stamp G, Balkwill FR. Epithelial cancer cell migration: a role for chemokine receptors? Cancer Res. 2001;61:4961-4965.PubMedGoogle Scholar
  195. 195.
    Scotton CJ, Wilson JL, Scott K, et al. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res. 2002;62:5930-5938.PubMedGoogle Scholar
  196. 196.
    Milliken D, Scotton C, Raju S, Balkwill F, Wilson J. Analysis of chemokines and chemokine receptor expression in ovarian cancer ascites. Clin Cancer Res. 2002;8:1108-1114.PubMedGoogle Scholar
  197. 197.
    Dong HP, Bunkholt Elstrand M, Holth A, et al. NK and B cell infiltration correlates with worse outcome in metastatic ovarian carcinoma. Am J Clin Pathol. 2006;125:451-458.PubMedGoogle Scholar
  198. 198.
    Schutyser E, Struyf S, Proost P, et al. Identification of biologically active chemokine isoforms from ascitic fluid and elevated levels of CCL18/pulmonary and activation-regulated chemokine in ovarian carcinoma. J Biol Chem. 2002;277:24584-24593.PubMedCrossRefGoogle Scholar
  199. 199.
    Bamias A, Tsiatas ML, Kafantari E, et al. Significant differences of lymphocytes isolated from ascites of patients with ovarian cancer compared to blood and tumor lymphocytes. Association of CD3  +  CD56+ cells with platinum resistance. Gynecol Oncol. 2007;106:75-81.PubMedCrossRefGoogle Scholar
  200. 200.
    Bamias A, Koutsoukou V, Terpos E, et al. Correlation of NK T-like CD3  +  CD56+ cells and CD4  +  CD25  +  (hi) regulatory T cells with VEGF and TNFalpha in ascites from advanced ovarian cancer: Association with platinum resistance and prognosis in patients receiving first-line, platinum-based chemotherapy. Gynecol Oncol. 2008;108:421-427.PubMedCrossRefGoogle Scholar
  201. 201.
    Melichar B, Nash MA, Lenzi R, Platsoucas CD, Freedman RS. Expression of costimulatory molecules CD80 and CD86 and their receptors CD28, CTLA-4 on malignant ascites CD3+ tumour-infiltrating lymphocytes (TIL) from patients with ovarian and other types of peritoneal carcinomatosis. Clin Exp Immunol. 2000;119:19-27.PubMedCrossRefGoogle Scholar
  202. 202.
    Reijnhart RM, Bieber MM, Teng NN. FACS analysis of peritoneal lymphocytes in ovarian cancer and control patients. Immunobiology. 1994;191:1-8.PubMedCrossRefGoogle Scholar
  203. 203.
    Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124:263-266.PubMedCrossRefGoogle Scholar
  204. 204.
    Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66:605-612.PubMedCrossRefGoogle Scholar
  205. 205.
    Risberg B, Davidson B, Nielsen S, et al. Detection of monocyte/macrophage cell populations in effusions: a comparative study using flow cytometric immunophenotyping and immunocytochemistry. Diagn Cytopathol. 2001;25:214-219.PubMedCrossRefGoogle Scholar
  206. 206.
    Wang R, Zhang T, Ma Z, et al. The interaction of coagulation factor XII and monocyte/macrophages mediating peritoneal metastasis of epithelial ovarian cancer. Gynecol Oncol. 2010;117:460-466.PubMedCrossRefGoogle Scholar
  207. 207.
    Sartori S, Nielsen I, Tassinari D, Trevisani L, Abbasciano V, Malacarne P. Evaluation of a standardized protocol of intracavitary recombinant interferon alpha-2b in the palliative treatment of malignant peritoneal effusions. A prospective pilot study. Oncology. 2001;61:192-196.PubMedCrossRefGoogle Scholar
  208. 208.
    Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9:537-549.PubMedCrossRefGoogle Scholar
  209. 209.
    Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 2010;1802:396-405.PubMedCrossRefGoogle Scholar
  210. 210.
    Haagenson KK, Wu GS. The role of MAP kinases and MAP kinase phosphatase-1 in resistance to breast cancer treatment. Cancer Metastasis Rev. 2010;29:143-149.PubMedCrossRefGoogle Scholar
  211. 211.
    Givant-Horwitz V, Davidson B, Lazarovici P, et al. Mitogen-activated protein kinases (MAPK) as predictors of clinical outcome in serous ovarian carcinoma in effusions. Gynecol Oncol. 2003;91:160-172.PubMedCrossRefGoogle Scholar
  212. 212.
    Givant-Horwitz V, Davidson B, Goderstad JM, Nesland JM, Trope’ CG, Reich R. The PAC-1 dual specificity phosphatase predicts poor outcome in serous ovarian carcinoma. Gynecol Oncol. 2004;93:517-523.PubMedCrossRefGoogle Scholar
  213. 213.
    Davidson B, Espina V, Flørenes VA, et al. Proteomic profiling of malignant ovarian cancer effusions: survival and injury pathways discriminate clinical outcome. Clin Cancer Res. 2006;12:791-799.PubMedCrossRefGoogle Scholar
  214. 214.
    Dokianakis DN, Varras MN, Papaefthimiou M, et al. Ras gene activation in malignant cells of human ovarian carcinoma peritoneal fluids. Clin Exp Metastasis. 1999;17:293-297.PubMedCrossRefGoogle Scholar
  215. 215.
    Vivanco I, Sawyers C. The phosphatidylinositol 3-kinase-Akt pathway in human cancer. Nat Rev Cancer. 2002;2:489-501.PubMedCrossRefGoogle Scholar
  216. 216.
    Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer. 2006;6:184-192.PubMedCrossRefGoogle Scholar
  217. 217.
    Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med. 2005;9:59-71.PubMedCrossRefGoogle Scholar
  218. 218.
    Bellacosa A, Kumar CC, Di Cristofano A, Testa JR. Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res. 2005;94:29-86.PubMedCrossRefGoogle Scholar
  219. 219.
    Thompson JE, Thompson CB. Putting the rap on Akt. J Clin Oncol. 2004;22:4217-4226.PubMedCrossRefGoogle Scholar
  220. 220.
    Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12:9-22.PubMedCrossRefGoogle Scholar
  221. 221.
    Blagden S, Gabra H. Promising molecular targets in ovarian cancer. Curr Opin Oncol. 2009;21:412-419.PubMedCrossRefGoogle Scholar
  222. 222.
    Davidson B, Hadar R, Schlossberg A, et al. Expression and clinical role of DJ-1, a negative regulator of PTEN, in ovarian carcinoma. Hum Pathol. 2008;39:87-95.PubMedCrossRefGoogle Scholar
  223. 223.
    Kim RH, Peters M, Jang Y, et al. DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell. 2005;7:263-273.PubMedCrossRefGoogle Scholar
  224. 224.
    Bunkholt Elstrand M, Dong HP, Ødegaard E, et al. Mammalian target of rapamycin is a biomarker of poor survival in metastatic ovarian carcinoma. Hum Pathol. 2010;41:794-804.PubMedCrossRefGoogle Scholar
  225. 225.
    Perkins ND, Gilmore TD. Good cop, bad cop: the different faces of NF-kappaB. Cell Death Differ. 2006;13:759-772.PubMedCrossRefGoogle Scholar
  226. 226.
    Neumann M, Naumann M. Beyond IkappaBs: alternative regulation of NF-kappaB activity. FASEB J. 2007;21:2642-2654.PubMedCrossRefGoogle Scholar
  227. 227.
    Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 2007;8:49-62.PubMedCrossRefGoogle Scholar
  228. 228.
    Mabuchi S, Ohmichi M, Nishio Y, et al. Inhibition of NFkappaB increases the efficacy of cisplatin in in vitro and in vivo ovarian cancer models. J Biol Chem. 2004;279:23477-23485.PubMedCrossRefGoogle Scholar
  229. 229.
    Mabuchi S, Ohmichi M, Nishio Y, et al. Inhibition of inhibitor of nuclear factor-kappaB phosphorylation increases the efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Clin Cancer Res. 2004;10:7645-7654.PubMedCrossRefGoogle Scholar
  230. 230.
    Seth A, Watson DK. Ets transcription factors and their emerging roles in human cancer. Eur J Cancer. 2005;41:2462-2478.PubMedCrossRefGoogle Scholar
  231. 231.
    Verger A, Duterque-Coquillaud M. When Ets transcription factors meet their partners. Bioessays. 2002;24:362-370.PubMedCrossRefGoogle Scholar
  232. 232.
    Sharrocks AD. The ETS-domain transcription factor family. Nat Rev Mol Cell Biol. 2001;2:827-837.PubMedCrossRefGoogle Scholar
  233. 233.
    Sementchenko VI, Watson DK. Ets target genes: past, present and future. Oncogene. 2000;19:6533-6548.PubMedCrossRefGoogle Scholar
  234. 234.
    Davidson B, Risberg B, Goldberg I, et al. Ets-1 mRNA expression in effusions of serous ovarian carcinoma patients is a marker of poor outcome. Am J Surg Pathol. 2001;25:1493-1500.PubMedCrossRefGoogle Scholar
  235. 235.
    Davidson B, Goldberg I, Reich R, et al. The clinical role of the PEA3 transcription factor in ovarian and breast carcinoma in effusions. Clin Exp Metastasis. 2004;21:191-199.PubMedCrossRefGoogle Scholar
  236. 236.
    Sertznig P, Seifert M, Tilgen W, Reichrath J. Present concepts and future outlook: function of peroxisome proliferator-activated receptors (PPARs) for pathogenesis, progression, and therapy of cancer. J Cell Physiol. 2007;212:1-12.PubMedCrossRefGoogle Scholar
  237. 237.
    Michalik L, Desvergne B, Wahli W. Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat Rev Cancer. 2004;4:61-70.PubMedCrossRefGoogle Scholar
  238. 238.
    Davidson B, Hadar R, Tuft Stavnes H, Trope’ CG, Reich R. Expression of the peroxisome proliferator-activated receptors (PPAR)-α, -β and -γ in ovarian carcinoma effusions is associated with poor chemoresponse and shorter survival. Hum Pathol. 2009;40:705-713.PubMedCrossRefGoogle Scholar
  239. 239.
    Gorovetz M, Baekelandt M, Berner A, Trope’ CG, Davidson B, Reich R. The clinical role of phospholipase A2 isoforms in advanced-stage ovarian carcinoma. Gynecol Oncol. 2006;103:831-840.PubMedCrossRefGoogle Scholar
  240. 240.
    Denkert C, Köbel M, Pest S, et al. Expression of cyclooxygenase 2 is an independent prognostic factor in human ovarian carcinoma. Am J Pathol. 2002;160:893-903.PubMedCrossRefGoogle Scholar
  241. 241.
    Westermann AM, Havik E, Postma FR, et al. Malignant effusions contain lysophosphatidic acid (LPA)-like activity. Ann Oncol. 1998;9:437-442.PubMedCrossRefGoogle Scholar
  242. 242.
    Xiao YJ, Schwartz B, Washington M, et al. Electrospray ionization mass spectrometry analysis of lysophospholipids in human ascitic fluids: comparison of the lysophospholipid contents in malignant vs nonmalignant ascitic fluids. Anal Biochem. 2001;290:302-313.PubMedCrossRefGoogle Scholar
  243. 243.
    Lee MJ, Jeon ES, Lee JS, et al. Lysophosphatidic acid in malignant ascites stimulates migration of human mesenchymal stem cells. J Cell Biochem. 2008;104:499-510.PubMedCrossRefGoogle Scholar
  244. 244.
    Melnikova VO, Bar-Eli M. Transcriptional control of the melanoma malignant phenotype. Cancer Biol Ther. 2008;7:997-1003.PubMedCrossRefGoogle Scholar
  245. 245.
    Pellikainen JM, Kosma VM. Activator protein-2 in carcinogenesis with a special reference to breast cancer–a mini review. Int J Cancer. 2007;120:2061-2067.PubMedCrossRefGoogle Scholar
  246. 246.
    Ødegaard E, Staff AC, Kærn J, et al. AP-2γ is a marker of tumor progression in ovarian carcinoma. Gynecol Oncol. 2006;100:462-468.PubMedCrossRefGoogle Scholar
  247. 247.
    Loyola A, Huang J-Y, LeRoy G, et al. Functional analysis of the subunits of the chromatin assembly factor RSF. Mol Cell Biol. 2003;23:6759-6768.PubMedCrossRefGoogle Scholar
  248. 248.
    LeRoy G, Orphanides G, Lane WS, Reinberg D. Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science. 1998;282:1900-1904.PubMedCrossRefGoogle Scholar
  249. 249.
    Shamay M, Barak O, Doitsh G, Ben-Dor I, Shaul Y. Hepatitis B virus pX interacts with HBXAP, a PHD finger protein to coactivate transcription. J Biol Chem. 2002;277:9982-9988.PubMedCrossRefGoogle Scholar
  250. 250.
    Shih IeM, Sheu JJ, Santillan A, et al. Amplification of a chromatin remodeling gene, Rsf-1/HBXAP, in ovarian carcinoma. Proc Natl Acad Sci USA. 2005;102:14004-14009.PubMedCrossRefGoogle Scholar
  251. 251.
    Davidson B, Trope’ CG, Wang TL, Shih IeM. Expression of the chromatin remodeling factor Rsf-1 in effusions is a novel predictor of poor survival in ovarian carcinoma. Gynecol Oncol. 2006;103:814-819.PubMedCrossRefGoogle Scholar
  252. 252.
    Collins T, Stone JR, Williams AJ. All in the family: the BTB/POZ, KRAB, and SCAN domains. Mol Cell Biol. 2001;21:3609-3615.PubMedCrossRefGoogle Scholar
  253. 253.
    Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Prive GG. Sequence and structural analysis of BTB domain proteins. Genome Biol. 2005;6:R82.PubMedCrossRefGoogle Scholar
  254. 254.
    Cha XY, Pierce RC, Kalivas PW, Mackler SA. NAC-1, a rat brain mRNA, is increased in the nucleus accumbens three weeks after chronic cocaine self-administration. J Neurosci. 1997;17:6864-6871.PubMedGoogle Scholar
  255. 255.
    Nakayma K, Nakayma N, Davidson B, et al. A BTB/POZ protein, NAC-1, is related to tumor recurrence and is essential for tumor growth and survival. Proc Natl Acad Sci USA. 2006;103:18739-18744.CrossRefGoogle Scholar
  256. 256.
    Davidson B, Berner A, Trope’ CG, Wang TL, Shih IeM. Expression and clinical role of the BTB/POZ protein NAC-1 in ovarian carcinoma effusions. Hum Pathol. 2007;38:1030-1036.PubMedCrossRefGoogle Scholar
  257. 257.
    Ueda SM, Yap KL, Davidson B, et al. Expression of fatty acid synthase Depends on NAC1 and is associated with recurrent ovarian serous carcinomas. J Oncol. 2010;2010:285191.PubMedCrossRefGoogle Scholar
  258. 258.
    D’Souza B, Meloty-Kapella L, Weinmaster G. Canonical and non-canonical Notch ligands. Curr Top Dev Biol. 2010;92:73-129.PubMedCrossRefGoogle Scholar
  259. 259.
    Artavanis-Tsakonas S, Muskavitch MA. Notch: the past, the present, and the future. Curr Top Dev Biol. 2010;92:1-29.PubMedCrossRefGoogle Scholar
  260. 260.
    Koch U, Radtke F. Notch signaling in solid tumors. Curr Top Dev Biol. 2010;92:411-455.PubMedCrossRefGoogle Scholar
  261. 261.
    Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 2011;8:97-106.PubMedCrossRefGoogle Scholar
  262. 262.
    Park JT, Li M, Nakayama K, et al. Notch3 gene amplification in ovarian cancer. Cancer Res. 2006;66:6312-6318.PubMedCrossRefGoogle Scholar
  263. 263.
    Choi JH, Park JT, Davidson B, Morin PJ, Shih IeM, Wang TL. Jagged-1 and notch3 juxtacrine loop regulates ovarian tumor growth and adhesion. Cancer Res. 2008;68:5716-5723.PubMedCrossRefGoogle Scholar
  264. 264.
    Park J, Chen X, Tropè CG, Davidson B, Shih IeM, Wang TL. Notch3 overexpression is related to the recurrence of ovarian cancer and confers resistance to carboplatin. Am J Pathol. 2010;177:1087-1089.PubMedCrossRefGoogle Scholar
  265. 265.
    Burleson KM, Casey RC, Skubitz KM, Pambuccian SE, Oegema TR Jr, Skubitz AP. Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecol Oncol. 2004;93:170-181.PubMedCrossRefGoogle Scholar
  266. 266.
    Burleson KM, Boente MP, Pambuccian SE, Skubitz AP. Disaggregation and invasion of ovarian carcinoma ascites spheroids. J Transl Med. 2006;4:6.PubMedCrossRefGoogle Scholar
  267. 267.
    Alvero AB, Chen R, Fu HH, et al. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle. 2009;8:158-166.PubMedCrossRefGoogle Scholar
  268. 268.
    Runz S, Keller S, Rupp C, et al. Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol. 2007;107:563-571.PubMedCrossRefGoogle Scholar
  269. 269.
    Zhang S, Balch C, Chan MW, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68:4311-4320.PubMedCrossRefGoogle Scholar
  270. 270.
    Hetland TE, Hellesylt E, Flørenes VA, Tropé CG, Davidson B, Kærn J. Class III beta-tubulin expression in advanced-stage serous ovarian carcinoma effusions is associated with poor survival and primary chemoresistance. Hum Pathol. 2011;42:1019-1026.Google Scholar
  271. 271.
    Salazar MD, Ratnam M. The folate receptor: what does it promise in tissue-targeted therapeutics? Cancer Metastasis Rev. 2007;26:141-152.PubMedCrossRefGoogle Scholar
  272. 272.
    Kelemen LE. The role of folate receptor α in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer. 2006;119:243-250.PubMedCrossRefGoogle Scholar
  273. 273.
    Spannuth WA, Sood AK, Coleman RL. Farletuzumab in epithelial ovarian carcinoma. Expert Opin Biol Ther. 2010;10:431-437.PubMedCrossRefGoogle Scholar
  274. 274.
    Mantovani LT, Miotti S, Ménard S, et al. Folate binding protein distribution in normal tissues and biological fluids from ovarian carcinoma patients as detected by the monoclonal antibodies MOv18 and MOv19. Eur J Cancer. 1994;30A:363-369.PubMedCrossRefGoogle Scholar
  275. 275.
    Corona G, Toffoli G, Fabris M, et al. Homocysteine accumulation in human ovarian carcinoma ascitic/cystic fluids possibly caused by metabolic alteration of the methionine cycle in ovarian carcinoma cells. Eur J Cancer. 1997;33:1284-1290.PubMedCrossRefGoogle Scholar
  276. 276.
    Forster MD, Ormerod MG, Agarwal R, Kaye SB, Jackman AL. Flow cytometric method for determining folate receptor expression on ovarian carcinoma cells. Cytometry A. 2007;71:945-950.PubMedGoogle Scholar
  277. 277.
    Yuan Y, Nymoen DA, Dong HP, et al. Expression of the folate receptor genes FOLR1 and FOLR3 differentiates ovarian carcinoma from breast carcinoma and malignant mesothelioma in serous effusions. Hum Pathol. 2009;40:1453-1460.PubMedCrossRefGoogle Scholar
  278. 278.
    Mozzetti S, Ferlini C, Concolino P, et al. Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin Cancer Res. 2005;11:298-305.PubMedGoogle Scholar
  279. 279.
    Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB. Mechanisms of Taxol resistance related to microtubules. Oncogene. 2003;22:7280-7295.PubMedCrossRefGoogle Scholar
  280. 280.
    Chu TM, Lin TH, Kawinski E. Detection of soluble P-glycoprotein in culture media and extracellular fluids. Biochem Biophys Res Commun. 1994;203:506-512.PubMedCrossRefGoogle Scholar
  281. 281.
    Kavallaris M, Kuo DY, Burkhart CA, et al. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest. 1997;100:1282-1293.PubMedCrossRefGoogle Scholar
  282. 282.
    Kase H, Kodama S, Nagai E, Tanaka K. Glutathione S-transferase pi immunostaining of cisplatin-resistant ovarian cancer cells in ascites. Acta Cytol. 1998;42:1397-1402.PubMedCrossRefGoogle Scholar
  283. 283.
    Rossetto D, Truman AW, Kron SJ, Côté J. Epigenetic modifications in double-strand break DNA damage signaling and repair. Clin Cancer Res. 2010;16:4543-4552.PubMedCrossRefGoogle Scholar
  284. 284.
    Pallis AG, Karamouzis MV. DNA repair pathways and their implication in cancer treatment. Cancer Metastasis Rev. 2010;29:677-685.PubMedCrossRefGoogle Scholar
  285. 285.
    Ibanez de Caceres I, Battagli C, Esteller M, et al. Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients. Cancer Res. 2004;64:6476-6481.PubMedCrossRefGoogle Scholar
  286. 286.
    Ercoli A, Ferrandina G, Raspaglio G, et al. hMSH2 and GTBP expression in advanced stage epithelial ovarian cancer. Br J Cancer. 1999;80:1665-1671.PubMedCrossRefGoogle Scholar
  287. 287.
    Stevens EV, Raffeld M, Espina V, et al. Expression of Xeroderma Pigmentosum a protein predicts improved outcome in metastatic ovarian carcinoma. Cancer. 2005;103:2313-2319.PubMedCrossRefGoogle Scholar
  288. 288.
    Counter CM, Hirte HW, Bacchetti S, Harley CB. Telomerase activity in human ovarian carcinoma. Proc Natl Acad Sci USA. 1994;91:2900-2904.PubMedCrossRefGoogle Scholar
  289. 289.
    Tseng CJ, Jain S, Hou HC, et al. Applications of the telomerase assay in peritoneal washing fluids. Gynecol Oncol. 2001;81:420-423.PubMedCrossRefGoogle Scholar
  290. 290.
    Murakami J, Nagai N, Ohama K. Telomerase activity in body cavity fluid and peritoneal washings in uterine and ovarian cancer. J Int Med Res. 1998;26:129-139.PubMedGoogle Scholar
  291. 291.
    Elg SA, Mayer AR, Carson LF, Twiggs LB, Hill RB, Ramakrishnan S. Alpha-1 acid glycoprotein is an immunosuppressive factor found in ascites from ovarian carcinoma. Cancer. 1997;80:1448-1456.PubMedCrossRefGoogle Scholar
  292. 292.
    Elg SA, Carson LF, Fowler JM, Twiggs LB, Moradi MM, Ramakrishnan S. Ascites levels of haptoglobin in patients with ovarian cancer. Cancer. 1993;71:3938-3941.PubMedCrossRefGoogle Scholar
  293. 293.
    Gericke B, Raila J, Sehouli J, et al. Microheterogeneity of transthyretin in serum and ascitic fluid of ovarian cancer patients. BMC Cancer. 2005;5:133.PubMedCrossRefGoogle Scholar
  294. 294.
    Schweigert FJ, Raila J, Sehouli J, Buscher U. Accumulation of selected carotenoids, alpha-tocopherol and retinol in human ovarian carcinoma ascitic fluid. Ann Nutr Metab. 2004;48:241-245.PubMedCrossRefGoogle Scholar
  295. 295.
    Gillan L, Matei D, Fishman DA, Gerbin CS, Karlan BY, Chang DD. Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res. 2002;62:5358-5364.PubMedGoogle Scholar
  296. 296.
    Hofmann M, Ruschenburg I. mRNA detection of tumor-rejection genes BAGE, GAGE, and MAGE in peritoneal fluid from patients with ovarian carcinoma as a potential diagnostic tool. Cancer. 2002;96:187-193.PubMedCrossRefGoogle Scholar
  297. 297.
    Jeschke U, Mylonas I, Kunert-Keil C, et al. Immunohistochemistry, glycosylation and immunosuppression of glycodelin in human ovarian cancer. Histochem Cell Biol. 2009;131:283-295.PubMedCrossRefGoogle Scholar
  298. 298.
    Kajiyama H, Kikkawa F, Maeda O, Suzuki T, Ino K, Mizutani S. Increased expression of dipeptidyl peptidase IV in human mesothelial cells by malignant ascites from ovarian carcinoma patients. Oncology. 2002;63:158-165.PubMedCrossRefGoogle Scholar
  299. 299.
    Masiakos PT, MacLaughlin DT, Maheswaran S, et al. Human ovarian cancer, cell lines, and primary ascites cells express the human Mullerian inhibiting substance (MIS) type II receptor, bind, and are responsive to MIS. Clin Cancer Res. 1999;5:3488-3499.PubMedGoogle Scholar
  300. 300.
    Simon I, Zhuo S, Corral L, et al. B7-h4 is a novel membrane-bound protein and a candidate serum and tissue biomarker for ovarian cancer. Cancer Res. 2006;66:1570-1575.PubMedCrossRefGoogle Scholar
  301. 301.
    Thomsen LL, Sargent JM, Williamson CJ, Elgie AW. Nitric oxide synthase activity in fresh cells from ovarian tumour tissue: relationship of enzyme activity with clinical parameters of patients with ovarian cancer. Biochem Pharmacol. 1998;56:1365-1370.PubMedCrossRefGoogle Scholar
  302. 302.
    Jandu N, Richardson M, Singh G, Hirte H, Hatton MW. Human ovarian cancer ascites fluid contains a mixture of incompletely degraded soluble products of fibrin that collectively possess an antiangiogenic property. Int J Gynecol Cancer. 2006;16:1536-1544.PubMedCrossRefGoogle Scholar
  303. 303.
    Wilhelm S, Schmitt M, Parkinson J, Kuhn W, Graeff H, Wilhelm OG. Thrombomodulin, a receptor for the serine protease thrombin, is decreased in primary tumors and metastases but increased in ascitic fluids of patients with advanced ovarian cancer FIGO IIIc. Int J Oncol. 1998;13:645-651.PubMedGoogle Scholar
  304. 304.
    Hough CD, Sherman-Baust CA, Pizer ES, et al. Large-scale serial analysis of gene expression reveals genes differentially expressed in ovarian cancer. Cancer Res. 2000;60:6281-6287.PubMedGoogle Scholar
  305. 305.
    Chen YC, Pohl G, Wang TL, et al. Apolipoprotein E is required for cell proliferation and survival in ovarian cancer. Cancer Res. 2005;65:331-337.PubMedGoogle Scholar
  306. 306.
    Chen YC, Davidson B, Cheng CC, et al. Identification and characterization of membralin, a novel tumor-associated gene, in ovarian carcinoma. Biochim Biophys Acta. 2005;1730:96-102.PubMedCrossRefGoogle Scholar
  307. 307.
    Nakayama K, Nakayama N, Davidson B, et al. Homozygous deletion of MKK4 in ovarian serous carcinomas. Cancer Biol Ther. 2006;5:630-634.PubMedGoogle Scholar
  308. 308.
    Rayhman O, Klipper E, Muller L, Davidson B, Reich R, Meidan R. Small interfering RNA molecules targeting endothelin-converting enzyme-1 inhibit endothelin-1 synthesis and the invasive phenotype of ovarian carcinoma cells. Cancer Res. 2008;68:9265-9273.PubMedCrossRefGoogle Scholar
  309. 309.
    Mælandsmo GM, Flørenes VA, Nguyen MTP, Flatmark K, Davidson B. Different expression and clinical role of S100A4 in ovarian carcinoma at different anatomic sites. Tumour Biol. 2009;30:15-25.PubMedCrossRefGoogle Scholar
  310. 310.
    Davidson B, Holth A, Moripen L, Trope’ CG, Shih IeM. Osteopontin expression in ovarian carcinoma effusions is related to improved clinical outcome. Hum Pathol. 2011;42:991-997.Google Scholar
  311. 311.
    Reich R, Hadar S, Davidson B. Expression and clinical role of protein of regenerating liver (PRL) phosphatases in ovarian carcinoma. Int J Mol Sci. 2011;12:1133-1145.PubMedCrossRefGoogle Scholar
  312. 312.
    Ioakim-Liossi A, Gagos S, Athanassiades P, et al. Changes of chromosomes 1, 3, 6, and 11 in metastatic effusions arising from breast and ovarian cancer. Cancer Genet Cytogenet. 1999;110:34-40.PubMedCrossRefGoogle Scholar
  313. 313.
    Chang HW, Ali SZ, Cho SK, Kurman RJ, Shih IeM. Detection of allelic imbalance in ascitic supernatant by digital single nucleotide polymorphism analysis. Clin Cancer Res. 2002;8:2580-2585.PubMedGoogle Scholar
  314. 314.
    Lounis H, Mes-Masson AM, Dion F, et al. Mapping of chromosome 3p deletions in human epithelial ovarian tumors. Oncogene. 1998;17:2359-2365.PubMedCrossRefGoogle Scholar
  315. 315.
    Nagel H, Schulten HJ, Gunawan B, Brinck U, Füzesi L. The potential value of comparative genomic hybridization analysis in effusion-and fine needle aspiration cytology. Mod Pathol. 2002;15:818-825.PubMedCrossRefGoogle Scholar
  316. 316.
    Yuan Y, Dong HP, Nymoen DA, Nesland JM, Wu C, Davidson B. PINCH-2 expression in cancers involving the serosal cavities using quantitative PCR. Cytopathology. 2011;22:22-29.PubMedCrossRefGoogle Scholar
  317. 317.
    Yuan Y, Nymoen DA, Tuft Stavnes H, et al. Tenascin-X is a novel diagnostic marker of malignant mesothelioma. Am J Surg Pathol. 2009;33:1673-1682.PubMedCrossRefGoogle Scholar
  318. 318.
    Davidson B, Tuft Stavnes H, Holth A, et al. Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from breast carcinoma in effusions. J Cell Mol Med. 2011;15:535-544.PubMedCrossRefGoogle Scholar
  319. 319.
    Schaner ME, Davidson B, Skrede M, et al. Variation in gene expression patterns in effusions and primary tumors from serous ovarian cancer patients. Mol Cancer. 2005;4:26.PubMedCrossRefGoogle Scholar
  320. 320.
    Vaksman O, Tuft Stavnes H, Kærn J, Trope’ CG, Davidson B, Reich R. miRNA profiling along tumor progression in ovarian carcinoma. J Cell Mol Med 2011;15:1593-1602.Google Scholar
  321. 321.
    Gortzak-Uzan L, Ignatchenko A, Evangelou AI, et al. proteome resource of ovarian cancer ascites: integrated proteomic and bioinformatic analyses to identify putative biomarkers. J Proteome Res. 2008;7:339-351.PubMedCrossRefGoogle Scholar
  322. 322.
    Gunawardana CG, Memari N, Diamandis EP. Identifying novel autoantibody signatures in ovarian cancer using high-density protein microarrays. Clin Biochem. 2009;42:426-429.PubMedCrossRefGoogle Scholar
  323. 323.
    Puiffe ML, Le Page C, Filali-Mouhim A, et al. Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer. Neoplasia. 2007;9:820-829.PubMedCrossRefGoogle Scholar
  324. 324.
    Jinawath N, Vasoontara C, Jinawath A, et al. Oncoproteomic analysis reveals co-upregulation of RELA and STAT5 in carboplatin resistant ovarian carcinoma. PLoS One. 2010;5:e11198.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, The Medical FacultyUniversity of OsloOsloNorway

Personalised recommendations