Advertisement

Lung Cancer

  • Katalin Dobra
  • Anders Hjerpe
Chapter

Abstract

Lung cancer is worldwide the leading cause of cancer-related death.1 - 3 Over 75% of the newly detected lung cancer patients have at the time of the diagnosis already distal or regional metastases.4 Malignant pleural effusions represent advanced metastatic disease. Such metastatic involvement of the serosal cavities occurs in approximately 15% of the cases, often being the first clinical manifestation of a malignant process.

Keywords

Vascular Endothelial Growth Factor Epidermal Growth Factor Receptor Epidermal Growth Factor Receptor Mutation Anaplastic Lymphoma Kinase KRAS Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jemal A, Thun MJ, Ries LA, et al. Annual report to the nation on the status of cancer, 1975–2005, featuring trends in lung cancer, tobacco use, and tobacco control. J Natl Cancer Inst. 2008;100:1672-1694.PubMedCrossRefGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71-96.PubMedCrossRefGoogle Scholar
  3. 3.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277-300.PubMedCrossRefGoogle Scholar
  4. 4.
    Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin. 2006;56:106-130.PubMedCrossRefGoogle Scholar
  5. 5.
    Travis WD, Brambilla E, Müller-Hermelink HK, Harris CC. Pathology and Genetics of Tumours of the Lung, Pleura, Thymus and Heart. Lyon: IARC Press; 2004.Google Scholar
  6. 6.
    Goldstraw P, Crowley J, Chansky K, et al. The IASLC lung cancer staging project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol. 2007;2:706-714.PubMedCrossRefGoogle Scholar
  7. 7.
    Mukhopadhyay S, Katzenstein AL. Subclassification of non-small cell lung carcinomas lacking morphologic differentiation on biopsy specimens: utility of an immunohistochemical panel containing TTF-1, napsin A, p63, and CK5/6. Am J Surg Pathol. 2011;35:15-25.PubMedCrossRefGoogle Scholar
  8. 8.
    McDowell EM, McLaughlin JS, Merenyl DK, Kieffer RF, Harris CC, Trump BF. The respiratory epithelium. V. Histogenesis of lung carcinomas in the human. J Natl Cancer Inst. 1978;61:587-606.PubMedGoogle Scholar
  9. 9.
    Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst. 1999;91:1194-1210.PubMedCrossRefGoogle Scholar
  10. 10.
    Yokota J, Shiraishi K, Kohno T. Genetic basis for susceptibility to lung cancer recent progress and future directions. Adv Cancer Res. 2010;109:51-72.PubMedCrossRefGoogle Scholar
  11. 11.
    Hung RJ, McKay JD, Gaborieau V, et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008;452:633-637.PubMedCrossRefGoogle Scholar
  12. 12.
    Wistuba II, Behrens C, Virmani AK, et al. High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res. 2000;60:1949-1960.PubMedGoogle Scholar
  13. 13.
    Weir BA, Woo MS, Getz G, et al. Characterizing the cancer genome in lung adenocarcinoma. Nature. 2007;450:893-898.PubMedCrossRefGoogle Scholar
  14. 14.
    Kendall J, Liu Q, Bakleh A, et al. Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proc Natl Acad Sci USA. 2007;104:16663-16668.PubMedCrossRefGoogle Scholar
  15. 15.
    Tanaka H, Yanagisawa K, Shinjo K, et al. Lineage-specific dependency of lung adenocarcinomas on the lung development regulator TTF-1. Cancer Res. 2007;67:6007-6011.PubMedCrossRefGoogle Scholar
  16. 16.
    Nymark P, Wikman H, Ruosaari S, et al. Identification of specific gene copy number changes in asbestos-related lung cancer. Cancer Res. 2006;66:5737-5743.PubMedCrossRefGoogle Scholar
  17. 17.
    Kettunen E, Aavikko M, Nymark P, et al. DNA copy number loss and allelic imbalance at 2p16 in lung cancer associated with asbestos exposure. Br J Cancer. 2009;100:1336-1342.PubMedCrossRefGoogle Scholar
  18. 18.
    Nymark P, Kettunen E, Aavikko M, et al. Molecular alterations at 9q33.1 and polyploidy in asbestos-related lung cancer. Clin Cancer Res. 2009;15:468-475.PubMedCrossRefGoogle Scholar
  19. 19.
    Mutsaers SE. The mesothelial cell. Int J Biochem Cell Biol. 2004;36:9-16.PubMedCrossRefGoogle Scholar
  20. 20.
    Mutsaers SE, Wilkosz S. Structure and function of mesothelial cells. Cancer Treat Res. 2007;134:1-19.PubMedGoogle Scholar
  21. 21.
    Graves EE, Vilalta M, Cecic IK, et al. Hypoxia in models of lung cancer: implications for targeted therapeutics. Clin Cancer Res. 2010;16:4843-4852.PubMedCrossRefGoogle Scholar
  22. 22.
    Graves EE, Maity A, Le QT. The tumor microenvironment in non-small-cell lung cancer. Semin Radiat Oncol. 2010;20:156-163.PubMedCrossRefGoogle Scholar
  23. 23.
    Kassis J, Klominek J, Kohn EC. Tumor microenvironment: What can effusions teach us? Diagn Cytopathol. 2005;33:316-319.PubMedCrossRefGoogle Scholar
  24. 24.
    Kohn EC, Travers LA, Kassis J, Broome U, Klominek J. Malignant effusions are sources of fibronectin and other promigratory and proinvasive components. Diagn Cytopathol. 2005;33:300-308.PubMedCrossRefGoogle Scholar
  25. 25.
    Quaranta V, Giannelli G. Cancer invasion: watch your neighbourhood! Tumori. 2003;89:343-348.PubMedGoogle Scholar
  26. 26.
    Jantz MA, Antony VB. Pathophysiology of the pleura. Respiration. 2008;75:121-133.PubMedCrossRefGoogle Scholar
  27. 27.
    Lynch CC, Matrisian LM. Matrix metalloproteinases in tumor-host cell communication. Differentiation. 2002;70:561-573.PubMedCrossRefGoogle Scholar
  28. 28.
    O’Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88:277-285.PubMedCrossRefGoogle Scholar
  29. 29.
    Gulyas M, Dobra K, Hjerpe A. Expression of genes coding for proteoglycans and Wilms’ tumour susceptibility gene 1 (WT1) by variously differentiated benign human mesothelial cells. Differentiation. 1999;65:89-96.PubMedGoogle Scholar
  30. 30.
    Sharma RK, Mohammed KA, Nasreen N, et al. Defensive role of pleural mesothelial cell sialomucins in tumor metastasis. Chest. 2003;124:682-687.PubMedCrossRefGoogle Scholar
  31. 31.
    Ponta H, Wainwright D, Herrlich P. The CD44 protein family. Int J Biochem Cell Biol. 1998;30:299-305.PubMedCrossRefGoogle Scholar
  32. 32.
    Lin CC, Chen LC, Tseng VS, Yan JJ, Lai WW, Su WP, Lin CH, Huang CY, Su WC. Malignant pleural effusion cells show ­aberrant glucose metabolism gene expression. Eur Respir J. 2011;37:1453-1465.Google Scholar
  33. 33.
    Grove CS, Lee YC. Vascular endothelial growth factor: the key mediator in pleural effusion formation. Curr Opin Pulm Med. 2002;8:294-301.PubMedCrossRefGoogle Scholar
  34. 34.
    Cheng D, Lee YC, Rogers JT, et al. Vascular endothelial growth factor level correlates with transforming growth factor-beta isoform levels in pleural effusions. Chest. 2000;118:1747-1753.PubMedCrossRefGoogle Scholar
  35. 35.
    Lee YC, Lane KB. The many faces of transforming growth factor-beta in pleural diseases. Curr Opin Pulm Med. 2001;7:173-179.PubMedCrossRefGoogle Scholar
  36. 36.
    Gary Lee YC, Melkerneker D, Thompson PJ, Light RW, Lane KB. Transforming growth factor beta induces vascular endothelial growth factor elaboration from pleural mesothelial cells in vivo and in vitro. Am J Respir Crit Care Med. 2002;165:88-94.PubMedGoogle Scholar
  37. 37.
    Kishiro I, Kato S, Fuse D, Yoshida T, Machida S, Kaneko N. Clinical significance of vascular endothelial growth factor in patients with primary lung cancer. Respirology. 2002;7:93-98.PubMedCrossRefGoogle Scholar
  38. 38.
    Yanagawa H, Takeuchi E, Suzuki Y, Ohmoto Y, Bando H, Sone S. Vascular endothelial growth factor in malignant pleural effusion associated with lung cancer. Cancer Immunol Immunother. 1999;48:396-400.PubMedCrossRefGoogle Scholar
  39. 39.
    Thickett DR, Armstrong L, Millar AB. Vascular endothelial growth factor (VEGF) in inflammatory and malignant pleural effusions. Thorax. 1999;54:707-710.PubMedCrossRefGoogle Scholar
  40. 40.
    Ishimoto O, Saijo Y, Narumi K, et al. High level of vascular endothelial growth factor in hemorrhagic pleural effusion of cancer. Oncology. 2002;63:70-75.PubMedCrossRefGoogle Scholar
  41. 41.
    Tomimoto H, Yano S, Muguruma H, Kakiuchi S, Sone S. Levels of soluble vascular endothelial growth factor receptor 1 are elevated in the exudative pleural effusions. J Med Invest. 2007;54:146-153.PubMedCrossRefGoogle Scholar
  42. 42.
    Safi A, Sadmi M, Martinet N, et al. Presence of elevated levels of platelet-derived growth factor (PDGF) in lung adenocarcinoma pleural effusions. Chest. 1992;102:204-207.PubMedCrossRefGoogle Scholar
  43. 43.
    Xirouchaki N, Tzanakis N, Bouros D, et al. Diagnostic value of interleukin-1alpha, interleukin-6, and tumor necrosis factor in pleural effusions. Chest. 2002;121:815-820.PubMedCrossRefGoogle Scholar
  44. 44.
    Aoe K, Hiraki A, Murakami T, et al. Relative abundance and patterns of correlation among six cytokines in pleural fluid measured by cytometric bead array. Int J Mol Med. 2003;12:193-198.PubMedGoogle Scholar
  45. 45.
    Chen YM, Yang WK, Whang-Peng J, Tsai CM, Perng RP. An analysis of cytokine status in the serum and effusions of patients with tuberculous and lung cancer. Lung Cancer. 2001;31:25-30.PubMedCrossRefGoogle Scholar
  46. 46.
    Kotyza J, Havel D, Vrzalova J, Kulda V, Pesek M. Diagnostic and prognostic significance of inflammatory markers in lung cancer-associated pleural effusions. Int J Biol Markers. 2010;25:12-20.PubMedGoogle Scholar
  47. 47.
    Pao W, Iafrate AJ, Su Z. Genetically informed lung cancer medicine. J Pathol. 2011;223:230-240.PubMedCrossRefGoogle Scholar
  48. 48.
    Bronte G, Rizzo S, La Paglia L, et al. Driver mutations and differential sensitivity to targeted therapies: a new approach to the treatment of lung adenocarcinoma. Cancer Treat Rev. 2010;36(Suppl 3):S21-S29.PubMedCrossRefGoogle Scholar
  49. 49.
    Mitsudomi T, Yatabe Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci. 2007;98:1817-1824.PubMedCrossRefGoogle Scholar
  50. 50.
    Ladanyi M, Pao W. Lung adenocarcinoma: guiding EGFR-targeted therapy and beyond. Mod Pathol. 2008;21(Suppl 2):S16-S22.PubMedCrossRefGoogle Scholar
  51. 51.
    Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7:169-181.PubMedCrossRefGoogle Scholar
  52. 52.
    Shigematsu H, Gazdar AF. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer. 2006;118:257-262.PubMedCrossRefGoogle Scholar
  53. 53.
    Kumar A, Petri ET, Halmos B, Boggon TJ. Structure and clinical relevance of the epidermal growth factor receptor in human cancer. J Clin Oncol. 2008;26:1742-1751.PubMedCrossRefGoogle Scholar
  54. 54.
    Wu SG, Gow CH, Yu CJ, et al. Frequent epidermal growth factor receptor gene mutations in malignant pleural effusion of lung adenocarcinoma. Eur Respir J. 2008;32:924-930.PubMedCrossRefGoogle Scholar
  55. 55.
    Hung MS, Lin CK, Leu SW, Wu MY, Tsai YH, Yang CT. Epidermal growth factor receptor mutations in cells from non-small cell lung cancer malignant pleural effusions. Chang Gung Med J. 2006;29:373-379.PubMedGoogle Scholar
  56. 56.
    Soh J, Toyooka S, Aoe K, et al. Usefulness of EGFR mutation screening in pleural fluid to predict the clinical outcome of gefitinib treated patients with lung cancer. Int J Cancer. 2006;119:2353-2358.PubMedCrossRefGoogle Scholar
  57. 57.
    Soh J, Toyooka S, Ichihara S, et al. EGFR mutation status in pleural fluid predicts tumor responsiveness and resistance to gefitinib. Lung Cancer. 2007;56:445-448.PubMedCrossRefGoogle Scholar
  58. 58.
    Jian G, Songwen Z, Ling Z, et al. Prediction of epidermal growth factor receptor mutations in the plasma/pleural effusion to efficacy of gefitinib treatment in advanced non-small cell lung cancer. J Cancer Res Clin Oncol. 2010;136:1341-1347.PubMedCrossRefGoogle Scholar
  59. 59.
    Soung YH, Lee JW, Kim SY, et al. Mutational analysis of EGFR and K-RAS genes in lung adenocarcinomas. Virchows Arch. 2005;446:483-488.PubMedCrossRefGoogle Scholar
  60. 60.
    Pao W, Wang TY, Riely GJ, et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2005;2:e17.PubMedCrossRefGoogle Scholar
  61. 61.
    Zhu CQ, Ding K, Strumpf D, et al. Prognostic and predictive gene signature for adjuvant chemotherapy in resected non-small-cell lung cancer. J Clin Oncol. 2010;28:4417-4424.PubMedCrossRefGoogle Scholar
  62. 62.
    Bass AJ, Watanabe H, Mermel CH, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009;41:1238-1242.PubMedCrossRefGoogle Scholar
  63. 63.
    Wagner PL, Perner S, Rickman DS, et al. In situ evidence of KRAS amplification and association with increased p21 levels in non-small cell lung carcinoma. Am J Clin Pathol. 2009;132:500-505.PubMedCrossRefGoogle Scholar
  64. 64.
    Ramos AH, Dutt A, Mermel C, et al. Amplification of chromosomal segment 4q12 in non-small cell lung cancer. Cancer Biol Ther. 2009;8:2042-2050.PubMedCrossRefGoogle Scholar
  65. 65.
    Sos ML, Michel K, Zander T, et al. Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. J Clin Invest. 2009;119:1727-1740.PubMedCrossRefGoogle Scholar
  66. 66.
    Sos ML, Koker M, Weir BA, et al. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res. 2009;69:3256-3261.PubMedCrossRefGoogle Scholar
  67. 67.
    Barletta JA, Perner S, Iafrate AJ, et al. Clinical significance of TTF-1 protein expression and TTF-1 gene amplification in lung adenocarcinoma. J Cell Mol Med. 2009;13:1977-1986.PubMedCrossRefGoogle Scholar
  68. 68.
    Ding L, Getz G, Wheeler DA, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455:1069-1075.PubMedCrossRefGoogle Scholar
  69. 69.
    Perner S, Wagner PL, Soltermann A, et al. TTF1 expression in non-small cell lung carcinoma: association with TTF1 gene amplification and improved survival. J Pathol. 2009;217:65-72.PubMedCrossRefGoogle Scholar
  70. 70.
    Director’s Challenge Consortium for the Molecular Classification of Lung Adenocarcinoma, Shedden K, Taylor JM, et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med. 2008;14:822-827.PubMedCrossRefGoogle Scholar
  71. 71.
    Minami Y, Shimamura T, Shah K, et al. The major lung cancer-derived mutants of ERBB2 are oncogenic and are associated with sensitivity to the irreversible EGFR/ERBB2 inhibitor HKI-272. Oncogene. 2007;26:5023-5027.PubMedCrossRefGoogle Scholar
  72. 72.
    Thomas RK, Weir B, Meyerson M. Genomic approaches to lung cancer. Clin Cancer Res. 2006;12:4384s-4391s.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhao X, Weir BA, LaFramboise T, et al. Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res. 2005;65:5561-5570.PubMedCrossRefGoogle Scholar
  74. 74.
    Suda K, Tomizawa K, Mitsudomi T. Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation. Cancer Metastasis Rev. 2010;29:49-60.PubMedCrossRefGoogle Scholar
  75. 75.
    Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561-566.PubMedCrossRefGoogle Scholar
  76. 76.
    Meyerson M. Cancer: broken genes in solid tumours. Nature. 2007;448:545-546.PubMedCrossRefGoogle Scholar
  77. 77.
    Inamura K, Takeuchi K, Togashi Y, et al. EML4-ALK lung cancers are characterized by rare other mutations, a TTF-1 cell lineage, an acinar histology, and young onset. Mod Pathol. 2009;22:508-515.PubMedCrossRefGoogle Scholar
  78. 78.
    Inamura K, Takeuchi K, Togashi Y, et al. EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers. J Thorac Oncol. 2008;3:13-17.PubMedCrossRefGoogle Scholar
  79. 79.
    Sasaki T, Rodig SJ, Chirieac LR, Janne PA. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer. 2010;46:1773-1780.PubMedCrossRefGoogle Scholar
  80. 80.
    Shaw AT, Yeap BY, Mino-Kenudson M, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 2009;27:4247-4253.PubMedCrossRefGoogle Scholar
  81. 81.
    Zhang X, Zhang S, Yang X, et al. Fusion of EML4 and ALK is associated with development of lung adenocarcinomas lacking EGFR and KRAS mutations and is correlated with ALK expression. Mol Cancer. 2010;9:188.PubMedCrossRefGoogle Scholar
  82. 82.
    Sekido Y, Fong KM, Minna JD. Progress in understanding the molecular pathogenesis of human lung cancer. Biochim Biophys Acta. 1998;1378:F21-F59.PubMedGoogle Scholar
  83. 83.
    Salgia R, Skarin AT. Molecular abnormalities in lung cancer. J Clin Oncol. 1998;16:1207-1217.PubMedGoogle Scholar
  84. 84.
    Kitamura H, Yazawa T, Sato H, Okudela K, Shimoyamada H. Small cell lung cancer: significance of RB alterations and TTF-1 expression in its carcinogenesis, phenotype, and biology. Endocr Pathol. 2009;20:101-107.PubMedCrossRefGoogle Scholar
  85. 85.
    Wistuba II, Gazdar AF, Minna JD. Molecular genetics of small cell lung carcinoma. Semin Oncol. 2001;28:3-13.PubMedCrossRefGoogle Scholar
  86. 86.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281-297.PubMedCrossRefGoogle Scholar
  87. 87.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215-233.PubMedCrossRefGoogle Scholar
  88. 88.
    He X, He L, Hannon GJ. The guardian’s little helper: microRNAs in the p53 tumor suppressor network. Cancer Res. 2007;67:11099-11101.PubMedCrossRefGoogle Scholar
  89. 89.
    He L, He X, Lowe SW, Hannon GJ. microRNAs join the p53 network–another piece in the tumour-suppression puzzle. Nat Rev Cancer. 2007;7:819-822.PubMedCrossRefGoogle Scholar
  90. 90.
    He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447:1130-1134.PubMedCrossRefGoogle Scholar
  91. 91.
    Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120:635-647.PubMedCrossRefGoogle Scholar
  92. 92.
    Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834-838.PubMedCrossRefGoogle Scholar
  93. 93.
    Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic reg­ions involved in cancers. Proc Natl Acad Sci USA. 2004;101:2999-3004.PubMedCrossRefGoogle Scholar
  94. 94.
    Calin GA, Croce CM. MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene. 2006;25:6202-6210.PubMedCrossRefGoogle Scholar
  95. 95.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857-866.PubMedCrossRefGoogle Scholar
  96. 96.
    Holloway AJ, Diyagama DS, Opeskin K, et al. A molecular diagnostic test for distinguishing lung adenocarcinoma from malignant mesothelioma using cells collected from pleural effusions. Clin Cancer Res. 2006;12:5129-5135.PubMedCrossRefGoogle Scholar
  97. 97.
    Bild AH, Yao G, Chang JT, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439:353-357.PubMedCrossRefGoogle Scholar
  98. 98.
    Nguyen DX, Chiang AC, Zhang XH, et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 2009;138:51-62.PubMedCrossRefGoogle Scholar
  99. 99.
    Brock MV, Hooker CM, Yung R, et al. Can we improve the cytologic examination of malignant pleural effusions using molecular analysis? Ann Thorac Surg. 2005;80:1241-1247.PubMedCrossRefGoogle Scholar
  100. 100.
    Ng CS, Zhang J, Wan S, et al. Tumor p16M is a possible marker of advanced stage in non-small cell lung cancer. J Surg Oncol. 2002;79:101-106.PubMedCrossRefGoogle Scholar
  101. 101.
    Gui S, Liu H, Zhang L, et al. Clinical significance of the detection of the homozygous deletion of P16 gene in malignant pleural effusion. Intern Med. 2007;46:1161-1166.PubMedCrossRefGoogle Scholar
  102. 102.
    Toyooka S, Toyooka KO, Maruyama R, et al. DNA methylation profiles of lung tumors. Mol Cancer Ther. 2001;1:61-67.PubMedGoogle Scholar
  103. 103.
    Katayama H, Hiraki A, Aoe K, et al. Aberrant promoter methylation in pleural fluid DNA for diagnosis of malignant pleural effusion. Int J Cancer. 2007;120:2191-2195.PubMedCrossRefGoogle Scholar
  104. 104.
    Toyooka S, Tokumo M, Shigematsu H, et al. Mutational and epigenetic evidence for independent pathways for lung adenocarcinomas arising in smokers and never smokers. Cancer Res. 2006;66:1371-1375.PubMedCrossRefGoogle Scholar
  105. 105.
    Suzuki M, Shigematsu H, Iizasa T, et al. Exclusive mutation in epidermal growth factor receptor gene, HER-2, and KRAS, and synchronous methylation of nonsmall cell lung cancer. Cancer. 2006;106:2200-2207.PubMedCrossRefGoogle Scholar
  106. 106.
    Schroeder JA, Thompson MC, Gardner MM, Gendler SJ. Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. J Biol Chem. 2001;276:13057-13064.PubMedCrossRefGoogle Scholar
  107. 107.
    Li Y, Ren J, Yu W, et al. The epidermal growth factor receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c-Src and beta-catenin. J Biol Chem. 2001;276:35239-35242.PubMedCrossRefGoogle Scholar
  108. 108.
    Pao W, Kris MG, Iafrate AJ, et al. Integration of molecular profiling into the lung cancer clinic. Clin Cancer Res. 2009;15:5317-5322.PubMedCrossRefGoogle Scholar
  109. 109.
    Chari R, Thu KL, Wilson IM, et al. Integrating the multiple dimensions of genomic and epigenomic landscapes of cancer. Cancer Metastasis Rev. 2010;29:73-93.PubMedCrossRefGoogle Scholar
  110. 110.
    Khodarev NN, Pitroda SP, Beckett MA, et al. MUC1-induced transcriptional programs associated with tumorigenesis predict outcome in breast and lung cancer. Cancer Res. 2009;69:2833-2837.PubMedCrossRefGoogle Scholar
  111. 111.
    Campa MJ, Wang MZ, Howard B, Fitzgerald MC, Patz EF Jr. Protein expression profiling identifies macrophage migration inhibitory factor and cyclophilin a as potential molecular targets in non-small cell lung cancer. Cancer Res. 2003;63:1652-1656.PubMedGoogle Scholar
  112. 112.
    Chen G, Gharib TG, Wang H, et al. Protein profiles associated with survival in lung adenocarcinoma. Proc Natl Acad Sci USA. 2003;100:13537-13542.PubMedCrossRefGoogle Scholar
  113. 113.
    Chen G, Gharib TG, Huang CC, et al. Proteomic analysis of lung adenocarcinoma: identification of a highly expressed set of proteins in tumors. Clin Cancer Res. 2002;8:2298-2305.PubMedGoogle Scholar
  114. 114.
    Jacot W, Lhermitte L, Dossat N, et al. Serum proteomic profiling of lung cancer in high-risk groups and determination of clinical outcomes. J Thorac Oncol. 2008;3:840-850.PubMedCrossRefGoogle Scholar
  115. 115.
    Tyan YC, Wu HY, Lai WW, Su WC, Liao PC. Proteomic profiling of human pleural effusion using two-dimensional nano liquid chromatography tandem mass spectrometry. J Proteome Res. 2005;4:1274-1286.PubMedCrossRefGoogle Scholar
  116. 116.
    Tyan YC, Wu HY, Su WC, Chen PW, Liao PC. Proteomic analysis of human pleural effusion. Proteomics. 2005;5:1062-1074.PubMedCrossRefGoogle Scholar
  117. 117.
    Pernemalm M, De Petris L, Eriksson H, et al. Use of narrow-range peptide IEF to improve detection of lung adenocarcinoma markers in plasma and pleural effusion. Proteomics. 2009;9:3414-3424.PubMedCrossRefGoogle Scholar
  118. 118.
    Wang X, Nookala S, Narayanan C, et al. Proteomic analysis of the retina: removal of RPE alters outer segment assembly and retinal protein expression. Glia. 2009;57:380-392.PubMedCrossRefGoogle Scholar
  119. 119.
    Soltermann A, Ossola R, Kilgus-Hawelski S, et al. N-glycoprotein profiling of lung adenocarcinoma pleural effusions by shotgun proteomics. Cancer. 2008;114:124-133.PubMedCrossRefGoogle Scholar
  120. 120.
    Kim JH, Choi YD, Lee JS, Lee JH, Nam JH, Choi C. Utility of thyroid transcription factor-1 and CDX-2 in determining the primary site of metastatic adenocarcinomas in serous effusions. Acta Cytol. 2010;54:277-282.PubMedCrossRefGoogle Scholar
  121. 121.
    Dejmek A, Naucler P, Smedjeback A, et al. Napsin A (TA02) is a useful alternative to thyroid transcription factor-1 (TTF-1) for the identification of pulmonary adenocarcinoma cells in pleural effusions. Diagn Cytopathol. 2007;35:493-497.PubMedCrossRefGoogle Scholar
  122. 122.
    Flores-Staino C, Darai-Ramqvist E, Dobra K, Hjerpe A. Adaptation of a commercial fluorescent in situ hybridization test to the diagnosis of malignant cells in effusions. Lung Cancer. 2010;68:39-43.PubMedCrossRefGoogle Scholar
  123. 123.
    Fiegl M, Massoner A, Haun M, et al. Sensitive detection of tumour cells in effusions by combining cytology and fluorescence in situ hybridisation (FISH). Br J Cancer. 2004;91:558-563.PubMedCrossRefGoogle Scholar
  124. 124.
    Voss JS, Kipp BR, Halling KC, et al. Fluorescence in situ hybridization testing algorithm improves lung cancer detection in bronchial brushing specimens. Am J Respir Crit Care Med. 2010;181:478-485.PubMedCrossRefGoogle Scholar
  125. 125.
    Antony VB. Pathogenesis of malignant pleural effusions and talc pleurodesis. Pneumologie. 1999;53:493-498.PubMedCrossRefGoogle Scholar
  126. 126.
    Nasreen N, Mohammed KA, Brown S, et al. Talc mediates angiostasis in malignant pleural effusions via endostatin induction. Eur Respir J. 2007;29:761-769.PubMedCrossRefGoogle Scholar
  127. 127.
    Grilli R, Oxman AD, Julian JA. Chemotherapy for advanced non-small-cell lung cancer: How much benefit is enough? J Clin Oncol. 1993;11:1866-1872.PubMedGoogle Scholar
  128. 128.
    Souquet PJ, Chauvin F, Boissel JP, et al. Polychemotherapy in advanced non small cell lung cancer: a meta-analysis. Lancet. 1993;342:19-21.PubMedCrossRefGoogle Scholar
  129. 129.
    Carbone DP, Minna JD. Chemotherapy for non-small cell lung cancer. BMJ. 1995;311:889-890.PubMedCrossRefGoogle Scholar
  130. 130.
    D’Addario G, Pintilie M, Leighl NB, Feld R, Cerny T, Shepherd FA. Platinum-based versus non-platinum-based chemotherapy in advanced non-small-cell lung cancer: a meta-analysis of the published literature. J Clin Oncol. 2005;23:2926-2936.PubMedCrossRefGoogle Scholar
  131. 131.
    Klastersky J, Sculier JP, Lacroix H,Dabouis G, Bureau G, Libert P, Richez M, Ravez P, Vandermoten G, Thiriaux J, Cordier R, Finet C, Berchier MC, Sergysels R, Mommen P, Paesmans M; for the European Organization for Research and Treatment of Cancer Lung Cancer Working Party. A randomized study comparing cisplatin or carboplatin with etoposide in patients with advanced non-small-cell lung cancer: European Organization for Research and Treatment of Cancer Protocol 07861. J Clin Oncol. 1990; 8:1556–62.Google Scholar
  132. 132.
    Kroep JR, Giaccone G, Voorn DA, et al. Gemcitabine and paclitaxel: pharmacokinetic and pharmacodynamic interactions in patients with non-small-cell lung cancer. J Clin Oncol. 1999;17:2190-2197.PubMedGoogle Scholar
  133. 133.
    Mori K, Kobayashi H, Kamiyama Y, Kano Y, Kodama T. A phase II trial of weekly chemotherapy with paclitaxel plus gemcitabine as a first-line treatment in advanced non-small-cell lung cancer. Cancer Chemother Pharmacol. 2009;64:73-78.PubMedCrossRefGoogle Scholar
  134. 134.
    Li C, Sun Y, Pan Y, Wang Q, Yang S, Chen H. Gemcitabine plus paclitaxel versus carboplatin plus either gemcitabine or paclitaxel in advanced non-small-cell lung cancer: a literature-based meta-analysis. Lung. 2010;188:359-364.PubMedCrossRefGoogle Scholar
  135. 135.
    Azzoli CG, Giaccone G, Temin S. American Society of Clinical Oncology clinical practice guideline update on chemotherapy for stage IV non-small-cell lung cancer. J Oncol Pract. 2010;6:39-43.PubMedCrossRefGoogle Scholar
  136. 136.
    Davies AM, Lara PN, Lau DH, Gandara DR. Treatment of extensive small cell lung cancer. Hematol Oncol Clin North Am. 2004;18:373-385.PubMedCrossRefGoogle Scholar
  137. 137.
    Socinski MA, Weissman C, Hart LL, et al. Randomized phase II trial of pemetrexed combined with either cisplatin or carboplatin in untreated extensive-stage small-cell lung cancer. J Clin Oncol. 2006;24:4840-4847.PubMedCrossRefGoogle Scholar
  138. 138.
    Chiappori AA, Rocha-Lima CM. New agents in the treatment of small-cell lung cancer: focus on gemcitabine. Clin Lung Cancer. 2003;4(Suppl 2):S56-S63.PubMedCrossRefGoogle Scholar
  139. 139.
    McDermott U, Settleman J. Personalized cancer therapy with selective kinase inhibitors: an emerging paradigm in medical oncology. J Clin Oncol. 2009;27:5650-5659.PubMedCrossRefGoogle Scholar
  140. 140.
    Besse B, Ropert S, Soria JC. Targeted therapies in lung cancer. Ann Oncol. 2007;18(Suppl 9):ix135-ix142.PubMedCrossRefGoogle Scholar
  141. 141.
    Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129-2139.PubMedCrossRefGoogle Scholar
  142. 142.
    Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497-1500.PubMedCrossRefGoogle Scholar
  143. 143.
    Pao W, Miller V, Zakowski M, et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA. 2004;101:13306-13311.PubMedCrossRefGoogle Scholar
  144. 144.
    Pao W, Miller VA, Kris MG. “Targeting” the epidermal growth factor receptor tyrosine kinase with gefitinib (Iressa) in non-small cell lung cancer (NSCLC). Semin Cancer Biol. 2004;14:33-40.PubMedCrossRefGoogle Scholar
  145. 145.
    Janne PA. Challenges of detecting EGFR T790M in gefitinib/erlotinib-resistant tumours. Lung Cancer. 2008;60(Suppl 2):S3-S9.PubMedCrossRefGoogle Scholar
  146. 146.
    Subramanian J, Morgensztern D, Govindan R. Vascular endothelial growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin Lung Cancer. 2010;11:311-319.PubMedCrossRefGoogle Scholar
  147. 147.
    Gerber DE, Minna JD. ALK inhibition for non-small cell lung cancer: from discovery to therapy in record time. Cancer Cell. 2010;18:548-551.PubMedCrossRefGoogle Scholar
  148. 148.
    Kennedy B, Gargoum F, Bystricky B, Curran DR, O’Connor TM. Novel agents in the management of lung cancer. Curr Med Chem. 2010;17:4291-4325.PubMedCrossRefGoogle Scholar
  149. 149.
    Psallidas I, Karabela SP, Moschos C, et al. Specific effects of bortezomib against experimental malignant pleural effusion: a preclinical study. Mol Cancer. 2010;9:56.PubMedCrossRefGoogle Scholar
  150. 150.
    Russo A, Bronte G, Fulfaro F, et al. Bortezomib: a new pro-apoptotic agent in cancer treatment. Curr Cancer Drug Targets. 2010;10:55-67.PubMedCrossRefGoogle Scholar
  151. 151.
    Langer CJ, Besse B, Gualberto A, Brambilla E, Soria JC. The evolving role of histology in the management of advanced non-small-cell lung cancer. J Clin Oncol. 2010;28:5311-5320.PubMedCrossRefGoogle Scholar
  152. 152.
    Schrag D, Garewal HS, Burstein HJ, Samson DJ, Von Hoff DD, Somerfield MR. American Society of Clinical Oncology Technology Assessment: chemotherapy sensitivity and resistance assays. J Clin Oncol. 2004;22:3631-3638.PubMedCrossRefGoogle Scholar
  153. 153.
    Samson DJ, Seidenfeld J, Ziegler K, Aronson N. Chemotherapy sensitivity and resistance assays: a systematic review. J Clin Oncol. 2004;22:3618-3630.PubMedCrossRefGoogle Scholar
  154. 154.
    Gulyas M, Kaposi AD, Elek G, Szollar LG, Hjerpe A. Value of carcinoembryonic antigen (CEA) and cholesterol assays of ascitic fluid in cases of inconclusive cytology. J Clin Pathol. 2001;54:831-835.PubMedCrossRefGoogle Scholar
  155. 155.
    Radjenovic-Petkovic T, Pejcic T, Nastasijevic-Borovac D, et al. Diagnostic value of CEA in pleural fluid for differential diagnosis of benign and malign pleural effusion. Med Arh. 2009;63:141-142.PubMedGoogle Scholar
  156. 156.
    Huang WW, Tsao SM, Lai CL, Su CC, Tseng CE. Diagnostic value of Her-2/neu, Cyfra 21-1, and carcinoembryonic antigen levels in malignant pleural effusions of lung adenocarcinoma. Pathology. 2010;42:224-228.PubMedCrossRefGoogle Scholar
  157. 157.
    Toda K, Takahashi J, Tabuchi Y, et al. Clinical usefulness of CEA-mRNA determination in minor effusion. J Exp Clin Cancer Res. 2005;24:423-429.PubMedGoogle Scholar
  158. 158.
    Hung TL, Chen FF, Liu JM, et al. Clinical evaluation of HER-2/neu protein in malignant pleural effusion-associated lung adenocarcinoma and as a tumor marker in pleural effusion diagnosis. Clin Cancer Res. 2003;9:2605-2612.PubMedGoogle Scholar
  159. 159.
    Szturmowicz M, Tomkowski W, Fijalkowska A, et al. Diagnostic utility of CYFRA 21-1 and CEA assays in pericardial fluid for the recognition of neoplastic pericarditis. Int J Biol Markers. 2005;20:43-49.PubMedGoogle Scholar
  160. 160.
    Li CS, Cheng BC, Ge W, Gao JF. Clinical value of CYFRA21-1, NSE, CA15-3, CA19-9 and CA125 assay in the elderly patients with pleural effusions. Int J Clin Pract. 2007;61:444-448.PubMedCrossRefGoogle Scholar
  161. 161.
    Hackbarth JS, Murata K, Reilly WM, Algeciras-Schimnich A. Performance of CEA and CA19-9 in identifying pleural effusions caused by specific malignancies. Clin Biochem. 2010;43:1051-1055.PubMedCrossRefGoogle Scholar
  162. 162.
    Kuralay F, Tokgoz Z, Comlekci A. Diagnostic usefulness of tumour marker levels in pleural effusions of malignant and benign origin. Clin Chim Acta. 2000;300:43-55.PubMedCrossRefGoogle Scholar
  163. 163.
    Bielsa S, Esquerda A, Salud A, et al. High levels of tumor markers in pleural fluid correlate with poor survival in patients with adenocarcinomatous or squamous malignant effusions. Eur J Intern Med. 2009;20:383-386.PubMedCrossRefGoogle Scholar
  164. 164.
    Fiorelli A, Vicidomini G, Di Domenico M, et al. Vascular endothelial growth factor in pleural fluid for differential diagnosis of benign and malignant origin and its clinical applications. Interact Cardiovasc Thorac Surg. 2011;12:420-424.PubMedCrossRefGoogle Scholar
  165. 165.
    Eagles G, Warn A, Ball RY, et al. Hepatocyte growth factor/scatter factor is present in most pleural effusion fluids from cancer patients. Br J Cancer. 1996;73:377-381.PubMedCrossRefGoogle Scholar
  166. 166.
    Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997-1006.PubMedCrossRefGoogle Scholar
  167. 167.
    Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189-198.PubMedCrossRefGoogle Scholar
  168. 168.
    Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH. Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer. 2009;10:42-46.PubMedCrossRefGoogle Scholar
  169. 169.
    Lin PY, Yu SL, Yang PC. MicroRNA in lung cancer. Br J Cancer. 2010;103:1144-1148.PubMedCrossRefGoogle Scholar
  170. 170.
    Heneghan HM, Miller N, Kerin MJ. MiRNAs as biomarkers and therapeutic targets in cancer. Curr Opin Pharmacol. 2010;10:543-550.PubMedCrossRefGoogle Scholar
  171. 171.
    Richman SD, Hutchins GG, Seymour MT, Quirke P. What can the molecular pathologist offer for optimal decision making? Ann Oncol. 2010;21(Suppl 7):vii123-vii129.PubMedCrossRefGoogle Scholar
  172. 172.
    Pao W, Chmielecki J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer. 2010;10:760-774.PubMedCrossRefGoogle Scholar
  173. 173.
    Zhang X, Zhao Y, Wang M, Yap WS, Chang AY. Detection and comparison of epidermal growth factor receptor mutations in cells and fluid of malignant pleural effusion in non-small cell lung cancer. Lung Cancer. 2008;60:175-182.PubMedCrossRefGoogle Scholar
  174. 174.
    Kimura H, Fujiwara Y, Sone T, et al. EGFR mutation status in tumour-derived DNA from pleural effusion fluid is a practical basis for predicting the response to gefitinib. Br J Cancer. 2006;95:1390-1395.PubMedCrossRefGoogle Scholar
  175. 175.
    Kimura H, Fujiwara Y, Sone T, et al. High sensitivity detection of epidermal growth factor receptor mutations in the pleural effusion of non-small cell lung cancer patients. Cancer Sci. 2006;97:642-648.PubMedCrossRefGoogle Scholar
  176. 176.
    Pan Q, Pao W, Ladanyi M. Rapid polymerase chain reaction-based detection of epidermal growth factor receptor gene mutations in lung adenocarcinomas. J Mol Diagn. 2005;7:396-403.PubMedCrossRefGoogle Scholar
  177. 177.
    Asano H, Toyooka S, Tokumo M, et al. Detection of EGFR gene mutation in lung cancer by mutant-enriched polymerase chain reaction assay. Clin Cancer Res. 2006;12:43-48.PubMedCrossRefGoogle Scholar
  178. 178.
    Molina-Vila MA, Bertran-Alamillo J, Reguart N, et al. A sensitive method for detecting EGFR mutations in non-small cell lung cancer samples with few tumor cells. J Thorac Oncol. 2008;3:1224-1235.PubMedCrossRefGoogle Scholar
  179. 179.
    Miller VA, Riely GJ, Zakowski MF, et al. Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib. J Clin Oncol. 2008;26:1472-1478.PubMedCrossRefGoogle Scholar
  180. 180.
    Brevet M, Arcila M, Ladanyi M. Assessment of EGFR mutation status in lung adenocarcinoma by immunohistochemistry using antibodies specific to the two major forms of mutant EGFR. J Mol Diagn. 2010;12:169-176.PubMedCrossRefGoogle Scholar
  181. 181.
    Garcia J, Riely GJ, Nafa K, Ladanyi M. KRAS mutational testing in the selection of patients for EGFR-targeted therapies. Semin Diagn Pathol. 2008;25:288-294.PubMedCrossRefGoogle Scholar
  182. 182.
    Pao W, Miller VA, Politi KA, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2:e73.PubMedCrossRefGoogle Scholar
  183. 183.
    Yun CH, Mengwasser KE, Toms AV, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA. 2008;105:2070-2075.PubMedCrossRefGoogle Scholar
  184. 184.
    Suda K, Onozato R, Yatabe Y, Mitsudomi T. EGFR T790M mutation: A double role in lung cancer cell survival? J Thorac Oncol. 2009;4:1-4.PubMedCrossRefGoogle Scholar
  185. 185.
    Vakiani E, Solit DB. KRAS and BRAF: drug targets and predictive biomarkers. J Pathol. 2011;223:219-229.PubMedCrossRefGoogle Scholar
  186. 186.
    Ceppi P, Monica V, Righi L, Papotti M, Scagliotti GV. Emerging role of thymidylate synthase for the pharmacogenomic selection of patients with thoracic cancer. Int J Clin Pharmacol Ther. 2010;48:481-482.PubMedGoogle Scholar
  187. 187.
    Bepler G, Sommers KE, Cantor A, et al. Clinical efficacy and predictive molecular markers of neoadjuvant gemcitabine and pemetrexed in resectable non-small cell lung cancer. J Thorac Oncol. 2008;3:1112-1118.PubMedCrossRefGoogle Scholar
  188. 188.
    Kamoshida S, Suzuki M, Shimomura R, et al. Immunostaining of thymidylate synthase and p53 for predicting chemoresistance to S-1/cisplatin in gastric cancer. Br J Cancer. 2007;96:277-283.PubMedCrossRefGoogle Scholar
  189. 189.
    Wang X, Zhao J, Yang L, et al. Positive expression of ERCC1 predicts a poorer platinum-based treatment outcome in Chinese patients with advanced non-small-cell lung cancer. Med Oncol. 2010;27:484-490.PubMedCrossRefGoogle Scholar
  190. 190.
    Ikeda S, Takabe K, Suzuki K. Expression of ERCC1 and class IIIbeta tubulin for predicting effect of carboplatin/paclitaxel in patients with advanced inoperable non-small cell lung cancer. Pathol Int. 2009;59:863-867.PubMedCrossRefGoogle Scholar
  191. 191.
    Cobo M, Isla D, Massuti B, et al. Customizing cisplatin based on quantitative excision repair cross-complementing 1 mRNA expression: a phase III trial in non-small-cell lung cancer. J Clin Oncol. 2007;25:2747-2754.PubMedCrossRefGoogle Scholar
  192. 192.
    Azuma K, Sasada T, Kawahara A, et al. Expression of ERCC1 and class III beta-tubulin in non-small cell lung cancer patients treated with a combination of cisplatin/docetaxel and concurrent thoracic irradiation. Cancer Chemother Pharmacol. 2009;64:565-573.PubMedCrossRefGoogle Scholar
  193. 193.
    Seve P, Mackey J, Isaac S, et al. Class III beta-tubulin expression in tumor cells predicts response and outcome in patients with non-small cell lung cancer receiving paclitaxel. Mol Cancer Ther. 2005;4:2001-2007.PubMedCrossRefGoogle Scholar
  194. 194.
    Seve P, Isaac S, Tredan O, et al. Expression of class III {beta}-tubulin is predictive of patient outcome in patients with non-small cell lung cancer receiving vinorelbine-based chemotherapy. Clin Cancer Res. 2005;11:5481-5486.PubMedCrossRefGoogle Scholar
  195. 195.
    Dumontet C, Isaac S, Souquet PJ, et al. Expression of class III beta tubulin in non-small cell lung cancer is correlated with resistance to taxane chemotherapy. Bull Cancer. 2005;92:E25-E30.PubMedGoogle Scholar
  196. 196.
    Seruga B, Hertz PC, Le LW, Tannock IF. Global drug development in cancer: a cross-sectional study of clinical trial registries. Ann Oncol. 2010;21:895-900.PubMedCrossRefGoogle Scholar
  197. 197.
    Subramanian J, Madadi AR, Dandona M, Williams K, Morgensztern D, Govindan R. Review of ongoing clinical trials in non-small cell lung cancer: a status report for 2009 from the ClinicalTrials.gov website. J Thorac Oncol. 2010;5:1116-1119.PubMedCrossRefGoogle Scholar
  198. 198.
    Bedrossian CW. Diagnostic problems in serous effusions. Diagn Cytopathol. 1998;19:131-137.PubMedCrossRefGoogle Scholar
  199. 199.
    Lynch TJ Jr. Management of malignant pleural effusions. Chest. 1993;103(4 Suppl):385S-389S.PubMedGoogle Scholar
  200. 200.
    van den Toorn LM, Schaap E, Surmont VF, Pouw EM, van der Rijt KC, van Klaveren RJ. Management of recurrent malignant pleural effusions with a chronic indwelling pleural catheter. Lung Cancer. 2005;50:123-127.PubMedCrossRefGoogle Scholar
  201. 201.
    Antunes G, Neville E, Duffy J, Ali N. BTS guidelines for the management of malignant pleural effusions. Thorax. 2003;58(Suppl 2):ii29-ii38.PubMedGoogle Scholar
  202. 202.
    Grossi F, Pennucci MC, Tixi L, Cafferata MA, Ardizzoni A. Management of malignant pleural effusions. Drugs. 1998;55:47-58.PubMedCrossRefGoogle Scholar
  203. 203.
    Mascaux C, Iannino N, Martin B, et al. The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer. 2005;92:131-139.PubMedCrossRefGoogle Scholar
  204. 204.
    Kosaka T, Yatabe Y, Onozato R, Kuwano H, Mitsudomi T. Prognostic implication of EGFR, KRAS, and TP53 gene mutations in a large cohort of Japanese patients with surgically treated lung adenocarcinoma. J Thorac Oncol. 2009;4:22-29.PubMedCrossRefGoogle Scholar
  205. 205.
    Subramanian J, Simon R. Gene expression-based prognostic signatures in lung cancer: ready for clinical use? J Natl Cancer Inst. 2010;102:464-474.PubMedCrossRefGoogle Scholar
  206. 206.
    Shah L, Walter KL, Borczuk AC, et al. Expression of syndecan-1 and expression of epidermal growth factor receptor are associated with survival in patients with nonsmall cell lung carcinoma. Cancer. 2004;101:1632-1638.PubMedCrossRefGoogle Scholar
  207. 207.
    Lan CC, Wu YK, Lee CH, et al. Increased survivin mRNA in malignant pleural effusion is significantly correlated with survival. Jpn J Clin Oncol. 2010;40:234-240.PubMedCrossRefGoogle Scholar
  208. 208.
    Wu YK, Chen KT, Kuo YB, Huang YS, Chan EC. Quantitative detection of survivin in malignant pleural effusion for the diagnosis and prognosis of lung cancer. Cancer Lett. 2009;273:331-335.PubMedCrossRefGoogle Scholar
  209. 209.
    Hsu IL, Su WC, Yan JJ, Chang JM, Lai WW. Angiogenetic biomarkers in non-small cell lung cancer with malignant pleural effusion: correlations with patient survival and pleural effusion control. Lung Cancer. 2009;65:371-376.PubMedCrossRefGoogle Scholar
  210. 210.
    Bielsa S, Salud A, Martinez M, et al. Prognostic significance of pleural fluid data in patients with malignant effusion. Eur J Intern Med. 2008;19:334-339.PubMedCrossRefGoogle Scholar
  211. 211.
    Zendehrokh N, Franzen L, Dejmek A. Weak telomerase activity in malignant cells in metastatic serous effusions: correlation to short survival time. Acta Cytol. 2007;51:412-416.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Department of Laboratory Medicine, Division of PathologyKarolinska InstitutetStockholmSweden

Personalised recommendations