Cancer of Other Origin

  • Ben Davidson


The previous chapters in this section discussed our current knowledge of the biology and clinical relevance of lung, ovarian, and breast carcinoma metastasis in serous effusions, with similar analysis of the native cancer of the serosal cavities, malignant mesothelioma. As discussed in Chap. 5, Part 1, a vast array of malignant tumors may additionally be diagnosed in serous effusions. The majority of these cancers are highly aggressive and their detection in effusion specimens precludes any curative approach, underscoring the need to better characterize them with respect to the presence of potential molecular targets. Initial efforts in this direction include the use of catumaxomab, a trifunctional antibody that binds to EpCAM and CD3, in treating gastric cancer patients with effusions.1 However, the rarity of the majority of these entities has undoubtedly contributed to the scarceness of research aimed at better understanding their biology. The only obvious exception is cancer originating in the gastrointestinal tract (GIT), which has been the subject of a relatively large number of publications. This chapter will consequently focus on these tumors, followed by a brief discussion of the few published investigations of malignant melanoma and sarcomas in effusions.


Gastric Carcinoma Vascular Endothelial Growth Factor Level Malignant Mesothelioma Malignant Ascites Gastric Carcinoma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Heiss MM, Murawa P, Koralewski P, et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int J Cancer. 2010;127:2209-2221.PubMedCrossRefGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277-300.PubMedCrossRefGoogle Scholar
  3. 3.
    Kufe DW, Bast RC Jr, Hait WM, et al., eds. Cancer Medicine. 7th ed. Hamilton: BC Decker Inc; 2006.Google Scholar
  4. 4.
    Lee J, Lim T, Uhm JE, et al. Prognostic model to predict survival following first-line chemotherapy in patients with metastatic gastric adenocarcinoma. Ann Oncol. 2007;18:886-891.PubMedCrossRefGoogle Scholar
  5. 5.
    Lello E, Furnes B, Edna TH. Short and long-term survival from gastric cancer. A population-based study from a county hospital during 25 years. Acta Oncol. 2007;46:308-315.PubMedCrossRefGoogle Scholar
  6. 6.
    DeWitt J, Yu M, Al-Haddad MA, Sherman S, McHenry L, Leblanc JK. Survival in patients with pancreatic cancer after the diagnosis of malignant ascites or liver metastases by EUS-FNA. Gastrointest Endosc. 2010;71:260-265.PubMedCrossRefGoogle Scholar
  7. 7.
    Zervos EE, Osborne D, Boe BA, Luzardo G, Goldin SB, Rosemurgy AS. Prognostic significance of new onset ascites in patients with pancreatic cancer. World J Surg Oncol. 2006;4:16.PubMedCrossRefGoogle Scholar
  8. 8.
    Nakata B, Nishino H, Ogawa Y, et al. Prognostic predictive value of endoscopic ultrasound findings for invasive ductal carcinomas of pancreatic head. Pancreas. 2005;30(3):200-205.PubMedCrossRefGoogle Scholar
  9.  9.
    Ikeda M, Okusaka T, Ueno H, et al. Predictive factors of outcome and tumor response to systemic chemotherapy in patients with metastatic hepatocellular carcinoma. Jpn J Clin Oncol. 2008;38:675-682.PubMedCrossRefGoogle Scholar
  10. 10.
    Carr BI, Pancoska P, Branch RA. Tumor and liver determinants of prognosis in unresectable hepatocellular carcinoma: a large case cohort study. Hepatol Int. 2009;4:396-405.PubMedCrossRefGoogle Scholar
  11. 11.
    Ozyurtkan MO, Balci AE, Cakmak M. Predictors of mortality within three months in the patients with malignant pleural effusion. Eur J Intern Med. 2010;21:30-34.PubMedCrossRefGoogle Scholar
  12. 12.
    Cascinu S, Del Ferro E, Barbanti I, Ligi M, Fedeli A, Catalano G. Tumor markers in the diagnosis of malignant serous effusions. Am J Clin Oncol. 1997;20:247-250.PubMedCrossRefGoogle Scholar
  13. 13.
    Yu CJ, Shew JY, Liaw YS, Kuo SH, Luh KT, Yang PC. Application of mucin quantitative competitive reverse transcription polymerase chain reaction in assisting the diagnosis of malignant pleural effusion. Am J Respir Crit Care Med. 2001;164:1312-1318.PubMedGoogle Scholar
  14. 14.
    Yamashita K, Kuba T, Shinoda H, Takahashi E, Okayasu I. Detection of K-ras point mutations in the supernatants of peritoneal and pleural effusions for diagnosis complementary to cytologic examination. Am J Clin Pathol. 1998;109:704-711.PubMedGoogle Scholar
  15. 15.
    Li CP, Huang TS, Chao Y, Chang FY, Whang-Peng J, Lee SD. Advantages of assaying telomerase activity in ascites for diagnosis of digestive tract malignancies. World J Gastroenterol. 2004;10:2468-2471.PubMedGoogle Scholar
  16. 16.
    Tangkijvanich P, Tresukosol D, Sampatanukul P, et al. Telomerase assay for differentiating between malignancy-related and nonmalignant ascites. Clin Cancer Res. 1999;5:2470-2475.PubMedGoogle Scholar
  17. 17.
    Wong J, Schulman A, Kelly K, Zamarin D, Palese P, Fong Y. Detection of free peritoneal cancer cells in gastric cancer using cancer-specific Newcastle disease virus. J Gastrointest Surg. 2010;14:7-14.PubMedCrossRefGoogle Scholar
  18. 18.
    Wu M, Yuan S, Szporn AH, Gan L, Shtilbans V, Burstein DE. Immunocytochemical detection of XIAP in body cavity effusions and washes. Mod Pathol. 2005;18:1618-1622.PubMedGoogle Scholar
  19. 19.
    Facchetti F, Lonardi S, Gentili F, et al. Claudin 4 identifies a wide spectrum of epithelial neoplasms and represents a very useful marker for carcinoma versus mesothelioma diagnosis in pleural and peritoneal biopsies and effusions. Virchows Arch. 2007;451:669-680.PubMedCrossRefGoogle Scholar
  20. 20.
    Kleinberg L, Holth A, Fridman E, Schwartz I, Shih IeM, Davidson B. The diagnostic role of claudins in serous effusions. Am J Clin Pathol. 2007;127:928-937.PubMedCrossRefGoogle Scholar
  21. 21.
    Yan BC, Gong C, Song J, et al. Arginase-1: a new immunohistochemical marker of hepatocytes and hepatocellular neoplasms. Am J Surg Pathol. 2010;34:1147-1154.PubMedCrossRefGoogle Scholar
  22. 22.
    Villamil FG, Sorroche PB, Aziz HF, Lopez PM, Oyhamburu JM. Ascitic fluid alpha 1-antitrypsin. Dig Dis Sci. 1990;35:1105-1109.PubMedCrossRefGoogle Scholar
  23. 23.
    Lee CM, Changchien CS, Shyu WC, Liaw YF. Serum-ascites albumin concentration gradient and ascites fibronectin in the diagnosis of malignant ascites. Cancer. 1992;70:2057-2060.PubMedCrossRefGoogle Scholar
  24. 24.
    Colli A, Cocciolo M, Riva C, et al. Ascitic fluid analysis in hepatocellular carcinoma. Cancer. 1993;72:677-682.PubMedCrossRefGoogle Scholar
  25. 25.
    Greco AV, Mingrone G, Gasbarrini G. Free fatty acid analysis in ascitic fluid improves diagnosis in malignant abdominal tumors. Clin Chim Acta. 1995;239:13-22.PubMedCrossRefGoogle Scholar
  26. 26.
    Stephen MR, Oien K, Ferrier RK, Burnett RA. Effusion cytology of hepatocellular carcinoma with in situ hybridisation for human albumin. J Clin Pathol. 1997;50:442-444.PubMedCrossRefGoogle Scholar
  27. 27.
    Miédougé M, Salama G, Barange K, Vincent C, Vinel JP, Serre G. Evaluation of alpha-fetoprotein assay in ascitic fluid for the diagnosis of hepatocellular carcinoma. Clin Chim Acta. 1999;280:161-171.PubMedCrossRefGoogle Scholar
  28. 28.
    Castaldo G, Intrieri M, Calcagno G, et al. Ascitic pseudouridine discriminates between hepatocarcinoma-derived ascites and cirrhotic ascites. Clin Chem. 1996;42:1843-1846.PubMedGoogle Scholar
  29. 29.
    Dong WG, Sun XM, Yu BP, Luo HS, Yu JP. Role of VEGF and CD44v6 in differentiating benign from malignant ascites. World J Gastroenterol. 2003;9:2596-2600.PubMedGoogle Scholar
  30. 30.
    Zebrowski BK, Liu W, Ramirez K, Akagi Y, Mills GB, Ellis LM. Markedly elevated levels of vascular endothelial growth factor in malignant ascites. Ann Surg Oncol. 1999;6:373-378.PubMedCrossRefGoogle Scholar
  31. 31.
    Kraft A, Weindel K, Ochs A, et al. Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease. Cancer. 1999;85:178-187.PubMedCrossRefGoogle Scholar
  32. 32.
    Tamai M, Tanimura H, Yamaue H, et al. Clinical significance of quantitative analysis of carcinoembryonic antigen assessed by flow cytometry in fresh human gastric cancer cells. Cancer Lett. 1995;90:111-117.PubMedCrossRefGoogle Scholar
  33. 33.
    Jung M, Jeung HC, Lee SS, et al. The clinical significance of ascitic fluid CEA in advanced gastric cancer with ascites. J Cancer Res Clin Oncol. 2010;136:517-526.PubMedCrossRefGoogle Scholar
  34. 34.
    Matsuura K, Kawanishi J, Fujii S, et al. Altered expression of E-cadherin in gastric cancer tissues and carcinomatous fluid. Br J Cancer. 1992;66:1122-1130.PubMedCrossRefGoogle Scholar
  35. 35.
    Koyama S, Maruyama T, Adachi S. Expression of epidermal growth factor receptor and CD44 splicing variants sharing exons 6 and 9 on gastric and esophageal carcinomas: a two-color flow-cytometric analysis. J Cancer Res Clin Oncol. 1999;125:47-54.PubMedCrossRefGoogle Scholar
  36. 36.
    Sun XM, Dong WG, Yu BP, Luo HS, Yu JP. Detection of type IV collagenase activity in malignant ascites. World J Gastroenterol. 2003;9:2592-2595.PubMedGoogle Scholar
  37. 37.
    Koyama S. Enhanced cell surface expression of matrix metalloproteinases and their inhibitors, and tumor-induced host response in progression of human gastric carcinoma. Dig Dis Sci. 2004;49:1621-1630.PubMedCrossRefGoogle Scholar
  38. 38.
    Koyama S. Coordinate cell-surface expression of matrix metalloproteinases and their inhibitors on cancer-associated myofibroblasts from malignant ascites in patients with gastric carcinoma. J Cancer Res Clin Oncol. 2005;131:809-814.PubMedCrossRefGoogle Scholar
  39. 39.
    Koyama S, Koike N, Adachi S. Fas receptor counterattack against tumor-infiltrating lymphocytes in vivo as a mechanism of immune escape in gastric carcinoma. J Cancer Res Clin Oncol. 2001;127:20-26.PubMedCrossRefGoogle Scholar
  40. 40.
    Koyama S, Koike N, Adachi S. Expression of TNF-related apoptosis-inducing ligand (TRAIL) and its receptors in gastric carcinoma and tumor-infiltrating lymphocytes: a possible mechanism of immune evasion of the tumor. J Cancer Res Clin Oncol. 2002;128:73-79.PubMedCrossRefGoogle Scholar
  41. 41.
    Koyama S. Differential expression of intracellular apoptotic signaling molecules in tumor and tumor-infiltrating lymphocytes during development of invasion and/or metastasis of gastric carcinoma. Dig Dis Sci. 2003;48:2290-2300.PubMedCrossRefGoogle Scholar
  42. 42.
    Yoon SJ, Heo DS, Kang SH, et al. Natural killer cell activity depression in peripheral blood and ascites from gastric cancer patients with high TGF-beta 1 expression. Anticancer Res. 1998;18:1591-1596.PubMedGoogle Scholar
  43. 43.
    Yuen MF, Norris S, Evans LW, Langley PG, Hughes RD. Transforming growth factor-beta 1, activin and follistatin in patients with hepatocellular carcinoma and patients with alcoholic cirrhosis. Scand J Gastroenterol. 2002;37:233-238.PubMedCrossRefGoogle Scholar
  44. 44.
    Sasada T, Kimura M, Yoshida Y, Kanai M, Takabayashi A. CD4  +  CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer. 2003;98:1089-1099.PubMedCrossRefGoogle Scholar
  45. 45.
    Shen LS, Wang J, Shen DF, et al. CD4(+)CD25(+)CD127(low/-) regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression. Clin Immunol. 2009;131:109-118.PubMedCrossRefGoogle Scholar
  46. 46.
    Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 2005;65:2457-2464.PubMedCrossRefGoogle Scholar
  47. 47.
    Kono K, Ichihara F, Iizuka H, Sekikawa T, Matsumoto Y. Expression of signal transducing T-cell receptor zeta molecules after adoptive immunotherapy in patients with gastric and colon cancer. Int J Cancer. 1998;78:301-305.PubMedCrossRefGoogle Scholar
  48. 48.
    Hironaka K, Yamaguchi Y, Okita R, Okawaki M, Nagamine I. Essential requirement of toll-like receptor 4 expression on CD11c+  cells for locoregional immunotherapy of malignant ascites using a streptococcal preparation OK-432. Anticancer Res. 2006;26:3701-3707.PubMedGoogle Scholar
  49. 49.
    Yasumoto K, Koizumi K, Kawashima A, et al. Role of the CXCL12/CXCR4 axis in peritoneal carcinomatosis of gastric cancer. Cancer Res. 2006;66:2181-2187.PubMedCrossRefGoogle Scholar
  50. 50.
    Misawa S, Horiike S, Taniwaki M, et al. Chromosome abnormalities of gastric cancer detected in cancerous effusions. Jpn J Cancer Res. 1990;81:148-152.PubMedCrossRefGoogle Scholar
  51. 51.
    Trigo MI, San Martín MV, Novales MA, Maraví J. Cytogenetic studies of five gastric carcinomas metastatic to the pleura. Cancer Genet Cytogenet. 1994;75:145-146.PubMedCrossRefGoogle Scholar
  52. 52.
    Zojer N, Fiegl M, Müllauer L, et al. Chromosomal imbalances in primary and metastatic pancreatic carcinoma as detected by interphase cytogenetics: basic findings and clinical aspects. Br J Cancer. 1998;77:1337-1342.PubMedCrossRefGoogle Scholar
  53. 53.
    Sakakura C, Hagiwara A, Nakanishi M, et al. Differential gene expression profiles of gastric cancer cells established from primary tumour and malignant ascites. Br J Cancer. 2002;87:1153-1161.PubMedCrossRefGoogle Scholar
  54. 54.
    Savoia P, Quaglino P, Osella-Abate S, Comessatti A, Nardò T, Bernengo MG. Tyrosinase mRNA RT-PCR analysis as an additional diagnostic tool for the identification of melanoma cells in biological fluid samples other than blood: a preliminary report. Int J Biol Markers. 2005;20:11-17.PubMedGoogle Scholar
  55. 55.
    Pirker C, Holzmann K, Spiegl-Kreinecker S, et al. Chromosomal imbalances in primary and metastatic melanomas: over-representation of essential telomerase genes. Melanoma Res. 2003;13:483-492.PubMedCrossRefGoogle Scholar
  56. 56.
    Andre F, Schartz NE, Movassagh M, et al. Malignant effusions and immunogenic tumour-derived exosomes. Lancet. 2002;360:295-305.PubMedCrossRefGoogle Scholar
  57. 57.
    Paschen A, Méndez RM, Jimenez P, et al. Complete loss of HLA class I antigen expression on melanoma cells: a result of successive mutational events. Int J Cancer. 2003;103:759-767.PubMedCrossRefGoogle Scholar
  58. 58.
    Schiavo R, Tullio C, La Grotteria M, et al. Establishment and characterization of a new Ewing’s sarcoma cell line from a malignant pleural effusion. Anticancer Res. 2007;27:3273-3278.PubMedGoogle Scholar
  59. 59.
    Nishio J, Iwasaki H, Ishiguro M, et al. Establishment and characterization of a novel human desmoplastic small round cell tumor cell line, JN-DSRCT-1. Lab Invest. 2002;82:1175-1182.PubMedGoogle Scholar
  60. 60.
    Kudo N, Ogose A, Hotta T, et al. Establishment of novel human dedifferentiated chondrosarcoma cell line with osteoblastic differentiation. Virchows Arch. 2007;451:691-699.PubMedCrossRefGoogle Scholar
  61. 61.
    Ikemoto S, Sugimura K, Yoshida N, Nakatani T. Chondrosarcoma of the urinary bladder and establishment of a human chondrosarcoma cell line (OCUU-6). Hum Cell. 2004;17:93-96.Google Scholar
  62. 62.
    Sonobe H, Manabe Y, Furihata M, et al. Establishment and characterization of a new human synovial sarcoma cell line, HS-SY-II. Lab Invest. 1992;67:498-505.PubMedGoogle Scholar
  63. 63.
    Wang T, Wang L, Qian X, Yu L, Ding Y, Liu B. Relationship between gene expression of 5-fluorouracil metabolic enzymes and 5-fluorouracil sensitivity in primary cancer cells isolated from malignant ascites. Cancer Invest. 2011;29(2):130-136 [Epub ahead of print].PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, The Medical FacultyUniversity of OsloOsloNorway

Personalised recommendations