Malignant Mesothelioma

  • Katalin Dobra
  • Anders Hjerpe


Malignant mesothelioma (MM) is a primary tumor of the serous cavities and is connected to asbestos exposure. The most frequent location for MM is the pleura, followed by the peritoneum, pericardium and tunica vaginalis testis. The development of MM occurs after a long latency period, typically 20–40 years from the time of initial asbestos exposure to diagnosis, suggesting that multiple genetic events are required for tumorigenic conversion of mesothelial cells. Characteristically, MM are highly heterogeneous in terms of differentiation, which is also mirrored in variable biological behavior and prognosis.


Mesothelial Cell Malignant Mesothelioma Asbestos Exposure Asbestos Fiber Mesothelioma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ruffie P, Feld R, Minkin S, et al. Diffuse malignant mesothelioma of the pleura in Ontario and Quebec: a retrospective study of 332 patients. J Clin Oncol. 1989;7:1157-1168.PubMedGoogle Scholar
  2. 2.
    Fusco V, Ardizzoni A, Merlo F, et al. Malignant pleural mesothelioma. Multivariate analysis of prognostic factors on 113 patients. Anticancer Res. 1993;13:683-689.PubMedGoogle Scholar
  3. 3.
    Neragi-Miandoab S. Malignant pleural effusion, current and evolving approaches for its diagnosis and management. Lung Cancer. 2006;54:1-9.PubMedCrossRefGoogle Scholar
  4. 4.
    Mutsaers SE. Mesothelial cells: their structure, function and role in serosal repair. Respirology. 2002;7:171-191.PubMedCrossRefGoogle Scholar
  5. 5.
    Mutsaers SE. The mesothelial cell. Int J Biochem Cell Biol. 2004;36:9-16.PubMedCrossRefGoogle Scholar
  6. 6.
    Mutsaers SE, Kalomenidis I, Wilson NA, Lee YC. Growth factors in pleural fibrosis. Curr Opin Pulm Med. 2006;12:251-258.PubMedCrossRefGoogle Scholar
  7. 7.
    Mutsaers SE, Di Paolo N. Future directions in mesothelial transplantation research. Int J Artif Organs. 2007;30:557-561.PubMedGoogle Scholar
  8. 8.
    Dobra K, Andang M, Syrokou A, Karamanos NK, Hjerpe A. Differentiation of mesothelioma cells is influenced by the expression of proteoglycans. Exp Cell Res. 2000;258:12-22.PubMedCrossRefGoogle Scholar
  9. 9.
    Bolen JW, Hammar SP, McNutt MA. Reactive and neoplastic serosal tissue. A light-microscopic, ultrastructural, and immunocytochemical study. Am J Surg Pathol. 1986;10:34-47.PubMedCrossRefGoogle Scholar
  10. 10.
    Whitaker D, Papadimitriou J. Mesothelial healing: morphological and kinetic investigations. J Pathol. 1985;145:159-175.PubMedCrossRefGoogle Scholar
  11. 11.
    Foley-Comer AJ, Herrick SE, Al-Mishlab T, Prele CM, Laurent GJ, Mutsaers SE. Evidence for incorporation of free-floating mesothelial cells as a mechanism of serosal healing. J Cell Sci. 2002;115:1383-1389.PubMedGoogle Scholar
  12. 12.
    Warn R, Harvey P, Warn A, et al. HGF/SF induces mesothelial cell migration and proliferation by autocrine and paracrine pathways. Exp Cell Res. 2001;267:258-266.PubMedCrossRefGoogle Scholar
  13. 13.
    Herrick SE, Mutsaers SE. Mesothelial progenitor cells and their potential in tissue engineering. Int J Biochem Cell Biol. 2004;36:621-642.PubMedCrossRefGoogle Scholar
  14. 14.
    Chua F, Dunsmore SE, Clingen PH, et al. Mice lacking neutrophil elastase are resistant to bleomycin-induced pulmonary fibrosis. Am J Pathol. 2007;170:65-74.PubMedCrossRefGoogle Scholar
  15. 15.
    Herrick SE, Mutsaers SE. The potential of mesothelial cells in tissue engineering and regenerative medicine applications. Int J Artif Organs. 2007;30:527-540.PubMedGoogle Scholar
  16. 16.
    Lansley SM, Searles RG, Hoi A, et al. Mesothelial cell differention into osteoblast- and adipocyte-like cells. J Cell Mol Med. 2010 Nov 10. doi:10.1111/j.1582-4934.2010. 01212x. [Epub ahead of print]Google Scholar
  17. 17.
    Klominek J, Robert KH, Hjerpe A, Wickstrom B, Gahrton G. Serum-dependent growth patterns of two, newly established human mesothelioma cell lines. Cancer Res. 1989;49:6118-6122.PubMedGoogle Scholar
  18. 18.
    Wagner JC, Sleggs CA, Marchand P. Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province. Br J Ind Med. 1960;17:260-271.PubMedGoogle Scholar
  19. 19.
    Craighead JE, Mossman BT. The pathogenesis of asbestos-associated diseases. N Engl J Med. 1982;306:1446-1455.PubMedCrossRefGoogle Scholar
  20. 20.
    McDonald JC. Epidemiology of malignant mesothelioma–an outline. Ann Occup Hyg. 2010;54:851-857.PubMedGoogle Scholar
  21. 21.
    Lotti M, Bergamo L, Murer B. Occupational toxicology of asbestos-related malignancies. Clin Toxicol (Phila). 2010;48:485-496.CrossRefGoogle Scholar
  22. 22.
    Lechner JF, Tokiwa T, LaVeck M, et al. Asbestos-associated chromosomal changes in human mesothelial cells. Proc Natl Acad Sci USA. 1985;82:3884-3888.PubMedCrossRefGoogle Scholar
  23. 23.
    Ault JG, Cole RW, Jensen CG, Jensen LC, Bachert LA, Rieder CL. Behavior of crocidolite asbestos during mitosis in living vertebrate lung epithelial cells. Cancer Res. 1995;55:792-798.PubMedGoogle Scholar
  24. 24.
    Hesterberg TW, Barrett JC. Induction by asbestos fibers of anaphase abnormalities: mechanism for aneuploidy induction and possibly carcinogenesis. Carcinogenesis. 1985;6:473-475.PubMedCrossRefGoogle Scholar
  25. 25.
    Fung H, Kow YW, Van Houten B, et al. Asbestos increases mammalian AP-endonuclease gene expression, protein levels, and enzyme activity in mesothelial cells. Cancer Res. 1998;58:189-194.PubMedGoogle Scholar
  26. 26.
    Heintz NH, Janssen YM, Mossman BT. Persistent induction of c-fos and c-jun expression by asbestos. Proc Natl Acad Sci USA. 1993;90:3299-3303.PubMedCrossRefGoogle Scholar
  27. 27.
    Tiainen M, Tammilehto L, Mattson K, Knuutila S. Nonrandom chromosomal abnormalities in malignant pleural mesothelioma. Cancer Genet Cytogenet. 1988;33:251-274.PubMedCrossRefGoogle Scholar
  28. 28.
    Bjorkqvist AM, Tammilehto L, Anttila S, Mattson K, Knuutila S. Recurrent DNA copy number changes in 1q, 4q, 6q, 9p, 13q, 14q and 22q detected by comparative genomic hybridization in malignant mesothelioma. Br J Cancer. 1997;75:523-527.PubMedCrossRefGoogle Scholar
  29. 29.
    Pelin K, Hirvonen A, Taavitsainen M, Linnainmaa K. Cytogenetic response to asbestos fibers in cultured human primary mesothelial cells from 10 different donors. Mutat Res. 1995;334:225-233.PubMedCrossRefGoogle Scholar
  30. 30.
    Lu YY, Jhanwar SC, Cheng JQ, Testa JR. Deletion mapping of the short arm of chromosome 3 in human malignant mesothelioma. Genes Chromosomes Cancer. 1994;9:76-80.PubMedCrossRefGoogle Scholar
  31. 31.
    Musti M, Kettunen E, Dragonieri S, et al. Cytogenetic and molecular genetic changes in malignant mesothelioma. Cancer Genet Cytogenet. 2006;170:9-15.PubMedCrossRefGoogle Scholar
  32. 32.
    Lindholm PM, Salmenkivi K, Vauhkonen H, et al. Gene copy number analysis in malignant pleural mesothelioma using oligonucleotide array CGH. Cytogenet Genome Res. 2007;119:46-52.PubMedCrossRefGoogle Scholar
  33. 33.
    Sekido Y. Molecular biology of malignant mesothelioma. Environ Health Prev Med. 2008;13:65-70.PubMedCrossRefGoogle Scholar
  34. 34.
    Lechner JF, Tesfaigzi J, Gerwin BI. Oncogenes and tumor-suppressor genes in mesothelioma–a synopsis. Environ Health Perspect. 1997;105(Suppl 5):1061-1067.PubMedCrossRefGoogle Scholar
  35. 35.
    Gibas Z, Li FP, Antman KH, Bernal S, Stahel R, Sandberg AA. Chromosome changes in malignant mesothelioma. Cancer Genet Cytogenet. 1986;20:191-201.PubMedCrossRefGoogle Scholar
  36. 36.
    Popescu NC, Chahinian AP, DiPaolo JA. Nonrandom chromosome alterations in human malignant mesothelioma. Cancer Res. 1988;48:142-147.PubMedGoogle Scholar
  37. 37.
    Flejter WL, Li FP, Antman KH, Testa JR. Recurring loss involving chromosomes 1, 3, and 22 in malignant mesothelioma: possible sites of tumor suppressor genes. Genes Chromosomes Cancer. 1989;1:148-154.PubMedCrossRefGoogle Scholar
  38. 38.
    Hagemeijer A, Versnel MA, Van Drunen E, et al. Cytogenetic analysis of malignant mesothelioma. Cancer Genet Cytogenet. 1990;47:1-28.PubMedCrossRefGoogle Scholar
  39. 39.
    Taguchi T, Jhanwar SC, Siegfried JM, Keller SM, Testa JR. Recurrent deletions of specific chromosomal sites in 1p, 3p, 6q, and 9p in human malignant mesothelioma. Cancer Res. 1993;53:4349-4355.PubMedGoogle Scholar
  40. 40.
    Bueno R, De Rienzo A, Dong L, et al. Second generation sequencing of the mesothelioma tumor genome. PLoS One. 2010;5:e10612.PubMedCrossRefGoogle Scholar
  41. 41.
    Langerak AW, De Laat PA, Van Der Linden-Van Beurden CA, et al. Expression of platelet-derived growth factor (PDGF) and PDGF receptors in human malignant mesothelioma in vitro and in vivo. J Pathol. 1996;178:151-160.PubMedCrossRefGoogle Scholar
  42. 42.
    Langerak AW, van der Linden-van Beurden CA, Versnel MA. Regulation of differential expression of platelet-derived growth factor alpha- and beta-receptor mRNA in normal and malignant human mesothelial cell lines. Biochim Biophys Acta. 1996;1305:63-70.PubMedCrossRefGoogle Scholar
  43. 43.
    Gerwin BI. Cytokine signaling in mesothelial cells: receptor expression closes the autocrine loop. Am J Respir Cell Mol Biol. 1996;14:505-507.PubMedGoogle Scholar
  44. 44.
    Kamb A, Shattuck-Eidens D, Eeles R, et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet. 1994;8:23-26.PubMedCrossRefGoogle Scholar
  45. 45.
    Cheng JQ, Jhanwar SC, Klein WM, et al. p16 alterations and deletion mapping of 9p21-p22 in malignant mesothelioma. Cancer Res. 1994;54:5547-5551.PubMedGoogle Scholar
  46. 46.
    Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature. 1994;368:753-756.PubMedCrossRefGoogle Scholar
  47. 47.
    Kratzke RA, Otterson GA, Lincoln CE, et al. Immunohistochemical analysis of the p16INK4 cyclin-dependent kinase inhibitor in malignant mesothelioma. J Natl Cancer Inst. 1995;87:1870-1875.PubMedCrossRefGoogle Scholar
  48. 48.
    Illei PB, Ladanyi M, Rusch VW, Zakowski MF. The use of CDKN2A deletion as a diagnostic marker for malignant mesothelioma in body cavity effusions. Cancer. 2003;99:51-56.PubMedCrossRefGoogle Scholar
  49. 49.
    Ladanyi M. Implications of P16/CDKN2A deletion in pleural mesotheliomas. Lung Cancer. 2005;49(Suppl 1):S95-S98.PubMedCrossRefGoogle Scholar
  50. 50.
    Savic S, Franco N, Grilli B, et al. Fluorescence in situ hybridization in the definitive diagnosis of malignant mesothelioma in effusion cytology. Chest. 2010;138:137-144.PubMedCrossRefGoogle Scholar
  51. 51.
    Lopez-Rios F, Chuai S, Flores R, et al. Global gene expression profiling of pleural mesotheliomas: overexpression of aurora kinases and P16/CDKN2A deletion as prognostic factors and critical evaluation of microarray-based prognostic prediction. Cancer Res. 2006;66:2970-2979.PubMedCrossRefGoogle Scholar
  52. 52.
    Cheng JQ, Lee WC, Klein MA, Cheng GZ, Jhanwar SC, Testa JR. Frequent mutations of NF2 and allelic loss from chromosome band 22q12 in malignant mesothelioma: evidence for a two-hit mechanism of NF2 inactivation. Genes Chromosomes Cancer. 1999; 24:238-242.PubMedCrossRefGoogle Scholar
  53. 53.
    Bianchi AB, Mitsunaga SI, Cheng JQ, et al. High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas. Proc Natl Acad Sci USA. 1995;92:10854-10858.PubMedCrossRefGoogle Scholar
  54. 54.
    Dawson A, Gibbs A, Browne K, Pooley F, Griffiths M. Familial mesothelioma. Details of 17 cases with histopathologic findings and mineral analysis. Cancer. 1992;70:1183-1187.PubMedCrossRefGoogle Scholar
  55. 55.
    Attanoos RL, Gibbs AR. Pathology of malignant mesothelioma. Histopathology. 1997;30:403-418.PubMedCrossRefGoogle Scholar
  56. 56.
    Ascoli V, Aalto Y, Carnovale-Scalzo C, et al. DNA copy number changes in familial malignant mesothelioma. Cancer Genet Cytogenet. 2001;127:80-82.PubMedCrossRefGoogle Scholar
  57. 57.
    Roushdy-Hammady I, Siegel J, Emri S, Testa JR, Carbone M. Genetic-susceptibility factor and malignant mesothelioma in the Cappadocian region of Turkey. Lancet. 2001;357:444-445.PubMedCrossRefGoogle Scholar
  58. 58.
    Sun X, Wei L, Liden J, et al. Molecular characterization of tumour heterogeneity and malignant mesothelioma cell differentiation by gene profiling. J Pathol. 2005;207:91-101.PubMedCrossRefGoogle Scholar
  59. 59.
    Gordon GJ, Rockwell GN, Jensen RV, et al. Identification of novel candidate oncogenes and tumor suppressors in malignant pleural mesothelioma using large-scale transcriptional profiling. Am J Pathol. 2005;166:1827-1840.PubMedCrossRefGoogle Scholar
  60. 60.
    Rihn BH, Mohr S, McDowell SA, et al. Differential gene expression in mesothelioma. FEBS Lett. 2000;480:95-100.PubMedCrossRefGoogle Scholar
  61. 61.
    Sun X, Dobra K, Bjornstedt M, Hjerpe A. Upregulation of 9 genes, including that for thioredoxin, during epithelial differentiation of mesothelioma cells. Differentiation. 2000;66:181-188.PubMedGoogle Scholar
  62. 62.
    Singhal S, Wiewrodt R, Malden LD, et al. Gene expression profiling of malignant mesothelioma. Clin Cancer Res. 2003;9:3080-3097.PubMedGoogle Scholar
  63. 63.
    Roe OD, Anderssen E, Helge E, et al. Genome-wide profile of pleural mesothelioma versus parietal and visceral pleura: the emerging gene portrait of the mesothelioma phenotype. PLoS One. 2009;4:e6554.PubMedCrossRefGoogle Scholar
  64. 64.
    Gray SG, Fennell DA, Mutti L, O’Byrne KJ. In arrayed ranks: array technology in the study of mesothelioma. J Thorac Oncol. 2009;4:411-425.PubMedCrossRefGoogle Scholar
  65. 65.
    Sahab ZJ, Hall MD, Zhang L, Cheema AK, Byers SW. Tumor Suppressor RARRES1 Regulates DLG2, PP2A, VCP, EB1, and Ankrd26. J Cancer. 2010;1:14-22.PubMedCrossRefGoogle Scholar
  66. 66.
    Holmgren A, Bjornstedt M. Thioredoxin and thioredoxin reductase. Methods Enzymol. 1995;252:199-208.PubMedCrossRefGoogle Scholar
  67. 67.
    Rubartelli A, Bajetto A, Allavena G, Wollman E, Sitia R. Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretory pathway. J Biol Chem. 1992;267:24161-24164.PubMedGoogle Scholar
  68. 68.
    Williams CH Jr. Thioredoxin-thioredoxin reductase–a system that has come of age. Eur J Biochem. 2000;267:6101.PubMedCrossRefGoogle Scholar
  69. 69.
    Williams CH, Arscott LD, Muller S, et al. Thioredoxin reductase two modes of catalysis have evolved. Eur J Biochem. 2000;267:6110-6117.PubMedCrossRefGoogle Scholar
  70. 70.
    Hayashi T, Ueno Y, Okamoto T. Oxidoreductive regulation of nuclear factor kappa B. Involvement of a cellular reducing catalyst thioredoxin. J Biol Chem. 1993;268:11380-11388.PubMedGoogle Scholar
  71. 71.
    Jagadeeswaran R, Ma PC, Seiwert TY, et al. Functional analysis of c-Met/hepatocyte growth factor pathway in malignant pleural mesothelioma. Cancer Res. 2006;66:352-361.PubMedCrossRefGoogle Scholar
  72. 72.
    Destro A, Ceresoli GL, Falleni M, et al. EGFR overexpression in malignant pleural mesothelioma. An immunohistochemical and molecular study with clinico-pathological correlations. Lung Cancer. 2006;51:207-215.PubMedCrossRefGoogle Scholar
  73. 73.
    Goto Y, Shinjo K, Kondo Y, et al. Epigenetic profiles distinguish malignant pleural mesothelioma from lung adenocarcinoma. Cancer Res. 2009;69:9073-9082.PubMedCrossRefGoogle Scholar
  74. 74.
    Christensen BC, Houseman EA, Poage GM, et al. Integrated profiling reveals a global correlation between epigenetic and genetic alterations in mesothelioma. Cancer Res. 2010;70:5686-5694.PubMedCrossRefGoogle Scholar
  75. 75.
    Kannerstein M, Churg J. Mesothelioma in man and experimental animals. Environ Health Perspect. 1980;34:31-36.PubMedCrossRefGoogle Scholar
  76. 76.
    Johansson L, Linden CJ. Aspects of histopathologic subtype as a prognostic factor in 85 pleural mesotheliomas. Chest. 1996;109:109-114.PubMedCrossRefGoogle Scholar
  77. 77.
    Dejmek A, Hjerpe A. Immunohistochemical reactivity in mesothelioma and adenocarcinoma: a stepwise logistic regression analysis. APMIS. 1994;102:255-264.PubMedCrossRefGoogle Scholar
  78. 78.
    Ordonez NG. Role of immunohistochemistry in differentiating epithelial mesothelioma from adenocarcinoma. Review and update. Am J Clin Pathol. 1999;112:75-89.PubMedGoogle Scholar
  79. 79.
    Brockstedt U, Gulyas M, Dobra K, Dejmek A, Hjerpe A. An optimized battery of eight antibodies that can distinguish most cases of epithelial mesothelioma from adenocarcinoma. Am J Clin Pathol. 2000;114:203-209.PubMedCrossRefGoogle Scholar
  80. 80.
    Carella R, Deleonardi G, D’Errico A, et al. Immunohistochemical panels for differentiating epithelial malignant mesothelioma from lung adenocarcinoma: a study with logistic regression analysis. Am J Surg Pathol. 2001;25:43-50.PubMedCrossRefGoogle Scholar
  81. 81.
    Warhol MJ, Hickey WF, Corson JM. Malignant mesothelioma: ultrastructural distinction from adenocarcinoma. Am J Surg Pathol. 1982;6:307-314.PubMedCrossRefGoogle Scholar
  82. 82.
    Stoebner P, Brambilla E. Ultrastructural diagnosis of pleural tumors. Pathol Res Pract. 1982;173:402-416.PubMedCrossRefGoogle Scholar
  83. 83.
    Flores-Staino C, Darai-Ramqvist E, Dobra K, Hjerpe A. Adaptation of a commercial fluorescent in situ hybridization test to the diagnosis of malignant cells in effusions. Lung Cancer. 2010;68:39-43.PubMedCrossRefGoogle Scholar
  84. 84.
    Nurminen M, Dejmek A, Martensson G, Thylen A, Hjerpe A. Clinical utility of liquid-chromatographic analysis of effusions for hyaluronate content. Clin Chem. 1994;40:777-780.PubMedGoogle Scholar
  85. 85.
    Robinson BW, Creaney J, Lake R, et al. Mesothelin-family proteins and diagnosis of mesothelioma. Lancet. 2003;362:1612-1616.PubMedCrossRefGoogle Scholar
  86. 86.
    Dejmek A, Brockstedt U, Hjerpe A. Optimization of a battery using nine immunocytochemical variables for distinguishing between epithelial mesothelioma and adenocarcinoma. APMIS. 1997;105:889-894.PubMedCrossRefGoogle Scholar
  87. 87.
    Dejmek A, Hjerpe A. The combination of CEA, EMA, and BerEp4 and hyaluronan analysis specifically identifies 79% of all histologically verified mesotheliomas causing an effusion. Diagn Cytopathol. 2005;32:160-166.PubMedCrossRefGoogle Scholar
  88. 88.
    Davidson B. The diagnostic and molecular characteristics of malignant mesothelioma and ovarian/peritoneal serous carcinoma. Cytopathology. 2011;22:5-21.PubMedCrossRefGoogle Scholar
  89. 89.
    Davidson B. New diagnostic and molecular characteristics of malignant mesothelioma. Ultrastruct Pathol. 2008;32:227-240.PubMedCrossRefGoogle Scholar
  90. 90.
    Bedrossian CWM. Malignant Effusions: A Multimodal Approach to Cytologic Diagnosis. New York: Igaku-Shoin; 1994:101-109.Google Scholar
  91. 91.
    Legrand M, Pariente R. Ultrastructural study of pleural fluid in mesothelioma. Thorax. 1974;29:164-171.PubMedCrossRefGoogle Scholar
  92. 92.
    Henderson DP, Papadimitriou JM, Coleman M. Ultrastructural Appearances of Tumours. Edinburgh: Churchill Livingstone; 1986.Google Scholar
  93. 93.
    Ghadially F. Diagnostic Electron Microscopy of Tumours. London: Butterworth & Co Publishers Ltd; 1985:96-105.Google Scholar
  94. 94.
    Blix G. Hyaluronic acid in the pleural and peritoneal fluids from a case of mesothelioma. Acta Soc Med Ups. 1951;56:47-50.PubMedGoogle Scholar
  95. 95.
    Harington JS, Wagner JC, Smith M. The detection of hyaluronic acid in pleural fluids of cases with diffuse pleural mesotheliomas. Br J Exp Pathol. 1963;44:81-83.PubMedGoogle Scholar
  96. 96.
    Friman C, Hellstrom PE, Juvani M, Riska H. Acid glycosaminoglycans (mucopolysaccharides) in the differential diagnosis of pleural effusion. Clin Chim Acta. 1977;76:357-361.PubMedCrossRefGoogle Scholar
  97. 97.
    Asplund T, Versnel MA, Laurent TC, Heldin P. Human mesothelioma cells produce factors that stimulate the production of hyaluronan by mesothelial cells and fibroblasts. Cancer Res. 1993;53:388-392.PubMedGoogle Scholar
  98. 98.
    Liu Z, Dobra K, Hauzenberger D, Klominek J. Expression of hyaluronan synthases and hyaluronan in malignant mesothelioma cells. Anticancer Res. 2004;24:599-603.PubMedGoogle Scholar
  99. 99.
    Hjerpe A. Liquid-chromatographic determination of hyaluronic acid in pleural and ascitic fluids. Clin Chem. 1986;32:952-956.PubMedGoogle Scholar
  100. 100.
    Chichibu K, Matsuura T, Shichijo S, Yokoyama MM. Assay of serum hyaluronic acid in clinical application. Clin Chim Acta. 1989;181:317-323.PubMedCrossRefGoogle Scholar
  101. 101.
    Engstrom-Laurent A, Hallgren R. Circulating hyaluronate in rheumatoid arthritis: relationship to inflammatory activity and the effect of corticosteroid therapy. Ann Rheum Dis. 1985;44:83-88.PubMedCrossRefGoogle Scholar
  102. 102.
    Engstrom-Laurent A, Loof L, Nyberg A, Schroder T. Increased serum levels of hyaluronate in liver disease. Hepatology. 1985;5:638-642.PubMedCrossRefGoogle Scholar
  103. 103.
    Fraser JR, Laurent TC, Engstrom-Laurent A, Laurent UG. Elimination of hyaluronic acid from the blood stream in the human. Clin Exp Pharmacol Physiol. 1984;11:17-25.PubMedCrossRefGoogle Scholar
  104. 104.
    Thylen A, Wallin J, Martensson G. Hyaluronan in serum as an indicator of progressive disease in hyaluronan-producing malignant mesothelioma. Cancer. 1999;86:2000-2005.PubMedCrossRefGoogle Scholar
  105. 105.
    Rump A, Morikawa Y, Tanaka M, et al. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J Biol Chem. 2004;279:9190-9198.PubMedCrossRefGoogle Scholar
  106. 106.
    Hollevoet K, Bernard D, De Geeter F, et al. Glomerular filtration rate is a confounder for the measurement of soluble mesothelin in serum. Clin Chem. 2009;55:1431-1433.PubMedCrossRefGoogle Scholar
  107. 107.
    Park EK, Thomas PS, Creaney J, Johnson AR, Robinson BW, Yates DH. Factors affecting soluble mesothelin related protein levels in an asbestos-exposed population. Clin Chem Lab Med. 2010;48:869-874.PubMedGoogle Scholar
  108. 108.
    Creaney J, Olsen NJ, Brims F, et al. Serum mesothelin for early detection of asbestos-induced cancer malignant mesothelioma. Cancer Epidemiol Biomarkers Prev. 2010;19:2238-2246.PubMedCrossRefGoogle Scholar
  109. 109.
    Shiomi K, Miyamoto H, Segawa T, et al. Novel ELISA system for detection of N-ERC/mesothelin in the sera of mesothelioma patients. Cancer Sci. 2006;97:928-932.PubMedCrossRefGoogle Scholar
  110. 110.
    Pass HI, Lott D, Lonardo F, et al. Asbestos exposure, pleural mesothelioma, and serum osteopontin levels. N Engl J Med. 2005;353:1564-1573.PubMedCrossRefGoogle Scholar
  111. 111.
    Grigoriu BD, Scherpereel A, Devos P, et al. Utility of osteopontin and serum mesothelin in malignant pleural mesothelioma diagnosis and prognosis assessment. Clin Cancer Res. 2007;13:2928-2935.PubMedCrossRefGoogle Scholar
  112. 112.
    Moschos C, Porfiridis I, Psallidas I, et al. Osteopontin is upregulated in malignant and inflammatory pleural effusions. Respirology. 2009;14:716-722.PubMedCrossRefGoogle Scholar
  113. 113.
    Raiko I, Sander I, Weber DG, et al. Development of an enzyme-linked immunosorbent assay for the detection of human calretinin in plasma and serum of mesothelioma patients. BMC Cancer. 2010;10:242.PubMedCrossRefGoogle Scholar
  114. 114.
    Gulyas M, Hjerpe A. Proteoglycans and WT1 as markers for distinguishing adenocarcinoma, epithelioid mesothelioma, and benign mesothelium. J Pathol. 2003;199:479-487.PubMedCrossRefGoogle Scholar
  115. 115.
    Kumar-Singh S, Jacobs W, Dhaene K, et al. Syndecan-1 expression in malignant mesothelioma: correlation with cell differentiation, WT1 expression, and clinical outcome. J Pathol. 1998;186:300-305.PubMedCrossRefGoogle Scholar
  116. 116.
    Saqi A, Yun SS, Yu GH, et al. Utility of CD138 (syndecan-1) in distinguishing carcinomas from mesotheliomas. Diagn Cytopathol. 2005;33:65-70.PubMedCrossRefGoogle Scholar
  117. 117.
    Seidel C, Gulyas M, David G, Dobra K, Theocharis AD, Hjerpe A. A sandwich ELISA for the estimation of human syndecan-2 and syndecan-4 in biological samples. J Pharm Biomed Anal. 2004;34:797-801.PubMedCrossRefGoogle Scholar
  118. 118.
    Tsuji S, Tsuura Y, Morohoshi T, et al. Secretion of intelectin-1 from malignant pleural mesothelioma into pleural effusion. Br J Cancer. 2010;103:517-523.PubMedCrossRefGoogle Scholar
  119. 119.
    Rundlof AK, Fernandes AP, Selenius M, et al. Quantification of alternative mRNA species and identification of thioredoxin reductase 1 isoforms in human tumor cells. Differentiation. 2007;75:123-132.PubMedCrossRefGoogle Scholar
  120. 120.
    Kahlos K, Soini Y, Saily M, et al. Up-regulation of thioredoxin and thioredoxin reductase in human malignant pleural mesothelioma. Int J Cancer. 2001;95:198-204.PubMedCrossRefGoogle Scholar
  121. 121.
    Hillerdal G, Sorensen JB, Sundstrom S, Riska H, Vikstrom A, Hjerpe A. Treatment of malignant pleural mesothelioma with carboplatin, liposomized doxorubicin, and gemcitabine: a phase II study. J Thorac Oncol. 2008;3:1325-1331.PubMedCrossRefGoogle Scholar
  122. 122.
    Yuan Y, Nymoen DA, Stavnes HT, et al. Tenascin-X is a novel diagnostic marker of malignant mesothelioma. Am J Surg Pathol. 2009;33:1673-1682.PubMedCrossRefGoogle Scholar
  123. 123.
    Aerts JG, Delahaye M, van der Kwast TH, Davidson B, Hoogsteden HC, van Meerbeeck JP. The high post-test probability of a cytological examination renders further investigations to establish a diagnosis of epithelial malignant pleural mesothelioma redundant. Diagn Cytopathol. 2006;34:523-527.PubMedCrossRefGoogle Scholar
  124. 124.
    Zucali PA, Giovannetti E, Assaraf YG, Ceresoli GL, Peters GJ, Santoro A. New tricks for old biomarkers: thymidylate synthase expression as a predictor of pemetrexed activity in malignant mesothelioma. Ann Oncol. 2010;21:1560-1561.PubMedCrossRefGoogle Scholar
  125. 125.
    Uramoto H, Onitsuka T, Shimokawa H, Hanagiri T. TS, DHFR and GARFT expression in non-squamous cell carcinoma of NSCLC and malignant pleural mesothelioma patients treated with pemetrexed. Anticancer Res. 2010;30:4309-4315.PubMedGoogle Scholar
  126. 126.
    Vilmar A, Sorensen JB. Excision repair cross-complementation group 1 (ERCC1) in platinum-based treatment of non-small cell lung cancer with special emphasis on carboplatin: a review of current literature. Lung Cancer. 2009;64:131-139.PubMedCrossRefGoogle Scholar
  127. 127.
    Markasz L, Kis LL, Stuber G, et al. Hodgkin-lymphoma-derived cells show high sensitivity to dactinomycin and paclitaxel. Leuk Lymphoma. 2007;48:1835-1845.PubMedCrossRefGoogle Scholar
  128. 128.
    Flaberg E, Markasz L, Petranyi G, et al. High throughput live cell imaging reveals differential inhibition of tumor cell proliferation by human fibroblasts. Int J Cancer. 2011;128:2793-2802.PubMedCrossRefGoogle Scholar
  129. 129.
    Jaklitsch MT, Grondin SC, Sugarbaker DJ. Treatment of malignant mesothelioma. World J Surg. 2001;25:210-217.PubMedCrossRefGoogle Scholar
  130. 130.
    Molnar-Kimber KL, Sterman DH, Chang M, et al. Impact of preexisting and induced humoral and cellular immune responses in an adenovirus-based gene therapy phase I clinical trial for localized mesothelioma. Hum Gene Ther. 1998;9:2121-2133.PubMedCrossRefGoogle Scholar
  131. 131.
    Sterman DH, Treat J, Litzky LA, et al. Adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir gene therapy in patients with localized malignancy: results of a phase I clinical trial in malignant mesothelioma. Hum Gene Ther. 1998;9:1083-1092.PubMedCrossRefGoogle Scholar
  132. 132.
    Caminschi I, Venetsanakos E, Leong CC, Garlepp MJ, Robinson BW, Scott B. Cytokine gene therapy of mesothelioma. Immune and antitumor effects of transfected interleukin-12. Am J Respir Cell Mol Biol. 1999;21:347-356.PubMedGoogle Scholar
  133. 133.
    McLaren BR, Whitaker D, Robinson BW, Lake RA. Expression and integrity of DNA topoisomerase II isoforms does not explain generic drug resistance in malignant mesothelioma. Cancer Chemother Pharmacol. 2001;48:1-8.PubMedCrossRefGoogle Scholar
  134. 134.
    Segers K, Kumar-Singh S, Weyler J, et al. Glutathione S-transferase expression in malignant mesothelioma and non-neoplastic mesothelium: an immunohistochemical study. J Cancer Res Clin Oncol. 1996;122:619-624.PubMedCrossRefGoogle Scholar
  135. 135.
    Dejmek A, Brockstedt U, Hjerpe A. Immunoreactivity of pleural malignant mesotheliomas to glutathione S-transferases. APMIS. 1998;106:489-494.PubMedCrossRefGoogle Scholar
  136. 136.
    Soini Y, Kinnula V, Kaarteenaho-Wiik R, Kurttila E, Linnainmaa K, Paakko P. Apoptosis and expression of apoptosis regulating proteins bcl-2, mcl-1, bcl-X, and bax in malignant mesothelioma. Clin Cancer Res. 1999;5:3508-3515.PubMedGoogle Scholar
  137. 137.
    Gordon GJ, Appasani K, Parcells JP, et al. Inhibitor of apoptosis protein-1 promotes tumor cell survival in mesothelioma. Carcinogenesis. 2002;23:1017-1024.PubMedCrossRefGoogle Scholar
  138. 138.
    Xia C, Xu Z, Yuan X, et al. Induction of apoptosis in mesothelioma cells by antisurvivin oligonucleotides. Mol Cancer Ther. 2002;1:687-694.PubMedGoogle Scholar
  139. 139.
    Kleinberg L, Lie AK, Florenes VA, Nesland JM, Davidson B. Expression of inhibitor-of-apoptosis protein family members in malignant mesothelioma. Hum Pathol. 2007;38:986-994.PubMedCrossRefGoogle Scholar
  140. 140.
    Zaffaroni N, Costa A, Pennati M, et al. Survivin is highly expressed and promotes cell survival in malignant peritoneal mesothelioma. Cell Oncol. 2007;29:453-466.PubMedGoogle Scholar
  141. 141.
    Vogelzang NJ, Rusthoven JJ, Symanowski J, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol. 2003;21:2636-2644.PubMedCrossRefGoogle Scholar
  142. 142.
    Hillerdal G, Sorensen JB, Sundstrom S, Vikstrom A, Hjerpe A. Treatment of malignant pleural mesothelioma with liposomized doxorubicine: prolonged time to progression and good survival. A Nordic study. Clin Respir J. 2008;2:80-85.PubMedCrossRefGoogle Scholar
  143. 143.
    Palumbo C, Bei R, Procopio A, Modesti A. Molecular targets and targeted therapies for malignant mesothelioma. Curr Med Chem. 2008;15:855-867.PubMedCrossRefGoogle Scholar
  144. 144.
    Bongiovanni M, Cassoni P, De Giuli P, et al. p27(kip1) immunoreactivity correlates with long-term survival in pleural malignant mesothelioma. Cancer. 2001;92:1245-1250.PubMedCrossRefGoogle Scholar
  145. 145.
    Edwards JG, Cox G, Andi A, et al. Angiogenesis is an independent prognostic factor in malignant mesothelioma. Br J Cancer. 2001;85:863-868.PubMedCrossRefGoogle Scholar
  146. 146.
    Thylen A, Hjerpe A, Martensson G. Hyaluronan content in pleural fluid as a prognostic factor in patients with malignant pleural mesothelioma. Cancer. 2001;92:1224-1230.PubMedCrossRefGoogle Scholar
  147. 147.
    Achatzy R, Beba W, Ritschler R, et al. The diagnosis, therapy and prognosis of diffuse malignant mesothelioma. Eur J Cardiothorac Surg. 1989;3:445-447. discussion 448.PubMedCrossRefGoogle Scholar
  148. 148.
    Law MR, Gregor A, Hodson ME, Bloom HJ, Turner-Warwick M. Malignant mesothelioma of the pleura: a study of 52 treated and 64 untreated patients. Thorax. 1984;39:255-259.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Department of Laboratory Medicine, Division of PathologyKarolinska InstitutetStockholmSweden

Personalised recommendations