Breast Cancer

  • Ben Davidson
  • Fernando Schmitt


Breast cancer is the most common malignancy (23% of all cancers) and the leading cause of cancer mortality (14% of female cancer deaths) in women worldwide.1 As discussed in Chap. 4, despite the relatively small percentage of patients diagnosed with distant metastasis, involvement of the serosal cavities, particularly the pleural space, is not a rare condition.2 - 9


Vascular Endothelial Growth Factor Epidermal Growth Factor Receptor Nerve Growth Factor Breast Carcinoma Vascular Endothelial Growth Factor Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74-108.PubMedCrossRefGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71-96.PubMedCrossRefGoogle Scholar
  3. 3.
    Fentiman IS, Millis R, Sexton S, Hayward JL. Pleural effusion in breast cancer: a review of 105 cases. Cancer. 1981;47:2087-2092.PubMedCrossRefGoogle Scholar
  4. 4.
    Raju RN, Kardinal CG. Pleural effusion in breast carcinoma: analysis of 122 cases. Cancer. 1981;48:2524-2527.PubMedCrossRefGoogle Scholar
  5. 5.
    Wilkes JD, Fidias P, Vaickus L, Perez RP. Malignancy-related pericardial effusion. 127 cases from the Roswell Park Center Institute. Cancer. 1995;76:1377-1387.PubMedCrossRefGoogle Scholar
  6. 6.
    Buck M, Ingle JN, Giuliani ER, Gordon JR, Therneau TM. Pericardial effusion in women with breast cancer. Cancer. 1987;60:263-269.PubMedCrossRefGoogle Scholar
  7. 7.
    DiBonito L, Falconieri G, Colautti I, Bonifacio D, Dudine S. The positive peritoneal effusion. A retrospective study of cytopathologic diagnoses with autopsy confirmation. Acta Cytol. 1993;37:483-488.PubMedGoogle Scholar
  8. 8.
    Johnston WW. The malignant pleural effusion. A review of cytopathologic diagnoses of 584 specimens from 472 consecutive patients. Cancer. 1985;56:905-909.PubMedCrossRefGoogle Scholar
  9. 9.
    Pokieser W, Cassik P, Fischer G, Vesely M, Ulrich W, Peters-Engl C. Malignant pleural and pericardial effusion in invasive breast cancer: impact of the site of the primary tumor. Breast Cancer Res Treat. 2004;83:139-142.PubMedCrossRefGoogle Scholar
  10. 10.
    Kamby C, Vejborg I, Kristensen B, Olsen LO, Mouridsen HT. Metastatic pattern in recurrent breast cancer. Special reference to intrathoracic recurrences. Cancer. 1988;62:2226-2233.PubMedCrossRefGoogle Scholar
  11. 11.
    DeCamp MM Jr, Mentzer SJ, Swanson SJ, Sugarbaker DJ. Malignant effusive disease of the pleura and pericardium. Chest. 1997;112(4 Suppl):291S-295S.PubMedCrossRefGoogle Scholar
  12. 12.
    van de Molengraft FJ, Vooijs GP. The interval between the diagnosis of malignancy and the development of effusions, with reference to the role of cytologic diagnosis. Acta Cytol. 1988;32:183-187.PubMedGoogle Scholar
  13. 13.
    Dieterich M, Goodman SN, Rojas-Corona RR, Emralino AB, Jimenez-Joseph D, Sherman ME. Multivariate analysis of prognostic features in malignant pleural effusions from breast cancer patients. Acta Cytol. 1994;38:945-952.PubMedGoogle Scholar
  14. 14.
    Sanchez-Armengol A, Rodriguez-Panadero F. Survival and talc pleurodesis in metastatic pleural carcinoma, revisited. Report of 125 cases. Chest. 1993;104:1482-1485.PubMedCrossRefGoogle Scholar
  15. 15.
    Inoue K, Ogawa M, Horikoshi N, et al. Evaluation of prognostic factors for 233 patients with recurrent advanced breast cancer. Jpn J Clin Oncol. 1991;21:334-339.PubMedGoogle Scholar
  16. 16.
    Bielsa S, Esquerda A, Salud A, et al. High levels of tumor markers in pleural fluid correlate with poor survival in patients with adenocarcinomatous or squamous malignant effusions. Eur J Intern Med. 2009;20:383-386.PubMedCrossRefGoogle Scholar
  17. 17.
    Liu E, Dollbaum C, Scott G, Rochlitz C, Benz C, Smith HS. Molecular lesions involved in the progression of a human breast cancer. Oncogene. 1988;3:323-327.PubMedGoogle Scholar
  18. 18.
    Driouch K, Champème MH, Beuzelin M, Bièche I, Lidereau R. Classical gene amplifications in human breast cancer are not associated with distant solid metastases. Br J Cancer. 1997;76:784-787.PubMedCrossRefGoogle Scholar
  19. 19.
    Roka S, Fiegl M, Zojer N, et al. Aneuploidy of chromosome 8 as detected by interphase fluorescence in situ hybridization is a recurrent finding in primary and metastatic breast cancer. Breast Cancer Res Treat. 1998;48:125-133.PubMedCrossRefGoogle Scholar
  20. 20.
    Massoner A, Augustin F, Duba HC, Zojer N, Fiegl M. FISH cytogenetics and prognosis in breast and non-small cell lung cancers. Cytometry B Clin Cytom. 2004;62:52-56.PubMedCrossRefGoogle Scholar
  21. 21.
    Ioakim-Liossi A, Gagos S, Athanassiades P, et al. Changes of chromosomes 1, 3, 6, and 11 in metastatic effusions arising from breast and ovarian cancer. Cancer Genet Cytogenet. 1999;110:34-40.PubMedCrossRefGoogle Scholar
  22. 22.
    de Matos Granja N, Soares R, Rocha S, et al. Evaluation of breast cancer metastases in pleural effusions by molecular biology techniques. Diagn Cytopathol. 2002;27:210-213.PubMedCrossRefGoogle Scholar
  23. 23.
    Lurje G, Lenz HJ. EGFR signaling and drug discovery. Oncology. 2009;77:400-410.PubMedCrossRefGoogle Scholar
  24. 24.
    Alvarez RH, Valero V, Hortobagyi GN. Emerging targeted therapies for breast cancer. J Clin Oncol. 2010;28:3366-3379.PubMedCrossRefGoogle Scholar
  25. 25.
    Athanassiadou P, Athanassiades P, Kyrkou K, Giahnaki E, Giannioti E, Nanas S. Expression of vimentin and epidermal growth factor receptor in effusions from patients with breast cancer; correlation with oestrogen and progesterone receptor status. Cytopathology. 1993;4:91-98.PubMedCrossRefGoogle Scholar
  26. 26.
    Ascoli V, Scalzo CC, Nardi F. C-erbB-2 oncoprotein immunostaining in serous effusions. Cytopathology. 1993;4:207-218.PubMedCrossRefGoogle Scholar
  27. 27.
    Porcel JM, Salud A, Vives M, Esquerda A, Rodríguez-Panadero F. Soluble oncoprotein 185HER-2 in pleural fluid has limited usefulness for the diagnostic evaluation of malignant effusions. Clin Biochem. 2005;38:1031-1033.PubMedCrossRefGoogle Scholar
  28. 28.
    Davidson B, Konstantinovsky S, Nielsen S, et al. Altered expression of metastasis-associated and regulatory molecules in effusions from breast cancer patients- a novel model for tumor progression. Clin Cancer Res. 2004;10:7335-7346.PubMedCrossRefGoogle Scholar
  29. 29.
    Kunitomo K, Inoue S, Ichihara F, et al. A case of metastatic breast cancer with outgrowth of HER2-negative cells after eradication of HER2-positive cells by humanized anti-HER2 monoclonal antibody (trastuzumab) combined with docetaxel. Hum Pathol. 2004;35:379-381.PubMedCrossRefGoogle Scholar
  30. 30.
    Real PJ, Benito A, Cuevas J, et al. Blockade of epidermal growth factor receptors chemosensitizes breast cancer cells through up-regulation of Bnip3L. Cancer Res. 2005;65:8151-8157.PubMedCrossRefGoogle Scholar
  31. 31.
    Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci. 2007;120:2479-2487.PubMedCrossRefGoogle Scholar
  32. 32.
    Booth BW, Smith GH. Roles of transforming growth factor-alpha in mammary development and disease. Growth Factors. 2007;25:227-235.PubMedCrossRefGoogle Scholar
  33. 33.
    Arteaga CL, Hanauske AR, Clark GM, et al. Immunoreactive alpha transforming growth factor activity in effusions from cancer patients as a marker of tumor burden and patient prognosis. Cancer Res. 1988;48:5023-5028.PubMedGoogle Scholar
  34. 34.
    Ciardiello F, Kim N, Liscia DS, et al. mRNA expression of transforming growth factor alpha in human breast carcinomas and its activity in effusions of breast cancer patients. J Natl Cancer Inst. 1989;81:1165-1171.PubMedCrossRefGoogle Scholar
  35. 35.
    Dallas NA, Samuel S, Xia L, et al. Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res. 2008;14:1931-1937.PubMedCrossRefGoogle Scholar
  36. 36.
    ten Dijke P, Goumans MJ, Pardali E. Endoglin in angiogenesis and vascular diseases. Angiogenesis. 2008;11:79-89.PubMedCrossRefGoogle Scholar
  37. 37.
    Davidson B, Tuft Stavnes H, Førsund M, Berner A, Staff AC. CD105 (Endoglin) expression in breast carcinoma effusions is a marker of poor survival. Breast. 2010;19:493-498.PubMedCrossRefGoogle Scholar
  38. 38.
    Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008;8:579-591.PubMedCrossRefGoogle Scholar
  39. 39.
    Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol. 1995;146:1029-1039.PubMedGoogle Scholar
  40. 40.
    Nagy JA, Masse EM, Herzberg KT, et al. Pathogenesis of ascites tumor growth: vascular permeability factor, vascular hyperpermeability, and ascites tumor accumulation. Cancer Res. 1995;55:360-368.PubMedGoogle Scholar
  41. 41.
    Kraft A, Weindel K, Ochs A, et al. Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease. Cancer. 1999;85:178-187.PubMedCrossRefGoogle Scholar
  42. 42.
    Zebrowski BK, Yano S, Liu W, et al. Vascular endothelial growth factor levels and induction of permeability in malignant pleural effusions. Clin Cancer Res. 1999;5:3364-3368.PubMedGoogle Scholar
  43. 43.
    Konstantinovsky S, Nielsen S, Vyberg M, et al. Angiogenic molecule expression is downregulated in effusions from breast cancer patients. Breast Cancer Res Treat. 2005;94:71-80.PubMedCrossRefGoogle Scholar
  44. 44.
    Kaplan DR, Miller FD. Signal transduction by the neurotrophin receptors. Curr Opin Cell Biol. 1997;9:213-221.PubMedCrossRefGoogle Scholar
  45. 45.
    Teng KK, Hempstead BL. Neurotrophins and their receptors: signaling trios in complex biological systems. Cell Mol Life Sci. 2004;61:35-48.PubMedCrossRefGoogle Scholar
  46. 46.
    Nakagawara A. Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett. 2001;169:107-114.PubMedCrossRefGoogle Scholar
  47. 47.
    Davidson B, Reich R, Lazarovici P, et al. Expression and activation of the nerve growth factor receptor TrkA in serous ovarian carcinoma. Clin Cancer Res. 2003;9:2248-2259.PubMedGoogle Scholar
  48. 48.
    Davidson B, Reich R, Lazarovici P, et al. Expression of the nerve growth factor receptors TrkA and p75 in malignant mesothelioma. Lung Cancer. 2004;44:159-165.PubMedCrossRefGoogle Scholar
  49. 49.
    Davidson B, Reich R, Lazarovici P, Flørenes VA, Nielsen S, Nesland JM. Altered expression and activation of the nerve growth factor receptors TrkA and p75 provides the first evidence of tumor progression to effusion in breast carcinoma. Breast Cancer Res Treat. 2004;83:119-128.PubMedCrossRefGoogle Scholar
  50. 50.
    Sachdev D, Yee D. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol Cancer Ther. 2007;6:1-12.PubMedCrossRefGoogle Scholar
  51. 51.
    Guvakova MA. Insulin-like growth factors control cell migration in health and disease. Int J Biochem Cell Biol. 2007;39:890-909.PubMedCrossRefGoogle Scholar
  52. 52.
    Denley A, Cosgrove LJ, Booker GW, Wallace JC, Forbes BE. Molecular interactions of the IGF system. Cytokine Growth Factor Rev. 2005;16:421-439.PubMedCrossRefGoogle Scholar
  53. 53.
    Bach LA, Headey SJ, Norton RS. IGF-binding proteins–the pieces are falling into place. Trends Endocrinol Metab. 2005;16:228-234.PubMedCrossRefGoogle Scholar
  54. 54.
    Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev. 2002;23:824-854.PubMedCrossRefGoogle Scholar
  55. 55.
    Weroha SJ, Haluska P. IGF-1 receptor inhibitors in clinical trials–early lessons. J Mammary Gland Biol Neoplasia. 2008;13:471-483.PubMedCrossRefGoogle Scholar
  56. 56.
    Athanassiadou P, Athanassiades P, Petrakakou E, Mavrikakis M, Konstantopoulos K, Kyrkou K. Expression of insulin-like growth factor-I receptor and transferrin receptor by breast cancer cells in pleural effusion smears. Cytopathology. 1996;7:400-405.PubMedCrossRefGoogle Scholar
  57. 57.
    Slipicevic A, Øy GF, Askildt IC, et al. The diagnostic and prognostic role of the insulin growth factor pathway members IGF-II and IGFBP3 in serous effusions. Hum Pathol. 2009;40:527-537.PubMedCrossRefGoogle Scholar
  58. 58.
    Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002;2:91-100.PubMedCrossRefGoogle Scholar
  59. 59.
    Rathinam R, Alahari SK. Important role of integrins in the cancer biology. Cancer Metastasis Rev. 2010;29:223-237.PubMedCrossRefGoogle Scholar
  60. 60.
    Sanders RJ, Mainiero F, Giancotti FP. The role of integrins in tumorigenesis and metastasis. Cancer Invest. 1998;16:329-344.PubMedCrossRefGoogle Scholar
  61. 61.
    Heino J. Biology of tumor cell invasion: interplay of cell adhesion and matrix degradation. Int J Cancer. 1996;65:717-722.PubMedCrossRefGoogle Scholar
  62. 62.
    Sigstad E, Dong HP, Nielsen S, Berner A, Davidson B, Risberg B. Quantitative analysis of integrin expression in effusions using flow cytometric immunophenotyping. Diagn Cytopathol. 2005;33:321-331.CrossRefGoogle Scholar
  63. 63.
    Kohn EC, Travers LA, Kassis J, Broome U, Klominek J. Malignant effusions are sources of fibronectin and other promigratory and proinvasive components. Diagn Cytopathol. 2005;33:300-308.PubMedCrossRefGoogle Scholar
  64. 64.
    Menard S, Castronovo V, Tagliabue E, Sobel ME. New insights into the metastasis-associated 67 kD laminin receptor. J Cell Biochem. 1997;67:155-165.PubMedCrossRefGoogle Scholar
  65. 65.
    Menard S, Tagliabue E, Colnaghi MI. The 67 kDa laminin receptor as a prognostic factor in human cancer. Breast Cancer Res Treat. 1998;52:137-145.PubMedCrossRefGoogle Scholar
  66. 66.
    Reich R, Vintman L, Nielsen S, et al. Differential expression of the 67 kilodalton laminin receptor in malignant mesothelioma and carcinomas that spread to serosal cavities. Diagn Cytopathol. 2005;33:332-337.PubMedCrossRefGoogle Scholar
  67. 67.
    Shirayoshi Y, Hatta K, Hosoda M, Tsunasawa S, Sakiyama F, Takeichi M. Cadherin cell adhesion molecules with distinct binding specificities share a common structure. EMBO J. 1986;5:2485-2488.PubMedGoogle Scholar
  68. 68.
    Behrens J. Cadherins and catenins: Role in signal transduction and tumor progression. Cancer Metastasis Rev. 1999;18:15-30.PubMedCrossRefGoogle Scholar
  69. 69.
    Vleminckx K, Vakaet L Jr, Mareel M, Fiers W, van Roy F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell. 1991;66:107-119.PubMedCrossRefGoogle Scholar
  70. 70.
    Hajra KM, Fearon ER. Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer. 2002;34:255-268.PubMedCrossRefGoogle Scholar
  71. 71.
    Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119:1429-1437.PubMedCrossRefGoogle Scholar
  72. 72.
    Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: An alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7:415-428.PubMedCrossRefGoogle Scholar
  73. 73.
    Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420-1428.PubMedCrossRefGoogle Scholar
  74. 74.
    Baranwal S, Alahari SK. Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochem Biophys Res Commun. 2009;384:6-11.PubMedCrossRefGoogle Scholar
  75. 75.
    Elloul S, Bukholt Elstrand M, Nesland JM, et al. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer. 2005;103:1631-1643.PubMedCrossRefGoogle Scholar
  76. 76.
    Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2001;2:285-293.PubMedCrossRefGoogle Scholar
  77. 77.
    Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Annu Rev Physiol. 2006;68:403-429.PubMedCrossRefGoogle Scholar
  78. 78.
    González-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol. 2003;81:1-44.PubMedCrossRefGoogle Scholar
  79. 79.
    Morita K, Furuse M, Fujimoto K, Tsukita S. Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci U S A. 1999;96:511-516.PubMedCrossRefGoogle Scholar
  80. 80.
    Hewitt KJ, Agarwal R, Morin PJ. The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer. 2006;6:186.PubMedCrossRefGoogle Scholar
  81. 81.
    Morin PJ. Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res. 2005;65:9603-9606.PubMedCrossRefGoogle Scholar
  82. 82.
    Swisshelm K, Macek R, Kubbies M. Role of claudins in tumorigenesis. Adv Drug Deliv Rev. 2005;57:919-928.PubMedCrossRefGoogle Scholar
  83. 83.
    Kominsky SL, Argani P, Korz D, et al. Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene. 2003;22:2021-2033.PubMedCrossRefGoogle Scholar
  84. 84.
    Soini Y. Claudins 2, 3, 4, and 5 in Paget’s disease and breast carcinoma. Hum Pathol. 2004;35:1531-1536.PubMedCrossRefGoogle Scholar
  85. 85.
    Sauer T, Pedersen MK, Ebeltoft K, Naess O. Reduced expression of Claudin-7 in fine needle aspirates from breast carcinomas correlate with grading and metastatic disease. Cytopathology. 2005;16:193-198.PubMedCrossRefGoogle Scholar
  86. 86.
    Kim TH, Huh JH, Lee S, Kang H, Kim GI, An HJ. Down-regulation of claudin-2 in breast carcinomas is associated with advanced disease. Histopathology. 2008;53:48-55.PubMedCrossRefGoogle Scholar
  87. 87.
    Lanigan F, McKiernan E, Brennan DJ, et al. Increased claudin-4 expression is associated with poor prognosis and high tumour grade in breast cancer. Int J Cancer. 2009;124:2088-2097.PubMedCrossRefGoogle Scholar
  88. 88.
    Kleinberg L, Holth A, Fridman E, Schwartz I, Shih IeM, Davidson B. The diagnostic role of claudins in serous effusions. Am J Clin Pathol. 2007;127:928-937.PubMedCrossRefGoogle Scholar
  89. 89.
    Konstantinovsky S, Smith Y, Zilber S, et al. Breast carcinoma cells in primary tumors and effusions have different gene array profiles. J Oncol. 2010;2010:969084.PubMedCrossRefGoogle Scholar
  90. 90.
    Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2:161-174.PubMedCrossRefGoogle Scholar
  91. 91.
    Bjorklund M, Koivunen E. Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta. 2005;1755:37-69.PubMedGoogle Scholar
  92. 92.
    Di Carlo A, Mariano A, Terracciano D, et al. Gelatinolytic activities (matrix metalloproteinase-2 and −9) and soluble extracellular domain of Her-2/neu in pleural effusions. Oncol Rep. 2007;18:425-431.PubMedGoogle Scholar
  93. 93.
    Giarnieri E, Alderisio M, Mancini R, et al. Tissue inhibitor of metalloproteinase 2 (TIMP-2) expression in adenocarcinoma pleural effusions. Oncol Rep. 2008;19:483-487.PubMedGoogle Scholar
  94. 94.
    Nabeshima K, Iwasaki H, Koga K, Hojo H, Suzumiya J, Kikuchi M. Emmprin (basigin/CD147): matrix metalloproteinase modulator and multifunctional cell recognition molecule that plays a critical role in cancer progression. Pathol Int. 2006;56:359-367.PubMedCrossRefGoogle Scholar
  95. 95.
    Iacono KT, Brown AL, Greene MI, Saouaf SJ. CD147 immunoglobulin superfamily receptor function and role in pathology. Exp Mol Pathol. 2007;83:283-295.PubMedCrossRefGoogle Scholar
  96. 96.
    Toole BP, Slomiany MG. Hyaluronan, CD44 and Emmprin: partners in cancer cell chemoresistance. Drug Resist Updat. 2008;11:110-121.PubMedCrossRefGoogle Scholar
  97. 97.
    Gieseler F, Lühr I, Kunze T, et al. Activated coagulation factors in human malignant effusions and their contribution to cancer cell metastasis and therapy. Thromb Haemost. 2007;97:1023-1030.PubMedGoogle Scholar
  98. 98.
    Emami N, Diamandis EP. Utility of kallikrein-related peptidases (KLKs) as cancer biomarkers. Clin Chem. 2008;54:1600-1607.PubMedCrossRefGoogle Scholar
  99. 99.
    Davidson B, Xi Z, Saatcioglu F. Kallikrein 4 is expressed in malignant mesothelioma- Further evidence for the histogenetic link between mesothelial and epithelial cells. Diagn Cytopathol. 2007;35:80-84.PubMedCrossRefGoogle Scholar
  100. 100.
    Kan N, Kodama H, Hori T, et al. Intrapleural adaptive immunotherapy for breast cancer patients with cytologically-confirmed malignant pleural effusions: an analysis of 67 patients in Kyoto and Shiga Prefecture, Japan. Breast Cancer Res Treat. 1993;27:203-210.PubMedCrossRefGoogle Scholar
  101. 101.
    Lissoni P, Mandalà M, Curigliano G, et al. Progress report on the palliative therapy of 100 patients with neoplastic effusions by intracavitary low-dose interleukin-2. Oncology. 2001;60:308-312.PubMedCrossRefGoogle Scholar
  102. 102.
    Spyridonidis A, Bernhardt W, Behringer D, et al. Proliferation and survival of mammary carcinoma cells are influenced by culture conditions used for ex vivo expansion of CD34(+) blood progenitor cells. Blood. 1999;93:746-755.PubMedGoogle Scholar
  103. 103.
    Wischhusen J, Waschbisch A, Wiendl H. Immune-refractory cancers and their little helpers–an extended role for immunetolerogenic MHC molecules HLA-G and HLA-E. Semin Cancer Biol. 2007;17:459-468.PubMedCrossRefGoogle Scholar
  104. 104.
    Kleinberg L, Flørenes VA, Skrede M, et al. Expression of HLA-G in malignant mesothelioma and clinically aggressive breast carcinoma. Virchows Arch. 2006;449:31-39.PubMedCrossRefGoogle Scholar
  105. 105.
    Lazennec G, Richmond A. Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med. 2010;16:133-144.PubMedCrossRefGoogle Scholar
  106. 106.
    Ali S, Lazennec G. Chemokines: novel targets for breast cancer metastasis. Cancer Metastasis Rev. 2007;26:401-420.PubMedCrossRefGoogle Scholar
  107. 107.
    Thomachot MC, Bendriss-Vermare N, Massacrier C, et al. Breast carcinoma cells promote the differentiation of CD34+ progenitors towards 2 different subpopulations of dendritic cells with CD1a(high)CD86(−)Langerin- and CD1a(+)CD86(+)Langerin  +  phenotypes. Int J Cancer. 2004;110:710-720.PubMedCrossRefGoogle Scholar
  108. 108.
    Soria G, Yaal-Hahoshen N, Azenshtein E, et al. Concomitant expression of the chemokines RANTES and MCP-1 in human breast cancer: a basis for tumor-promoting interactions. Cytokine. 2008;44:191-200.PubMedCrossRefGoogle Scholar
  109. 109.
    Davidson B, Dong HP, Holth A, Berner A, Risberg B. The chemokine receptor CXCR4 is more frequently expressed in breast compared to other metastatic adenocarcinomas in effusions. Breast J. 2008;14:476-482.PubMedCrossRefGoogle Scholar
  110. 110.
    DeLong P, Carroll RG, Henry AC, et al. Regulatory T cells and cytokines in malignant pleural effusions secondary to mesothelioma and carcinoma. Cancer Biol Ther. 2005;4:342-346.PubMedCrossRefGoogle Scholar
  111. 111.
    Desfrançois J, Derré L, Corvaisier M, et al. Increased frequency of nonconventional double positive CD4CD8 alphabeta T cells in human breast pleural effusions. Int J Cancer. 2009;125:374-380.PubMedCrossRefGoogle Scholar
  112. 112.
    Davidson B, Konstantinovsky S, Kleinberg L, et al. The mitogen-activated protein kinases (MAPK) p38 and JNK are markers of tumor progression in breast carcinoma. Gynecol Oncol. 2006;102:453-461.PubMedCrossRefGoogle Scholar
  113. 113.
    Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9:537-549.PubMedCrossRefGoogle Scholar
  114. 114.
    Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 2010;1802:396-405.PubMedCrossRefGoogle Scholar
  115. 115.
    Haagenson KK, Wu GS. The role of MAP kinases and MAP kinase phosphatase-1 in resistance to breast cancer treatment. Cancer Metastasis Rev. 2010;29:143-149.PubMedCrossRefGoogle Scholar
  116. 116.
    Seth A, Watson DK. Ets transcription factors and their emerging roles in human cancer. Eur J Cancer. 2005;41:2462-2478.PubMedCrossRefGoogle Scholar
  117. 117.
    Verger A, Duterque-Coquillaud M. When Ets transcription factors meet their partners. Bioessays. 2002;24:362-370.PubMedCrossRefGoogle Scholar
  118. 118.
    Sharrocks AD. The ETS-domain transcription factor family. Nat Rev Mol Cell Biol. 2001;2:827-837.PubMedCrossRefGoogle Scholar
  119. 119.
    Turner DP, Findlay VJ, Moussa O, Watson DK. Defining ETS transcription regulatory networks and their contribution to breast cancer progression. J Cell Biochem. 2007;102:549-559.PubMedCrossRefGoogle Scholar
  120. 120.
    Cho KS, Elizondo LI, Boerkoel CF. Advances in chromatin remodeling and human disease. Curr Opin Genet Dev. 2004;14:308-315.PubMedCrossRefGoogle Scholar
  121. 121.
    Wong AK, Shanahan F, Chen Y, et al. BRG1, a component of the SWI-SNF complex, is mutated in multiple human tumor cell lines. Cancer Res. 2000;60:6171-6177.PubMedGoogle Scholar
  122. 122.
    Halliday GM, Bock VL, Moloney FJ, Lyons JG. SWI/SNF: a chromatin-remodelling complex with a role in carcinogenesis. Int J Biochem Cell Biol. 2009;41:725-728.PubMedCrossRefGoogle Scholar
  123. 123.
    Loyola A, Huang J-Y, LeRoy G, et al. Functional analysis of the subunits of the chromatin assembly factor RSF. Mol Cell Biol. 2003;23:6759-6768.PubMedCrossRefGoogle Scholar
  124. 124.
    LeRoy G, Orphanides G, Lane WS, Reinberg D. Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science. 1998;282:1900-1904.PubMedCrossRefGoogle Scholar
  125. 125.
    Shamay M, Barak O, Doitsh G, Ben-Dor I, Shaul Y. Hepatitis B virus pX interacts with HBXAP, a PHD finger protein to coactivate transcription. J Biol Chem. 2002;277:9982-9988.PubMedCrossRefGoogle Scholar
  126. 126.
    Davidson B, Trope’ CG, Wang TL, Shih IeM. Expression of the chromatin remodeling factor Rsf-1 in effusions is a novel predictor of poor survival in ovarian carcinoma. Gynecol Oncol. 2006;103:814-819.PubMedCrossRefGoogle Scholar
  127. 127.
    Davidson B, Wang TL, Shih IeM, Berner A. Expression of the chromatin remodeling factor Rsf-1 in down-regulated in breast carcinoma effusions. Hum Pathol. 2008;39:616-622.PubMedCrossRefGoogle Scholar
  128. 128.
    Dupont VN, Gentien D, Oberkampf M, De Rycke Y, Blin N. A gene expression signature associated with metastatic cells in effusions of breast carcinoma patients. Int J Cancer. 2007;121:1036-1046.PubMedCrossRefGoogle Scholar
  129. 129.
    Grimshaw MJ, Cooper L, Papazisis K, et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res. 2008;10:R52.PubMedCrossRefGoogle Scholar
  130. 130.
    Deng T, Liu JC, Pritchard KI, Eisen A, Zacksenhaus E. Preferential killing of breast tumor initiating cells by N, N-diethyl-2-[4-(phenylmethyl)phenoxy]ethanamine/tesmilifene. Clin Cancer Res. 2009;15:119-130.PubMedCrossRefGoogle Scholar
  131. 131.
    Yuan Y, Leszczynska M, Konstantinovsky S, Trope’ CG, Reich R, Davidson B. Netrin 4 is upregulated in breast carcinoma effusions compared to corresponding solid tumors. Diagn Cytopathol. August 20, 2010; [Epub ahead of print].Google Scholar
  132. 132.
    Davidson B, Tuft Stavnes H, Holth A, Chen X, Yang Y, Shih IeM, Wang TL. Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from breast carcinoma in effusions. J Cell Mol Med. January 30, 2010; [Epub ahead of print].Google Scholar
  133. 133.
    Davidson B, Stavnes HT, Nesland JM, Wohlschlaeger J, Yang Y, Shih IeM, Wang TL. Gene expression signatures differentiate adenocarcinoma of lung and breast origin in effusions. In press, Hum Pathol. Google Scholar
  134. 134.
    Kleinberg L, Flørenes VA, Nesland JM, Davidson B. Survivin, a member of the inhibitors of apoptosis (IAP) family, is down-regulated in breast carcinoma effusions. Am J Clin Pathol. 2007;128:389-397.PubMedCrossRefGoogle Scholar
  135. 135.
    Witthauer J, Schlereth B, Brischwein K, et al. Lysis of cancer cells by autologous T cells in breast cancer pleural effusates treated with anti-EpCAM BiTE antibody MT110. Breast Cancer Res Treat. 2009;117:471-481.PubMedCrossRefGoogle Scholar
  136. 136.
    Sebastian M, Kiewe P, Schuette W, et al. Treatment of malignant pleural effusion with the trifunctional antibody catumaxomab (Removab) (anti-EpCAM x Anti-CD3): results of a phase 1/2 study. J Immunother. 2009;32:195-202.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, The Medical FacultyUniversity of OsloOsloNorway
  2. 2.IPATIMUP and Medical FacultyPorto UniversityPortoPortugal

Personalised recommendations