Methods for Power Flow Analysis

  • Marko Čepin


The methods for power flow analysis can be divided to deterministic and probabilistic methods. The deterministic methods, such as Newton?Raphson method, Gauss?Seidel method, fast decoupled load flow method, and direct current load flow method, use specific values of power generations and load demands of a selected network configuration to calculate system states and power flows. The probabilistic methods require inputs with probability density function to obtain system states and power flows in terms of probability density function, so that the system uncertainties can be included and reflected in the results. The methods are presented and the related equations and systems of equations are explained. The focus is placed to the Newton?Raphson method and to Gauss?Seidel method. The iterative procedures are explained. The graphical representation of the procedure steps is given.


Power System Reactive Power Power Flow Incidence Matrix Load Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Grainger JJ, Stevenson WD (1994) Power system analysis. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Raji?i? D, Taleski R (1996) Methods for analysis of power systems (in Macedonian). Faculty of Electrical Engineering, SkopjeGoogle Scholar
  3. 3.
    Tinney WF, Hart CE (1967) Power flow solution by Newton’s method. IEEE Trans Power App Syst 86:1449?1460CrossRefGoogle Scholar
  4. 4.
    Stott B (1971) Effective starting process for Newton?Raphson load flow. Proc Inst Electr Eng 118:983?987CrossRefGoogle Scholar
  5. 5.
    Treece JA (1969) Bootstrap Gauss?Seidel load flow. Proc Inst Electr Eng 116(5):866?870MathSciNetCrossRefGoogle Scholar
  6. 6.
    Volkanovski A (2008) Impact of offsite power system reliability on nuclear power plant safety. PhD thesis, University of LjubljanaGoogle Scholar
  7. 7.
    Deckmann S, Pizzolante AC, Monticelli AJ et al (1999) Numerical testing of power system load flow equivalents. IEEE Trans Power App Syst 6:2292?2300Google Scholar
  8. 8.
    Deckmann S, Pizzolante AC, Monticelli AJ et al (1999) Studies on power system load flow equivalents. IEEE Trans Power App Syst 6:2301?2310Google Scholar
  9. 9.
    Stott B (1974) Review of Load-Flow Calculation Methods, Proc Inst Electr Eng 62(7)Google Scholar
  10. 10.
    Stott B (1971) Effective starting process for Newton-Raphson load flows. Proc Inst Electr Eng 118(8):983?987CrossRefGoogle Scholar
  11. 11.
    Mori H, Tanaka H, Kanno J (1996) A preconditioned fast decoupled power flow method for contingency screening. IEEE Trans Power Syst 11(1):357?363CrossRefGoogle Scholar
  12. 12.
    Alves AB, Asada EN, Monticelli A (1999) Critical evaluation of direct and iterative methods for solving ax=b systems in power flow calculations and contingency analysis. IEEE Trans Power Syst 12(4):702?708CrossRefGoogle Scholar
  13. 13.
    Wood AJ, Wollenberg BF (1996) Power Generation, Operation and Control. Wiley.Google Scholar
  14. 14.
    Powell L (2004) Power System Load Flow Analysis, McGraw-Hill Professional SeriesGoogle Scholar
  15. 15.
    Glimn AF, Stagg GW (1957) Automatic Calculation of Load Flows, AIEE Summer General Meeting, pp 24?28Google Scholar
  16. 16.
    Stott B, Jardim J, Alsaç O (2009) DC Power Flow Revisited. IEEE Trans Power Syst 24(3)Google Scholar
  17. 17.
    Srinivas MS (2000) Distribution load flows: a brief review, Power Engineering Society Winter Meeting, IEEE, pp 942?945Google Scholar
  18. 18.
    van Amerongen RAM (1989) A General-Purpose Version of the Fast Decoupled Load Flow. IEEE Trans Power Syst 4(2):760?770CrossRefGoogle Scholar
  19. 19.
    Stott B, Alsac O (1974) Fast Decoupled Load Flow. IEEE Trans Power App Syst 93(3):859?869CrossRefGoogle Scholar
  20. 20.
    Peterson NM, Tinney WF, Bree DW (1972) Iterative Linear AC Power Flow Solution for Fast Approximate Outage Studies. IEEE Trans Power App Syst 91:2048?2053CrossRefGoogle Scholar
  21. 21.
    Tinney WF, Peterson NM (1971) Steady State Security Monitoring, Proc Symposium on Real Time Control of Electric Power Systems, Brown, Boveri & Comp Ltd, BadenGoogle Scholar
  22. 22.
    Wu FF (1977) Theoretical Study of the Convergence of the Fast Decoupled Loadflow. IEEE Trans Power App Syst 96:268?275CrossRefGoogle Scholar
  23. 23.
    Haley PH, Ayres M (1985) Super Decoupled Loadflow with Distributed Slack Bus. IEEE Trans Power App Syst 104:104?113CrossRefGoogle Scholar
  24. 24.
    Raji?i? D, Bose A (1987) A Modification to the Fast Decoupled Power Flow for Networks with high R/X ratios, Proceedings of PICA Conference, pp 360?363Google Scholar
  25. 25.
    Raji?i? D, Bose A (1988) A modification to the Fast Decoupled Power Flow for Networks with high R/X ratios. IEEE Trans Power Syst 3(2):743?746CrossRefGoogle Scholar
  26. 26.
    Borkowska B (1974) Probabilistic load flow. IEEE Trans Power App Syst 93(3):752?755CrossRefGoogle Scholar
  27. 27.
    Allan RN, Borkowska B, Grigg CH (1974) Probabilistic Analysis of Power Flows. Proc Inst Electr Eng 121(12):1551?1556CrossRefGoogle Scholar
  28. 28.
    Allan RN, Leite da Silva AM, Burchett RC (1981) Evaluation methods and accuracy in probabilistic load flow solutions. IEEE Trans Power App Syst 100(5):2539?2546CrossRefGoogle Scholar
  29. 29.
    Leite da Silva AM, Ribeiro SMP, Arienti VL et al (1990) Probabilistic load flow techniques applied to power system expansion planning. IEEE Trans Power Syst 5(4):1047?1053CrossRefGoogle Scholar
  30. 30.
    Jorgensen P, Christensen JS, Tande JO (1998) Probabilistic load flow calculation using Monte Carlo techniques for distribution network with wind turbines. In: Proceedings of the 8th international conference on harmonics and quality of power 2, pp 1146?1151Google Scholar
  31. 31.
    Allan RN, Grigg CH, Al-Shakarchi MRG (1976) Numerical techniques in probabilistic load flow problems. Int J Num Methods Eng 10:853?860CrossRefMATHGoogle Scholar
  32. 32.
    Leite da Silva AM, Arienti VL (1990) Probabilistic load flow by a multilinear simulation algorithm. Proc Inst Electr Eng Part C 137(4):276?282Google Scholar
  33. 33.
    Su CL (2005) Probabilistic load-flow computation using point estimate method. IEEE Trans Power Syst 20(4):1843?1851CrossRefGoogle Scholar
  34. 34.
    A?kovski R (1989) Contribution on methods for planning and development of power systems using Monte Carlo simulation. PhD thesis, Faculty of Electrical Engineering, SkopjeGoogle Scholar
  35. 35.
    Todorovski M (1995) Approximate calculation of power flows thought high voltage network. Thesis, Faculty of Electrical Engineering, SkopjeGoogle Scholar
  36. 36.
    Zhu J (2009) Optimization of power system operation. Wiley, Piscataway, NJCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited  2011

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations