Skip to main content
  • 1253 Accesses

Abstract

Functional differential equations arise in the modeling of hereditary systems such as ecological and biological systems, chemical and mechanical systems and many-many other. The long-term behavior and stability of such systems is an important area for investigation. For example, will a population decline to dangerously low levels? Could a small change in the environmental conditions have drastic consequences on the long-term survival of the population? There is a growing body of works devoted to such type of investigations. Analytical solutions of functional differential equations are generally unavailable and a lot of different numerical methods are adopted for obtaining approximate solutions. A natural question to ask is “do the numerical solutions preserve the stability properties of the exact solution?” Thus, to use numerical investigation of functional differential equations it is very important to know if the considered difference analogue of the original differential equation has the reliability to preserve some general properties of this equation, in particular, property of stability. In this chapter the capability of difference analogues of differential equations to save a property of stability of solutions of considered differential equations is studied. In particular, sufficient conditions for the step of discretization, at which stability of difference analogue solution is saved, are obtained for some known mathematical models, such that as the mathematical model of controlled inverted pendulum, Nicholson blowflies equation, predator-prey model, for difference analogue of an integro-differential equation of convolution type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acheson DJ (1993) A pendulum theorem. Proc R Soc Lond Ser A, Math Phys Sci 443(1917):239–245

    Article  MATH  Google Scholar 

  2. Acheson DJ, Mullin T (1993) Upside-down pendulums. Nature 366(6452):215–216

    Article  Google Scholar 

  3. Bakke VL, Jackiewicz Z (1986) Boundedness of solutions of difference equations and applications to numerical solutions of Volterra integral equations of the second kind. J Math Anal Appl 115:592–605

    Article  MathSciNet  MATH  Google Scholar 

  4. Bandyopadhyay M, Chattopadhyay J (2005) Ratio dependent predator-prey model: effect of environmental fluctuation and stability. Nonlinearity 18:913–936

    Article  MathSciNet  MATH  Google Scholar 

  5. Beretta E, Kuang Y (1998) Global analysis in some delayed ratio-dependent predator-prey systems. Nonlinear Anal 32(4):381–408

    Article  MathSciNet  MATH  Google Scholar 

  6. Beretta E, Takeuchi Y (1994) Qualitative properties of chemostat equations with time delays: boundedness local and global asymptotic stability. Differ Equ Dyn Syst 2(1):19–40

    MathSciNet  MATH  Google Scholar 

  7. Beretta E, Takeuchi Y (1994) Qualitative properties of chemostat equations with time delays II. Differ Equ Dyn Syst 2(4):263–288

    MathSciNet  MATH  Google Scholar 

  8. Beretta E, Takeuchi Y (1995) Global stability of an SIR epidemic model with time delays. J Math Biol 33:250–260

    MathSciNet  MATH  Google Scholar 

  9. Beretta E, Kolmanovskii V, Shaikhet L (1998) Stability of epidemic model with time delays influenced by stochastic perturbations. Math Comput Simul 45(3–4):269–277 (Special Issue “Delay Systems”)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blackburn JA, Smith HJT, Gronbech-Jensen N (1992) Stability and Hopf bifurcations in an inverted pendulum. Am J Phys 60(10):903–908

    Article  MathSciNet  MATH  Google Scholar 

  11. Borne P, Kolmanovskii V, Shaikhet L (1999) Steady-state solutions of nonlinear model of inverted pendulum. Theory Stoch Process 5(21)(3–4):203–209. Proceedings of the third Ukrainian–Scandinavian conference in probability theory and mathematical statistics, 8–12 June 1999, Kyiv, Ukraine

    MathSciNet  Google Scholar 

  12. Borne P, Kolmanovskii V, Shaikhet L (2000) Stabilization of inverted pendulum by control with delay. Dyn Syst Appl 9(4):501–514

    MathSciNet  MATH  Google Scholar 

  13. Bradul N, Shaikhet L (2007) Stability of the positive point of equilibrium of Nicholson’s blowflies equation with stochastic perturbations: numerical analysis. Discrete Dyn Nat Soc 2007:92959. 25 pages, doi:10.1155/2007/92959

    Article  MathSciNet  Google Scholar 

  14. Braverman E, Kinzebulatov D (2006) Nicholson’s blowflies equation with a distributed delay. Can Appl Math Q 14(2):107–128

    MathSciNet  MATH  Google Scholar 

  15. Brunner H, Lambert JD (1974) Stability of numerical methods for Volterra integro-differential equations. Computing (Arch Elektron Rechnen) 12:75–89

    MathSciNet  MATH  Google Scholar 

  16. Brunner H, Van der Houwen PJ (1986) The numerical solution of Volterra equations. CWI monographs, vol 3. North Holland, Amsterdam

    MATH  Google Scholar 

  17. Busenberg S, Cooke KL (1980) The effect of integral conditions in certain equations modelling epidemics and population growth. J Math Biol 10(1):1332

    MathSciNet  Google Scholar 

  18. Bush AW, Cook AE (1976) The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater. J Theor Biol 63:385–395

    Article  Google Scholar 

  19. Cai L, Li X, Song X, Yu J (2007) Permanence and stability of an age-structured predator–prey system with delays. Discrete Dyn Nat Soc 2007:54861. 15 pages

    MathSciNet  Google Scholar 

  20. Carletti M (2002) On the stability properties of a stochastic model for phage–bacteria interaction in open marine environment. Math Biosci 175:117–131

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen F (2005) Periodicity in a ratio-dependent predator–prey system with stage structure for predator. J Appl Math 2:153–169

    Article  Google Scholar 

  22. Colliugs JB (1997) The effects of the functional response on the bifurcation behavior of a mite predator–prey interaction model. J Math Biol 36:149–168

    Article  MathSciNet  Google Scholar 

  23. Ding X, Jiang J (2008) Positive periodic solutions in delayed Gause-type predator–prey systems. J Math Anal Appl 339(2):1220–1230. doi:10.1016/j.jmaa.2007.07.079

    Article  MathSciNet  MATH  Google Scholar 

  24. Ding X, Li W (2006) Stability and bifurcation of numerical discretization Nicholson blow-flies equation with delay. Discrete Dyn Nat Soc 2006:1–12. Article ID 19413

    MathSciNet  Google Scholar 

  25. Edwards JT, Ford NJ, Roberts JA, Shaikhet LE (2000) Stability of a discrete nonlinear integro-differen-tial equation of convolution type. Stab Control: Theory Appl 3(1):24–37

    MathSciNet  Google Scholar 

  26. Edwards JT, Ford NJ, Roberts JA (2002) The numerical simulation of the qualitative behavior of Volterra integro-differential equations. In: Levesley J, Anderson IJ, Mason JC (eds) Proceedings of algorithms for approximation IV. University of Huddersfield, pp 86–93

    Google Scholar 

  27. El-Owaidy HM, Ammar A (1988) Stable oscillations in a predator–prey model with time lag. J Math Anal Appl 130:191–199

    Article  MathSciNet  MATH  Google Scholar 

  28. Elaydi SN (1993) Stability of Volterra difference equations of convolution type. In: Shan-Tao L (ed) Proceedings of the special program at Nankai Institute of Mathematics. World Scientific, Singapore, pp 66–73

    Google Scholar 

  29. Elaydi SN (1994) Periodicity and stability of linear Volterra difference systems. J Differ Equ Appl 181:483–492

    MathSciNet  MATH  Google Scholar 

  30. Elaydi SN (1995) Global stability of nonlinear Volterra difference systems. Differ Equ Dyn Syst 2:237–345

    MathSciNet  Google Scholar 

  31. Elaydi SN, Kocic V (1994) Global stability of a nonlinear Volterra difference equations. Differ Equ Dyn Syst 2:337–345

    MathSciNet  MATH  Google Scholar 

  32. Elaydi SN, Murakami S (1996) Asymptotic stability versus exponential stability in linear Volterra difference equations of convolution type. J Differ Equ Appl 2:401–410

    Article  MathSciNet  MATH  Google Scholar 

  33. Fan M, Wang Q, Zhou X (2003) Dynamics of a nonautonomous ratio-dependent predator–prey system. Proc R Soc Edinb A 133:97–118

    Article  MATH  Google Scholar 

  34. Fan YH, Li WT, Wang LL (2004) Periodic solutions of delayed ratio-dependent predator–prey model with monotonic and no-monotonic functional response. Nonlinear Anal RWA 5(2):247–263

    Article  MathSciNet  MATH  Google Scholar 

  35. Farkas M (1984) Stable oscillations in a predator–prey model with time lag. J Math Anal Appl 102:175–188

    Article  MathSciNet  MATH  Google Scholar 

  36. Feng QX, Yan JR (2002) Global attractivity and oscillation in a kind of Nicholson’s blowflies. J Biomath 17(1):21–26

    MathSciNet  Google Scholar 

  37. Ford NJ, Baker CTH (1996) Qualitative behavior and stability of solutions of discretised nonlinear Volterra integral equations of convolution type. J Comput Appl Math 66:213–225

    Article  MathSciNet  MATH  Google Scholar 

  38. Ford NJ, Baker CTH, Roberts JA (1997) Preserving qualitative behaviour and transience in numerical solutions of Volterra integro-differential equations of convolution type: Lyapunov functional approaches. In: Proceeding of 15th World congress on scientific computation, modelling and applied mathematics (IMACS97), Berlin, August 1997. Numerical mathematics, vol 2, pp 445–450

    Google Scholar 

  39. Ford NJ, Edwards JT, Roberts JA, Shaikhet LE (1997) Stability of a difference analogue for a nonlinear integro differential equation of convolution type. Numerical Analysis Report, University of Manchester 312

    Google Scholar 

  40. Ford NJ, Baker CTH, Roberts JA (1998) Nonlinear Volterra integro-differential equations—stability and numerical stability of θ-methods, MCCM numerical analysis report. J Integral Equ Appl 10:397–416

    Article  MathSciNet  MATH  Google Scholar 

  41. Garvie M (2007) Finite-difference schemes for reaction–diffusion equations modelling predator–prey interactions in MATLAB. Bull Math Biol 69(3):931–956

    Article  MathSciNet  MATH  Google Scholar 

  42. Ge Z, He Y (2008) Diffusion effect and stability analysis of a predator–prey system described by a delayed reaction–diffusion equations. J Math Anal Appl 339(2):1432–1450. doi:10.1016/j.jmaa.2007.07.060

    Article  MathSciNet  MATH  Google Scholar 

  43. Golec J, Sathananthan S (1999) Sample path approximation for stochastic integro-differential equations. Stoch Anal Appl 17(4):579–588

    Article  MathSciNet  MATH  Google Scholar 

  44. Golec J, Sathananthan S (2001) Strong approximations of stochastic integro-differential equations. Dyn Contin Discrete Impuls Syst 8(1):139–151

    MathSciNet  MATH  Google Scholar 

  45. Gopalsamy K (1992) Stability and oscillations in delay differential equations of population dynamics. Mathematics and its applications, vol 74. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  46. Gourley SA, Kuang Y (2004) A stage structured predator–prey model and its dependence on maturation delay and death rate. J Math Biol 4:188–200

    MathSciNet  Google Scholar 

  47. Gurney WSC, Blythe SP, Nisbet RM (1980) Nicholson’s blowflies revisited. Nature 287:17–21

    Article  Google Scholar 

  48. Gyori I, Ladas G (1991) Oscillation theory of delay differential equations with applications. Oxford mathematical monographs. Oxford University Press, New York

    Google Scholar 

  49. Gyori I, Trofimchuck SI (2002) On the existence of rapidly oscillatory solutions in the Nicholson’s blowflies equation. Nonlinear Anal 48:1033–1042

    Article  MathSciNet  Google Scholar 

  50. Hastings A (1983) Age dependent predation is not a simple process. I. Continuous time models. Theor Popul Biol 23:347–362

    Article  MathSciNet  MATH  Google Scholar 

  51. Hastings A (1984) Delays in recruitment at different trophic levels effects on stability. J Math Biol 21:35–44

    MathSciNet  MATH  Google Scholar 

  52. Higham DJ, Mao XR, Stuart AM (2002) Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J Numer Anal 40(3):1041–1063

    Article  MathSciNet  MATH  Google Scholar 

  53. Higham DJ, Mao XR, Stuart AM (2003) Exponential mean-square stability of numerical solutions to stochastic differential equations. LMS J Comput Math 6:297–313

    MathSciNet  MATH  Google Scholar 

  54. Hsu SB, Huang TW (1995) Global stability for a class of predator–prey systems. SIAM J Appl Math 55(3):763–783

    Article  MathSciNet  MATH  Google Scholar 

  55. Huo HF, Li WT (2004) Periodic solution of a delayed predator–prey system with Michaelis–Menten type functional response. J Comput Appl Math 166:453–463

    Article  MathSciNet  MATH  Google Scholar 

  56. Imkeller P, Lederer Ch (2001) Some formulas for Lyapunov exponents and rotation numbers in two dimensions and the stability of the harmonic oscillator and the inverted pendulum. Dyn Syst 16:29–61

    Article  MathSciNet  MATH  Google Scholar 

  57. Kapitza PL (1965) Dynamical stability of a pendulum when its point of suspension vibrates, and pendulum with a vibrating suspension. In: ter Haar D (ed) Collected papers of P.L. Kapitza, vol 2. Pergamon Press, London, pp 714–737

    Google Scholar 

  58. Kloeden PE, Platen E (2000) Numerical solution of stochastic differential equations, vol 23. Springer, Berlin

    Google Scholar 

  59. Kocic VL, Ladas G (1990) Oscillation and global attractivity in discrete model of Nicholson’s blowflies. Appl Anal 38:21–31

    Article  MathSciNet  MATH  Google Scholar 

  60. Kolmanovskii VB, Shaikhet LE (1993) Method for constructing Lyapunov functionals for stochastic systems with aftereffect. Differ Uravn (Minsk) 29(11):1909–1920, (in Russian). Translated in Differential Equations 29(11):1657–1666 (1993)

    MathSciNet  Google Scholar 

  61. Kolmanovskii VB, Shaikhet LE (1994) New results in stability theory for stochastic functional differential equations (SFDEs) and their applications. In: Proceedings of dynamic systems and applications, Atlanta, GA, 1993, vol 1, 167–171. Dynamic, Atlanta

    Google Scholar 

  62. Kolmanovskii VB, Shaikhet LE (1995) Method for constructing Lyapunov functionals for stochastic differential equations of neutral type. Differ Uravn (Minsk) 31(11):1851–1857 (in Russian). Translated in Differential Equations 31(11):1819–1825 (1995)

    MathSciNet  Google Scholar 

  63. Kolmanovskii VB, Shaikhet LE (1997) Matrix Riccati equations and stability of stochastic linear systems with nonincreasing delays. Funct Differ Equ 4(3–4):279–293

    MathSciNet  MATH  Google Scholar 

  64. Kolmanovskii VB, Shaikhet LE (1998) Riccati equations and stability of stochastic linear systems with distributed delay. In: Bajic V (ed) Advances in systems, signals, control and computers. IAAMSAD and SA branch of the Academy of Nonlinear Sciences, Durban, pp 97–100. ISBN:0-620-23136-X

    Google Scholar 

  65. Kolmanovskii VB, Shaikhet LE (2002) Construction of Lyapunov functionals for stochastic hereditary systems: a survey of some recent results. Math Comput Model 36(6):691–716

    Article  MathSciNet  MATH  Google Scholar 

  66. Kolmanovskii VB, Kosareva NP, Shaikhet LE (1999) A method for constructing Lyapunov functionals. Differ Uravn (Minsk) 35(11):1553–1565. Translated in Differential Equations 35(11):1573–1586 (1999) (in Russian)

    MathSciNet  Google Scholar 

  67. Kuang Y (1993) Delay differential equations with application in population dynamics. Academic Press, New York

    Google Scholar 

  68. Kulenovic MRS, Ladas G (1987) Linearized oscillations in population dynamics. Bull Math Biol 49(5):615–627

    MathSciNet  MATH  Google Scholar 

  69. Kulenovic MRS, Nurkanovic M (2006) Asymptotic behavior of a competitive system of linear fractional difference equations. Adv Differ Equ 2006(5):19756. 13 pages, doi:10.1155/ADE/2006/19756

    MathSciNet  Google Scholar 

  70. Kulenovic MRS, Ladas G, Sficas YG (1989) Global attractivity in population dynamics. Comput Math Appl 18(10–11):925–928

    Article  MathSciNet  MATH  Google Scholar 

  71. Kulenovic MRS, Ladas G, Sficas YG (1992) Global attractivity in Nicholson’s blowflies. Appl Anal 43:109–124

    Article  MathSciNet  MATH  Google Scholar 

  72. Lakshmikantham V, Trigiante D (1988) Theory of difference equations: numerical methods and applications. Academic Press, New York

    MATH  Google Scholar 

  73. Levi M (1988) Stability of the inverted pendulum—a topological explanation. SIAM Rev 30(4):639–644

    Article  MathSciNet  MATH  Google Scholar 

  74. Levi M, Weckesser W (1995) Stabilization of the inverted linearized pendulum by high frequency vibrations. SIAM Rev 37(2):219–223

    Article  MathSciNet  MATH  Google Scholar 

  75. Levin JJ, Nohel JA (1963) Note on a nonlinear Volterra equation. Proc Am Math Soc 14(6):924–929

    Article  MathSciNet  MATH  Google Scholar 

  76. Levin JJ, Nohel JA (1965) Perturbations of a non-linear Volterra equation. Mich Math J 12:431–444

    Article  MathSciNet  MATH  Google Scholar 

  77. Li J (1996) Global attractivity in a discrete model of Nicholson’s blowflies. Ann Differ Equ 12(2):173–182

    MATH  Google Scholar 

  78. Li J (1996) Global attractivity in Nicholson’s blowflies. Appl Math, Ser 11(4):425–434

    MATH  Google Scholar 

  79. Li X (2005) Global behavior for a fourth-order rational difference equation. J Math Anal Appl 312(2):555–563

    Article  MathSciNet  MATH  Google Scholar 

  80. Li YK, Kuang Y (2001) Periodic solutions of periodic delay Lotka–Volterra equations and systems. J Math Anal Appl 255:260–280

    Article  MathSciNet  MATH  Google Scholar 

  81. Li M, Yan J (2000) Oscillation and global attractivity of generalized Nicholson’s blowfly model. In: Differential equations and computational simulations, Chengdu, 1999. World Scientific, Singapore, pp 196–201

    Google Scholar 

  82. Liao X, Zhou Sh, Ouyang Z (2007) On a stoichiometric two predators on one prey discrete model. Appl Math Lett 20:272–278

    Article  MathSciNet  MATH  Google Scholar 

  83. Liz E (2007) A sharp global stability result for a discrete population model. J Math Anal Appl 330:740–743

    Article  MathSciNet  MATH  Google Scholar 

  84. Lubich Ch (1983) On the stability of linear multistep methods for Volterra convolution equations. IMA J Numer Anal 3:439–465

    Article  MathSciNet  MATH  Google Scholar 

  85. Luo J, Shaikhet L (2007) Stability in probability of nonlinear stochastic Volterra difference equations with continuous variable. Stoch Anal Appl 25(6):1151–1165. doi:10.1080/07362990701567256

    Article  MathSciNet  MATH  Google Scholar 

  86. Mao X, Shaikhet L (2000) Delay-dependent stability criteria for stochastic differential delay equations with Markovian switching. Stab Control: Theory Appl 3(2):88–102

    MathSciNet  Google Scholar 

  87. Marotto F (1982) The dynamics of a discrete population model with threshold. Math Biosci 58:123–128

    Article  MathSciNet  MATH  Google Scholar 

  88. Maruyama G (1955) Continuous Markov processes and stochastic equations. Rend Circ Mat Palermo 4:48–90

    Article  MathSciNet  MATH  Google Scholar 

  89. Mata GJ, Pestana E (2004) Effective Hamiltonian and dynamic stability of the inverted pendulum. Eur J Phys 25:717–721

    Article  MATH  Google Scholar 

  90. Milstein GN (1988) The numerical integration of stochastic differential equations. Urals University Press, Sverdlovsk (in Russian)

    Google Scholar 

  91. Mitchell R (1972) Stability of the inverted pendulum subjected to almost periodic and stochastic base motion—an application of the method of averaging. Int J Non-Linear Mech 7:101–123

    Article  MATH  Google Scholar 

  92. Muroya Y (2007) Persistence global stability in discrete models of Lotka–Volterra type. J Math Anal Appl 330:24–33

    Article  MathSciNet  MATH  Google Scholar 

  93. Nicholson AJ (1954) An outline of the dynamics of animal populations. Aust J Zool 2:9–65

    Article  Google Scholar 

  94. Ovseyevich AI (2006) The stability of an inverted pendulum when there are rapid random oscillations of the suspension point. Int J Appl Math Mech 70:762–768

    Article  Google Scholar 

  95. Paternoster B, Shaikhet L (1999) Stability in probability of nonlinear stochastic difference equations. Stab Control: Theory Appl 2(1–2):25–39

    MathSciNet  Google Scholar 

  96. Paternoster B, Shaikhet L (2000) About stability of nonlinear stochastic difference equations. Appl Math Lett 13(5):27–32

    Article  MathSciNet  MATH  Google Scholar 

  97. Paternoster B, Shaikhet L (2008) Stability of equilibrium points of fractional difference equations with stochastic perturbations. Adv Differ Equ 2008:718408. 21 pages, doi:10.1155/2008/718408

    Article  MathSciNet  Google Scholar 

  98. Peschel M, Mende W (1986) The predator–prey model: do we live in a Volterra world? Akademie Verlag, Berlin

    Google Scholar 

  99. Resnick SI (1992) Adventures in stochastic processes. Birkhauser, Boston

    MATH  Google Scholar 

  100. Rodkina A, Schurz H (2005) Almost sure asymptotic stability of drift-implicit theta-methods for bilinear ordinary stochastic differential equations in R 1. J Comput Appl Math 180:13–31

    Article  MathSciNet  MATH  Google Scholar 

  101. Ruan S, Xiao D (2001) Global analysis in a predator–prey system with nonmonotonic functional response. SIAM J Appl Math 61:1445–1472

    Article  MathSciNet  MATH  Google Scholar 

  102. Saito Y, Mitsui T (1996) Stability analysis of numerical schemes for stochastic differential equations. SIAM J Numer Anal 33(6):2254–2267

    Article  MathSciNet  MATH  Google Scholar 

  103. Sanz-Serna JM (2008) Stabilizing with a hammer. Stoch Dyn 8:47–57

    Article  MathSciNet  MATH  Google Scholar 

  104. Schurz H (1996) Asymptotical mean square stability of an equilibrium point of some linear numerical solutions with multiplicative noise. Stoch Anal Appl 14:313–354

    Article  MathSciNet  MATH  Google Scholar 

  105. Schurz H (1997) Stability, stationarity, and boundedness of some implicit numerical methods for stochastic differential equations and applications. Logos, Berlin

    MATH  Google Scholar 

  106. Schurz H (1998) Partial and linear-implicit numerical methods for nonlinear SDEs. Unpublished Manuscript, Universidad de Los Andes, Bogota

    Google Scholar 

  107. Schurz H (2002) Numerical analysis of SDE without tears. In: Kannan D, Lakshmikantham V (eds) Handbook of stochastic analysis and applications, pp 237–359. Marcel Dekker, Basel

    Google Scholar 

  108. Schurz H (2005) Stability of numerical methods for ordinary SDEs along Lyapunov-type and other functions with variable step sizes. Electron Trans Numer Anal 20:27–49

    MathSciNet  MATH  Google Scholar 

  109. Schurz H (2006) An axiomatic approach to numerical approximations of stochastic processes. Int J Numer Anal Model 3:459–480

    MathSciNet  MATH  Google Scholar 

  110. Schurz H (2007) Applications of numerical methods and its analysis for systems of stochastic differential equations. Bull Kerala Math Assoc 4:1–85

    MathSciNet  Google Scholar 

  111. Shaikhet L (1995) Stability in probability of nonlinear stochastic hereditary systems. Dyn Syst Appl 4(2):199–204

    MathSciNet  MATH  Google Scholar 

  112. Shaikhet L (1995) Stability in probability of nonlinear stochastic systems with delay. Mat Zametki 57(1):142–146 (in Russian). Translated in Mathematical Notes, 57(1):103–106 (1995)

    MathSciNet  Google Scholar 

  113. Shaikhet L (1996) Stability of stochastic hereditary systems with Markov switching. Theory Stoch Process 2(18)(3–4):180–185

    Google Scholar 

  114. Shaikhet L (1996) Modern state and development perspectives of Lyapunov functionals method in the stability theory of stochastic hereditary systems. Theory Stoch Process 2(18)(1–2):248–259

    MathSciNet  Google Scholar 

  115. Shaikhet L (1998) Stability of predator–prey model with aftereffect by stochastic perturbations. Stab Control: Theory Appl 1(1):3–13

    MathSciNet  Google Scholar 

  116. Shaikhet L (2005) Stability of difference analogue of linear mathematical inverted pendulum. Discrete Dyn Nat Soc 2005(3):215–226

    Article  MathSciNet  MATH  Google Scholar 

  117. Shaikhet L (2008) Stability of a positive point of equilibrium of one nonlinear system with aftereffect and stochastic perturbations. Dyn Syst Appl 17:235–253

    MathSciNet  MATH  Google Scholar 

  118. Shaikhet L (2009) Improved condition for stabilization of controlled inverted pendulum under stochastic perturbations. Discrete Contin Dyn Syst 24(4):1335–1343. doi:10.3934/dcds.2009.24.

    Article  MathSciNet  MATH  Google Scholar 

  119. Shaikhet L, Roberts J (2004) Stochastic Volterra differential integral equation: stability and numerical analysis. University of Manchester. MCCM. Numerical Analysis Report 450, 38p

    Google Scholar 

  120. Shaikhet L, Roberts J (2006) Reliability of difference analogues to preserve stability properties of stochastic Volterra integro-differential equations. Adv Differ Equ 2006:73897. 22 pages

    Article  MathSciNet  Google Scholar 

  121. Sharp R, Tsai Y-H, Engquist B (2005) Multiple time scale numerical methods for the inverted pendulum problem. In: Multiscale methods in science and engineering. Lecture notes computing science and engineering, vol 44. Springer, Berlin, pp 241–261

    Chapter  Google Scholar 

  122. So JW-H, Yu JS (1994) Global attractivity and uniformly persistence in Nicholson’s blowflies. Differ Equ Dyn Syst 2:11–18

    MathSciNet  MATH  Google Scholar 

  123. So JW-H, Yu JS (1995) On the stability and uniform persistence of a discrete model of Nicholson’s blowflies. J Math Anal Appl 193(1):233–244

    Article  MathSciNet  MATH  Google Scholar 

  124. Stuart S, Humphries AR (1998) Dynamical systems and numerical analysis. Cambridge monographs on applied and computational mathematics, vol 2. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  125. Volterra V (1931) Lesons sur la theorie mathematique de la lutte pour la vie. Gauthier-Villars, Paris

    Google Scholar 

  126. Volz R (1982) Global asymptotic stability of a periodical solution to an epidemic model. J Math Biol 15:319–338

    Article  MathSciNet  MATH  Google Scholar 

  127. Wang LL, Li WT (2003) Existence and global stability of positive periodic solutions of a predator–prey system with delays. Appl Math Comput 146(1):167–185

    Article  MathSciNet  MATH  Google Scholar 

  128. Wang LL, Li WT (2004) Periodic solutions and stability for a delayed discrete ratio-dependent predator–prey system with Holling-type functional response. Discrete Dyn Nat Soc 2004(2):325–343

    Article  MATH  Google Scholar 

  129. Wang Q, Fan M, Wang K (2003) Dynamics of a class of nonautonomous semi-ratio-dependent predator–prey system with functional responses. J Math Anal Appl 278:443–471

    Article  MathSciNet  MATH  Google Scholar 

  130. Wangersky PJ, Cunningham WJ (1957) Time lag in predator–prey population models. Ecology 38(1):136–139

    Article  Google Scholar 

  131. Wei J, Li MY (2005) Hopf bifurcation analysis in a delayed Nicholson blowflies equation. Nonlinear Anal 60(7):1351–1367

    Article  MathSciNet  MATH  Google Scholar 

  132. Xiao D, Ruan S (2001) Multiple bifurcations in a delayed predator–prey system with nonmonotonic functional response. J Differ Equ 176:494–510

    Article  MathSciNet  MATH  Google Scholar 

  133. Zeng X (2007) Non-constant positive steady states of a predator–prey system with cross-diffusions. J Math Anal Appl 332(2):989–1009

    Article  MathSciNet  MATH  Google Scholar 

  134. Zhang X, Chen L, Neumann UA (2000) The stage-structured predator–prey model and optimal harvesting policy. Math Biosci 168:201–210

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Shaikhet .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Shaikhet, L. (2011). Difference Equations as Difference Analogues of Differential Equations. In: Lyapunov Functionals and Stability of Stochastic Difference Equations. Springer, London. https://doi.org/10.1007/978-0-85729-685-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-685-6_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-684-9

  • Online ISBN: 978-0-85729-685-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics