Advertisement

Behaviour in Context

  • Shaogang Gong
  • Tao Xiang

Abstract

Interpreting behaviour from object action and activity is inherently subject to the context of a visual environment within which action and activity take place. Context embodies not only the spatial and temporal setting, but also the intended functionality of object action and activity. For instance, one recognises, often by inference, whether a hand-held object is a mobile phone or calculator by its relative position to other body parts such as closeness to the ears, even if they are visually similar and partially occluded by the hand. Similarly for behaviour recognition, the arrival of a bus in busy traffic is more likely to be inferred by looking at the passengers’ behaviour at a bus stop. Computer vision research on visual analysis of behaviour embraces a wide range of studies on developing computational models and systems for interpreting behaviour in different contexts. In this chapter, we introduce a range of established topics and emerging trends in visual analysis of behaviour from understanding facial expression, body gesture, action and intent, to the analysis of group activity, crowd and distributed behaviour, and gaining holistic awareness.

Keywords

Facial Expression Action Recognition Gesture Recognition Camera View Facial Expression Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aghajanian, J., Warrell, J., Prince, S., Li, P., Rohn, J., Baum, B.: Patch-based within-object classification. In: IEEE International Conference on Computer Vision, Kyoto, Japan, October 2009, pp. 1125–1132 (2009) Google Scholar
  2. Alahia, A., Vandergheynsta, P., Bierlaireb, M., Kunt, M.: Cascade of descriptors to detect and track objects across any network of cameras. Comput. Vis. Image Underst. 114(6), 624–640 (2010) Google Scholar
  3. Ali, A., Aggarwal, J.: Segmentation and recognition of continuous human activity. In: IEEE Workshop on Detection and Recognition of Events in Video, Vancouver, Canada, July 2001, pp. 28–35 (2001) Google Scholar
  4. Ali, S., Shah, M.: Floor fields for tracking in high density crowd scenes. In: European Conference on Computer Vision, Marseille, France, October 2008, pp. 1–14 (2008) Google Scholar
  5. Ambady, N., Rosenthal, R.: Thin slices of expressive behaviour as predictors of interpersonal consequences: a meta-analysis. Psychol. Bull. 111(2), 256–274 (1992) Google Scholar
  6. Andriluka, M., Roth, S., Schiele, B.: Pictorial structures revisited: people detection and articulated pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, June 2009, pp. 1014–1021 (2009) Google Scholar
  7. Balomenos, T., Raouzaiou, A., Ioannou, S., Drosopoulos, A., Karpouzis, K., Kollias, S.: Emotion analysis in man-machine interaction systems. In: Machine Learning for Multimodal Interaction, pp. 318–328 (2005) Google Scholar
  8. Bar, M.: Visual objects in context. Nat. Rev., Neurosci. 5, 617–629 (2004) Google Scholar
  9. Bar, M., Aminoff, E.: Cortical analysis of visual context. Neuron 38(2), 347–358 (2003) Google Scholar
  10. Bar, M., Ullman, S.: Spatial context in recognition. Perception 25, 343–352 (1993) Google Scholar
  11. Bartlett, M.S., Littlewort, G., Frank, M., Lainscsek, C., Fasel, I., Movellan, J.: Recognizing facial expression: machine learning and application to spontaneous behavior. In: IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, June 2005, pp. 568–573 (2005) Google Scholar
  12. Bashir, K., Xiang, T., Gong, S.: Gait recognition without subject cooperation. Pattern Recognit. Lett. 31(13), 2052–2060 (2010) Google Scholar
  13. Bassili, J.N.: Emotion recognition: the role of facial movement and the relative importance of upper and lower area of the face. J. Pers. Soc. Psychol. 37(11), 2049–2058 (1979) Google Scholar
  14. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002) Google Scholar
  15. Benfold, B., Reid, I.: Colour invariant head pose classification in low resolution video. In: British Machine Vision Conference, Leeds, UK, September 2008 Google Scholar
  16. Benfold, B., Reid, I.: Guiding visual surveillance by tracking human attention. In: British Machine Vision Conference, London, UK, September 2009 Google Scholar
  17. Biederman, I., Mezzanotte, R.J., Rabinowitz, J.C.: Scene perception: detecting and judging objects undergoing relational violations. Cogn. Psychol. 14, 143–177 (1982) Google Scholar
  18. Black, M., Jepson, A.: Recognising temporal trajectories using the condensation algorithm. In: IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan, pp. 16–21 (1998) Google Scholar
  19. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003) MATHGoogle Scholar
  20. Bobick, A.F., Davis, J.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001) Google Scholar
  21. Bobick, A.F., Wilson, A.: A state-based technique for the summarisation of recognition of gesture. In: IEEE International Conference on Computer Vision, pp. 382–388 (1995) Google Scholar
  22. Bregonzio, M., Gong, S., Xiang, T.: Recognising action as clouds of space-time interest points. In: IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, June 2009, pp. 1948–1955 (2009) Google Scholar
  23. Breitenstein, M.D.: Visual surveillance—dynamic behavior analysis at multiple levels. PhD thesis, ETH Zurich (2009) Google Scholar
  24. Breitenstein, M.D., Sommerlade, E., Leibe, B., Van Gool, L., Reid, I.: Probabilistic parameter selection for learning scene structure from video. In: British Machine Vision Conference, Leeds, UK, September 2008 Google Scholar
  25. Burgoon, J., Adkins, M., Kruse, J., Jensen, M.L., Meservy, T., Twitchell, D.P., Deokar, A., Nunamaker, J.F., Lu, S., Tsechpenakis, G., Metaxas, D.N., Younger, R.E.: An approach for intent identification by building on deception detection. In: 38th Annual Hawaii International Conference on System Sciences, Big Island, Hawaii, USA, January 2005, pp. 21–28 (2005a) Google Scholar
  26. Burgoon, J., Jensen, M.L., Meservy, T., Kruse, J., Nunamaker, J.F.: Augmenting human identification of emotional states in video. In: International Conference on Intelligent Data Analysis, McClean, USA (2005b) Google Scholar
  27. Chang, Y., Hu, C., Turk, M.: Probabilistic expression analysis on manifolds. In: IEEE Conference on Computer Vision and Pattern Recognition, Washington DC, USA, June 2004, pp. 520–527 (2004) Google Scholar
  28. Chen, K., Lai, C., Hung, Y., Chen, C.: An adaptive learning method for target tracking across multiple cameras. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008) Google Scholar
  29. Cohen, I., Sebe, N., Garg, A., Chen, L., Huang, T.S.: Facial expression recognition from video sequences: temporal and static modeling. Comput. Vis. Image Underst. 91, 160–187 (2003) Google Scholar
  30. Cohen, N., Gatusso, J., MacLennan-Brown, K.: CCTV Operational Requirements Manual—Is Your CCTV System Fit for Purpose? Home Office Scientific Development Branch, version 4 (55/06) edition (2006) Google Scholar
  31. Coulson, M.: Attributing emotion to static body postures: recognition accuracy, confusions, and viewpoint dependence. J. Nonverbal Behav. 28(2), 117–139 (2004) MathSciNetGoogle Scholar
  32. Darwin, C.: The Expression of the Emotions in Man and Animals. Murray, London (1872) Google Scholar
  33. Davis, J., Bobick, A.F.: The representation and recognition of action using temporal templates. In: IEEE Conference on Computer Vision and Pattern Recognition, Puerto Rico, June 1997, pp. 928–934 (1997) Google Scholar
  34. Donato, G., Bartlett, M., Hager, J., Ekman, P., Sejnowski, T.: Classifying facial actions. IEEE Trans. Pattern Anal. Mach. Intell. 21(10), 974–989 (1999) Google Scholar
  35. Dornaika, F., Davoine, F.: Simultaneous facial action tracking and expression recognition using a particle filter. In: IEEE International Conference on Computer Vision, Beijing, China, October 2005, pp. 1733–1738 (2005) Google Scholar
  36. Efros, A., Berg, A., Mori, G., Malik, J.: Recognizing action at a distance. In: IEEE International Conference on Computer Vision, Nice, France, pp. 726–733 (2003) Google Scholar
  37. Ekman, P., Friesen, W.V.: Pictures of Facial Affect. Consulting Psychologists Press, Palo Alto (1976) Google Scholar
  38. Ekman, P., Friesen, W.V.: Facial Action Coding System: A Technique for Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978) Google Scholar
  39. Essa, I., Pentland, A.: Coding, analysis, interpretation, and recognition of facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 757–763 (1997) Google Scholar
  40. Everts, I., Sebe, N., Jones, G.A.: Cooperative object tracking with multiple PTZ cameras. In: International Conference on Image Analysis and Processing, September 2007, pp. 323–330 (2007) Google Scholar
  41. Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, June 2010, pp. 2360–2367 (2010) Google Scholar
  42. Fasel, B., Luettin, J.: Automatic facial expression analysis: a survey. Pattern Recognit. 36, 259–275 (2003) MATHGoogle Scholar
  43. Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. Int. J. Comput. Vis. 61(1), 55–79 (2005) Google Scholar
  44. Fernández, C., Gonzàlez, J., Roca, X.: Automatic learning of background semantics in generic surveilled scenes. In: European Conference on Computer Vision, Crete, Greece, October 2010, pp. 678–692 (2010) Google Scholar
  45. Freeman, W.T., Tanaka, K., Ohta, J., Kyuma, K.: Computer vision for computer games. In: IEEE International Conference on Automatic Face and Gesture Recognition, Killington, USA, October 1996, pp. 100–105 (1996) Google Scholar
  46. Gilbert, A., Illingworth, J., Bowden, R.: Scale invariant action recognition using compound features mined from dense spatio-temporal corners. In: European Conference on Computer Vision, pp. 222–233 (2008) Google Scholar
  47. Gong, S., Buxton, H.: Bayesian nets for mapping contextual knowledge to computational constraints in motion segmentation and tracking. In: British Machine Vision Conference, Guildford, UK, September 1993, pp. 229–238 (1993) Google Scholar
  48. Gong, S., McKenna, S., Collins, J.J.: An investigation into face pose distributions. In: IEEE International Conference on Automatic Face and Gesture Recognition, Killington, USA, October 1996, pp. 265–270 (1996) Google Scholar
  49. Gong, S., Walter, M., Psarrou, A.: Recognition of temporal structures: learning prior and propagating observation augmented densities via hidden Markov states. In: IEEE International Conference on Computer Vision, Corfu, Greece, September 1999, pp. 157–162 (1999) Google Scholar
  50. Gong, S., Xiang, T., Hongeng, S.: Learning human pose in crowd. In: Workshop on Multimodal Pervasive Video Analysis, ACM International Conference on Multimedia, Firenze, Italy, October 2010 Google Scholar
  51. Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2247–2253 (2007) Google Scholar
  52. Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: European Conference on Computer Vision, pp. 262–275 (2008) Google Scholar
  53. Gunes, H., Piccardi, M.: A bimodal face and body gesture database for automatic analysis of human nonverbal affective behavior. In: International Conference on Pattern Recognition, pp. 1148–1153 (2006) Google Scholar
  54. Gunes, H., Piccardi, M.: Bi-modal emotion recognition from expressive face and body gestures. J. Netw. Comput. Appl. 30(4), 1334–1345 (2007) Google Scholar
  55. Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2006) Google Scholar
  56. Hoey, J., Little, J.J.: Value directed learning of gestures and facial displays. In: IEEE Conference on Computer Vision and Pattern Recognition, Washington DC, USA, June 2004, pp. 1026–1033 (2004) Google Scholar
  57. Hospedales, T., Gong, S., Xiang, T.: A Markov clustering topic model for mining behaviour in video. In: IEEE International Conference on Computer Vision, Kyoto, Japan, October 2009, pp. 1165–1172 (2009) Google Scholar
  58. Hu, W., Hu, M., Zhou, X., Tan, T., Lou, J., Maybank, S.: Principal axis-based correspondence between multiple cameras for people tracking. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 663–671 (2006) Google Scholar
  59. Hu, Y., Cao, L., Lv, F., Yan, S., Gong, Y., Huang, T.S.: Action detection in complex scenes with spatial and temporal ambiguities. In: IEEE International Conference on Computer Vision, Kyoto, Japan, October 2009, pp. 128–135 (2009) Google Scholar
  60. Javed, O., Rasheed, Z., Shafique, K., Shah, M.: Tracking across multiple cameras with disjoint views. In: IEEE International Conference on Computer Vision, pp. 952–957 (2003) Google Scholar
  61. Javed, O., Shafique, K., Shah, M.: Appearance modeling for tracking in multiple non-overlapping cameras. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 26–33 (2005) Google Scholar
  62. Jia, K., Gong, S.: Multi-resolution patch tensor for facial expression hallucination. In: IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, June 2006, pp. 395–402 (2006) Google Scholar
  63. Jia, K., Gong, S.: Generalised face super-resolution. IEEE Trans. Image Process. 17(6), 873–886 (2008) MathSciNetGoogle Scholar
  64. Jiang, H.: Human pose estimation using consistent max-covering. In: IEEE International Conference on Computer Vision, Kyoto, Japan, October 2009, pp. 1357–1364 (2009) Google Scholar
  65. Kaliouby, R.E., Robinson, P.: Real-time inference of complex mental states from facial expressions and head gestures. In: IEEE Workshop on Real-Time Vision for Human-Computer Interaction, Washington DC, USA, June 2004 Google Scholar
  66. Kapoor, A., Picard, R.W.: Multimodal affect recognition in learning environments. In: ACM International Conference on Multimedia, pp. 677–682 (2005) Google Scholar
  67. Ke, Y., Sukthankar, R., Hebert, M.: Efficient visual event detection using volumetric features. In: IEEE International Conference on Computer Vision, pp. 166–173 (2005) Google Scholar
  68. Ke, Y., Sukthankar, R., Hebert, M.: Event detection in crowded videos. In: IEEE International Conference on Computer Vision, Rio de Janeiro, Brasil, October 2007, pp. 1–8 (2007) Google Scholar
  69. Kim, J., Grauman, K.: Observe locally, infer globally: a space-time MRF for detecting abnormal activities with incremental updates. In: IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, June 2009, pp. 2921–2928 (2009) Google Scholar
  70. Kratz, L., Nishino, K.: Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1446–1453 (2009) Google Scholar
  71. Kruegle, H.: CCTV Surveillance: Video Practices and Technology. Butterworth/Heinemann, Stoneham/Berlin (2006) Google Scholar
  72. Kuettel, D., Breitenstein, M.D., Van Gool, L., Ferrari, V.: What’s going on? discovering spatio-temporal dependencies in dynamic scenes. In: IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, June 2010, pp. 1951–1958 (2010) Google Scholar
  73. Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2), 107–123 (2005) MathSciNetGoogle Scholar
  74. Laptev, I., Lindeberg, T.: Space-time interest points. In: IEEE International Conference on Computer Vision, pp. 432–439 (2003) Google Scholar
  75. Lee, C.S., Elgammal, A.: Facial expression analysis using nonlinear decomposable generative models. In: IEEE International Workshop on Analysis and Modeling of Faces and Gestures, pp. 17–31 (2005) Google Scholar
  76. Lee, M.W., Cohen, I.: Human upper body pose estimation in static images. In: European Conference on Computer Vision, Cambridge, UK, pp. 126–138 (2004) Google Scholar
  77. Li, J., Gong, S., Xiang, T.: Global behaviour inference using probabilistic latent semantic analysis. In: British Machine Vision Conference, Leeds, UK, pp. 193–202 (2008a) Google Scholar
  78. Li, J., Gong, S., Xiang, T.: Scene segmentation for behaviour correlation. In: European Conference on Computer Vision, Marseille, France, pp. 383–395 (2008b) Google Scholar
  79. Liu, J., Shah, M.: Learning human actions via information maximization. In: IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, June 2008, pp. 1–8 (2008) Google Scholar
  80. Loy, C.C., Xiang, T., Gong, S.: Time-delayed correlation analysis for multi-camera activity understanding. Int. J. Comput. Vis. 90(1), 106–129 (2010) Google Scholar
  81. Loy, C.C., Xiang, T., Gong, S.: Detecting and discriminating behavioural anomalies. Pattern Recognit. 44(1), 117–132 (2011) MATHGoogle Scholar
  82. Lyons, M.J., Budynek, J., Akamatsu, S.: Automatic classification of single facial images. IEEE Trans. Pattern Anal. Mach. Intell. 21(12), 1357–1362 (1999) Google Scholar
  83. Makris, D., Ellis, T.: Learning semantic scene models from observing activity in visual surveillance. IEEE Trans. Syst. Man Cybern. 35(3), 397–408 (2005) Google Scholar
  84. Makris, D., Ellis, T., Black, J.: Bridging the gaps between cameras. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 205–210 (2004) Google Scholar
  85. Marinakis, D., Dudek, G.: Self-calibration of a vision-based sensor network. Image Vis. Comput. 27(1–2), 116–130 (2009) Google Scholar
  86. McKenna, S., Gong, S.: Gesture recognition for visually mediated interaction using probabilistic event trajectories. In: British Machine Vision Conference, Southampton, UK, pp. 498–508 (1998) Google Scholar
  87. Meeren, H., Heijnsbergen, C., Gelder, B.: Rapid perceptual integration of facial expression and emotional body language. Proc. Natl. Acad. Sci. USA 102(45), 16518–16523 (2005) Google Scholar
  88. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behaviour detection using social force model. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 935–942 (2009) Google Scholar
  89. Ng, J., Gong, S.: Composite support vector machines for the detection of faces across views and pose estimation. Image Vis. Comput. 20(5–6), 359–368 (2002) Google Scholar
  90. Niu, C., Grimson, W.E.L.: Recovering non-overlapping network topology using far-field vehicle tracking data. In: International Conference of Pattern Recognition, pp. 944–949 (2006) Google Scholar
  91. Nixon, M.S., Tan, T., Chellappa, R.: Human Identification Based on Gait. Springer, Berlin (2005) Google Scholar
  92. Okuma, K., Taleghani, A., Freitas, N.D., Little, J., Lowe, D.: A boosted particle filter: multitarget detection and tracking. In: European Conference on Computer Vision (2004) Google Scholar
  93. Orozco, J., Gong, S., Xiang, T.: Head pose classification in crowded scenes. In: British Machine Vision Conference, London, UK, September 2009 Google Scholar
  94. Ozuysal, M., Lepetit, V., Fua, P.: Pose estimation for category specific multiview object localization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 778–785 (2009) Google Scholar
  95. Palmer, S.: The effects of contextual scenes on the identification of objects. Mem. Cogn. 3, 519–526 (1975) Google Scholar
  96. Pantic, M., Patras, I.: Dynamics of facial expression: recognition of facial actions and their temporal segments from face profile image sequences. IEEE Trans. Syst. Man Cybern. 36(2), 433–449 (2006) Google Scholar
  97. Pantic, M., Rothkrantz, L.: Automatic analysis of facial expressions: the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1424–1445 (2000) Google Scholar
  98. Pantic, M., Rothkrantz, L.: Toward an affect-sensitive multimodal human-computer interaction. In: Proceeding of the IEEE, vol. 91, pp. 1370–1390 (2003) Google Scholar
  99. Pantic, M., Rothkrantz, L.: Facial action recognition for facial expression analysis from static face images. IEEE Trans. Syst. Man Cybern. 34(3), 1449–1461 (2004) Google Scholar
  100. Pantic, M., Valstar, M., Rademaker, R., Maat, L.: Web-based database for facial expression analysis. In: IEEE International Conference on Multimedia and Expo, pp. 317–321 (2005) Google Scholar
  101. Pavlovic, V.I., Sharma, R., Huang, T.S.: Visual interpretation of hand gestures for human-computer interaction: a review. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 677–695 (1997) Google Scholar
  102. Prosser, B., Gong, S., Xiang, T.: Multi-camera matching using bi-directional cumulative brightness transfer functions. In: British Machine Vision Conference, Leeds, UK, September 2008 Google Scholar
  103. Psarrou, A., Gong, S., Buxton, H.: Modelling spatio-temporal trajectories and face signatures on partially recurrent neural networks. In: IEEE International Joint Conference on Neural Networks, Perth, Australia, pp. 2226–3321 (1995) Google Scholar
  104. Psarrou, A., Gong, S., Walter, M.: Recognition of human gestures and behaviour based on motion trajectories. Image Vis. Comput. 20(5–6), 349–358 (2002) Google Scholar
  105. Ramanan, D., Forsyth, D.A.: Automatic annotation of everyday movements. In: Advances in Neural Information Processing Systems, Vancouver, Canada (2003) Google Scholar
  106. Rao, C., Shah, M.: View-invariance in action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 316–322 (2001) Google Scholar
  107. Ravindra De Silva, P., Bianchi-Berthouze, N.: Modeling human affective postures: an information theoretic characterisation of posture features. Comput. Animat. Virtual Worlds 15, 169–276 (2004) Google Scholar
  108. Ravindra De Silva, P., Osano, M., Marasinghe, A.: Towards recognizing emotion with affective dimensions through body gestures. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 269–274 (2006) Google Scholar
  109. Robertson, N., Reid, I.: Estimating gaze direction from low-resolution faces in video. In: European Conference on Computer Vision, pp. 402–415 (2006) Google Scholar
  110. Schlenzig, J., Hunter, E., Jain, R.: Recursive identification of gesture inputs using hidden Markov model. In: Workshop on Applications of Computer Vision, pp. 187–194 (1994) Google Scholar
  111. Schüldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: International Conference on Pattern Recognition, Cambridge, UK, pp. 32–36 (2004) Google Scholar
  112. Schwartz, O., Hsu, A., Dayan, P.: Space and time in visual context. Nat. Rev., Neurosci. 8, 522–535 (2007) Google Scholar
  113. Shan, C., Gong, S., McOwan, P.: Appearance manifold of facial expression. In: Sebe, N., Lew, M.S., Huang, T.S. (eds.) Computer Vision in Human-Computer Interaction. Lecture Notes in Computer Science, vol. 3723, pp. 221–230. Springer, Berlin (2005) Google Scholar
  114. Shan, C., Gong, S., McOwan, P.: Capturing correlations among facial parts for facial expression analysis. In: British Machine Vision Conference, Warwick, UK, September 2007 Google Scholar
  115. Shan, C., Gong, S., McOwan, P.: Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis. Comput. 27(6), 803–816 (2009) Google Scholar
  116. Sheikh, Y., Sheikh, M., Shah, M.: Exploring the space of a human action. In: IEEE International Conference on Computer Vision, Beijing, China, October 2005, pp. 144–149 (2005) Google Scholar
  117. Sherrah, J., Gong, S.: Fusion of perceptual cues for robust tracking of head pose and position. Pattern Recognit. 34(8), 1565–1572 (2001) MATHGoogle Scholar
  118. Sherrah, J., Gong, S., Ong, E.-J.: Face distribution in similarity space under varying head pose. Image Vis. Comput. 19(11), 807–819 (2001) Google Scholar
  119. Siva, P., Xiang, T.: Action detection in crowd. In: British Machine Vision Conference, Aberystwyth, UK, September 2010 Google Scholar
  120. Starner, T., Pentland, A.: Visual recognition of American sign language using hidden Markov models. In: IEEE International Conference on Automatic Face and Gesture Recognition, Zurich, Switzerland, pp. 189–194 (1995) Google Scholar
  121. Stauffer, C., Tieu, K.: Automated multi-camera planar tracking correspondence modeling. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 259–266 (2003) Google Scholar
  122. Streib, K., Davis, J.W.: Extracting pathlets from weak tracking data. In: IEEE International Conference on Advanced Video and Signal Based Surveillance, Boston, USA, pp. 353–360 (2010) Google Scholar
  123. Suwa, M., Sugie, N., Fujimora, K.: A preliminary note on pattern recognition of human emotional expression. In: International Joint Conference on Pattern Recognition, pp. 408–410 (1978) Google Scholar
  124. Tian, Y.: Evaluation of face resolution for expression analysis. In: Computer Vision and Pattern Recognition Workshop, pp. 82–89 (2004) Google Scholar
  125. Tian, Y., Kanade, T., Cohn, J.: Recognizing action units for facial expression analysis. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 97–115 (2001) Google Scholar
  126. Tieu, K., Dalley, G., Grimson, W.E.L.: Inference of non-overlapping camera network topology by measuring statistical dependence. In: IEEE International Conference on Computer Vision, pp. 1842–1849 (2005) Google Scholar
  127. Valstar, M., Pantic, M.: Fully automatic facial action unit detection and temporal analysis. In: Computer Vision and Pattern Recognition Workshop, pp. 149–154 (2006) Google Scholar
  128. Valstar, M., Patras, I., Pantic, M.: Facial action unit detection using probabilistic actively learned support vector machines on tracked facial point data. In: Computer Vision and Pattern Recognition Workshop, vol. 3, pp. 76–84 (2005) Google Scholar
  129. Van Gool, L., Breitenstein, M., Gammeter, S., Grabner, H., Quack, T.: Mining from large image sets. In: ACM International Conference on Image and Video Retrieval, Santorini, Greece, pp. 10:1–10:8 (2009) Google Scholar
  130. Vrij, A.: Detecting Lies and Deceit: The Psychology of Lying and the Implications for Professional Practice. Wiley, New York (2000) Google Scholar
  131. Vrij, A., Mann, S.: Police use of nonverbal behaviour as indicators of deception. In: Riggio, R.E., Feldman, R.S. (eds.) Applications of Nonverbal Communication, pp. 63–94. Erlbaum, Hillsdale (2005) Google Scholar
  132. Wang, S., Quattoni, A., Morency, L.-P., Demirdjian, D., Darrell, T.: Hidden conditional random fields for gesture recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1521–1527 (2006a) Google Scholar
  133. Wang, X., Tieu, K., Grimson, W.E.L.: Learning semantic scene models by trajectory analysis. In: European Conference on Computer Vision, pp. 110–123 (2006b) Google Scholar
  134. Wang, X., Ma, X., Grimson, W.E.L.: Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 539–555 (2009) Google Scholar
  135. Wang, X., Tieu, K., Grimson, W.E.L.: Correspondence-free activity analysis and scene modeling in multiple camera views. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 56–71 (2010) Google Scholar
  136. Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997) Google Scholar
  137. Wu, B., Nevatia, R.: Detection and tracking of multiple partially occluded humans by Bayesian combination of edgelet based part detectors. Int. J. Comput. Vis. 75(2), 247–266 (2007) Google Scholar
  138. Wu, Y., Huang, T.S.: Human hand modeling, analysis and animation in the context of human computer interaction. IEEE Signal Process. Mag. 18(3), 51–60 (2001) Google Scholar
  139. Yacoob, Y., Davis, L.S.: Recognizing human facial expression from long image sequences using optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 18(6), 636–642 (1996) Google Scholar
  140. Yang, M., Wu, Y., Hua, G.: Context-aware visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 31(7), 1195–1209 (2008) Google Scholar
  141. Yang, W., Wang, Y., Mori, G.: Efficient human action detection using a transferable distance function. In: Asian Conference on Computer Vision, pp. 417–426 (2009) Google Scholar
  142. Yeasin, M., Bullot, B., Sharma, R.: From facial expression to level of interests: a spatio-temporal approach. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 922–927 (2004) Google Scholar
  143. Yilmaz, A., Shah, M.: Actions sketch: a novel action representation. In: IEEE Conference on Computer Vision and Pattern Recognition, Washington DC, USA, pp. 984–989 (2005) Google Scholar
  144. Yin, L., Loi, J., Xiong, W.: Facial expression representation and recognition based on texture augmentation and topographic masking. In: ACM Multimedia, New York, USA, pp. 236–239 (2004) Google Scholar
  145. Yuan, J.S., Liu, Z.C., Wu, Y.: Discriminative subvolume search for efficient action detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2442–2449 (2009) Google Scholar
  146. Zaharescu, A., Wildes, R.: Anomalous behaviour detection using spatiotemporal oriented energies, subset inclusion histogram comparison and event-driven processing. In: European Conference on Computer Vision, Crete, Greece, October 2010, pp. 563–576 (2010) Google Scholar
  147. Zalewski, L., Gong, S.: 2D statistical models of facial expressions for realistic 3D avatar animation. In: IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, June 2005, pp. 217–222 (2005) Google Scholar
  148. Zelniker, E.E., Gong, S., Xiang, T.: Global abnormal behaviour detection using a network of CCTV cameras. In: IEEE International Workshop on Visual Surveillance, Marseille, France, October 2008 Google Scholar
  149. Zhang, J., Gong, S.: Action categorisation by structural probabilistic latent semantic analysis. Comput. Vis. Image Underst. 114(8), 857–864 (2010a) Google Scholar
  150. Zhang, J., Gong, S.: Action categorisation with modified hidden conditional random field. Pattern Recognit. 43(1), 197–203 (2010b) MATHGoogle Scholar
  151. Zhang, J., Zhou, S., McMillan, L., Comaniciu, D.: Joint real-time object detection and pose estimation using probabilistic boosting network. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7 (2007) Google Scholar
  152. Zhang, Y., Ji, Q.: Active and dynamic information fusion for facial expression understanding from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 1–16 (2005) MATHGoogle Scholar
  153. Zhang, Z., Lyons, M.J., Schuster, M., Akamatsu, S.: Comparison between geometry-based and Gabor-wavelets-based facial expression recognition using multi-layer perceptron. In: IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan, April 1998, pp. 454–459 (1998) Google Scholar
  154. Zhang, Z., Hu, Y., Chan, S., Chia, L.: Motion context: a new representation for human action recognition. In: European Conference on Computer Vision, pp. 817–829 (2008) Google Scholar
  155. Zheng, W., Gong, S., Xiang, T.: Associating groups of people. In: British Machine Vision Conference, London, UK, September 2009 Google Scholar
  156. Zhou, X., Collins, R., Kanade, T.: A master-slave system to acquire biometric imagery of humans at distance. In: International Workshop on Video Surveillance, pp. 113–120 (2003) Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.School of Electronic Engineering and Computer ScienceQueen Mary University of LondonLondonUK
  2. 2.School of Electronic Engineering and Computer ScienceQueen Mary University of LondonLondonUK

Personalised recommendations