Advertisement

Recursive Plant Model Identification in Closed Loop

  • Ioan Doré Landau
  • Rogelio Lozano
  • Mohammed M’Saad
  • Alireza Karimi
Part of the Communications and Control Engineering book series (CCE)

Abstract

Iterative combination of identification in closed loop and robust control redesign leads to a two time scale adaptive control system very appealing in practice. The chapter is dedicated to the presentation of recursive algorithms for plant identification in closed-loop operation and their application. Two classes of algorithms will be presented, analyzed and evaluated experimentally: closed-loop output error algorithms and filtered open-loop recursive identification algorithms. Specific techniques for model validation in the context of identification in closed loop will also be presented. The performance of the various algorithms will be illustrated by simulation and by their application to the identification in closed loop and controller re-design of a flexible transmission control system.

Keywords

Closed Loop Plant Model Open Loop Output Error External Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adaptech (1988) WimPim + (includes, WinPIM, WinREG and WinTRAC) system identification and control software. User’s manual. 4, rue du Tour de l’Eau, 38400 St. Martin-d’Hères, France Google Scholar
  2. Åström KJ (1993) Matching criteria for control and identification. In: Proc European control conference, Groningen, The Netherlands Google Scholar
  3. Karimi A, Landau ID (1998) Comparison of the closed loop identification methods in terms of the bias distribution. Syst Control Lett 34(4):159–167 MathSciNetMATHCrossRefGoogle Scholar
  4. Landau ID, Karimi A (1997a) An output error recursive algorithm for unbiased identification in closed loop. Automatica 33(5):933–938 MathSciNetMATHCrossRefGoogle Scholar
  5. Landau ID, Karimi A (1997b) Recursive algorithms for identification in closed loop: a unified approach and evaluation. Automatica 33(8):1499–1523 MathSciNetMATHCrossRefGoogle Scholar
  6. Landau ID, Karimi A (1999) A recursive algorithm for ARMAX model identification in closed loop. IEEE Trans Autom Control 44(4):840–843 MathSciNetMATHCrossRefGoogle Scholar
  7. Landau ID, Karimi A (2002) A unified approach to model estimation and controller reduction (duality and coherence). Eur J Control 8(6):561–572 CrossRefGoogle Scholar
  8. Landau ID, Zito G (2005) Digital control systems—design, identification and implementation. Springer, London Google Scholar
  9. Landau ID, Karimi A, Constantinescu A (2001b) Direct controller order reduction by identification in closed loop. Automatica 37(11):1689–1702 MathSciNetMATHCrossRefGoogle Scholar
  10. Langer J, Landau ID (1996) Improvement of robust digital control by identification in closed loop: application to a 360° flexible arm. Control Eng Pract 4(8):1079–1088 CrossRefGoogle Scholar
  11. Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Stat 22:400–407 MathSciNetMATHCrossRefGoogle Scholar
  12. Van den Hof P, Schrama R (1995) Identification and control—closed-loop issues. Automatica 31(12):1751–1770 MathSciNetMATHCrossRefGoogle Scholar
  13. Voda-Besançon A, Landau ID (1995a) An iterative method for the auto-calibration of the digital controllers. In: Proc ACC 95, Rome, Italy, pp 12,463–12,468 Google Scholar
  14. Voda-Besançon A, Landau ID (1995b) The joint closed-loop identification and control design—theoretical issues and applications. In: Proc ACC, Seattle, USA Google Scholar
  15. Zang Z, Bitmead RR, Gevers M (1995) Iterative weighted least-squares identification and weighted LQG control design. Automatica 31(11):1577–1594 MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Ioan Doré Landau
    • 1
  • Rogelio Lozano
    • 2
  • Mohammed M’Saad
    • 3
  • Alireza Karimi
    • 4
  1. 1.Département d’AutomatiqueGIPSA-LAB (CNRS/INPG/UJF)St. Martin d’HeresFrance
  2. 2.UMR-CNRS 6599, Centre de Recherche de Royalieu, Heuristique et Diagnostic des Systèmes ComplexesUniversité de Technologie de CompiègneCompiègneFrance
  3. 3.Centre de Recherche (ENSICAEN), Laboratoire GREYCÉcole Nationale Supérieure d’Ingénieurs de CaenCaen CedexFrance
  4. 4.Laboratoire d’AutomatiqueÉcole Polytechnique Fédérale de LausanneLaussanneSwitzerland

Personalised recommendations