Advertisement

Recursive Plant Model Identification in Open Loop

  • Ioan Doré Landau
  • Rogelio Lozano
  • Mohammed M’Saad
  • Alireza Karimi
Part of the Communications and Control Engineering book series (CCE)

Abstract

Plant model identification in open loop is a preliminary step for building an adaptive control system. Using the parameter adaptation algorithms presented in Chaps.  3 and  4 as well as the predictor structures presented in Chap.  2, one can develop recursive identification methods. The chapter presents a number of recursive identification methods and the associated model validation techniques. The problems of input design and model order selection are also addressed. The methodology is illustrated by the identification of a flexible transmission.

Keywords

Output Error Recursive Little Square Observation Vector Stochastic Environment Pseudo Random Binary Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adaptech (1988) WimPim + (includes, WinPIM, WinREG and WinTRAC) system identification and control software. User’s manual. 4, rue du Tour de l’Eau, 38400 St. Martin-d’Hères, France Google Scholar
  2. Banon G, Aguilar-Martin J (1972) Estimation linéaire récurrente des paramètres des processus dynamiques soumis à des perturbations aléatoires. Rev CETHEDEC 9:38–86 MathSciNetGoogle Scholar
  3. Bethoux G (1976) Approche unitaire des méthodes d’identification et de commande adaptative des procédés dynamiques. Thèse 3ème cycle, Institut National Polytechnique de Grenoble Google Scholar
  4. Dugard L, Goodwin GC (1985) Global convergence of Landau’s “output error with adjustable compensator” adaptive algorithm. IEEE Trans Autom Control AC-30:593–595 MathSciNetCrossRefGoogle Scholar
  5. Duong HG, Landau ID (1994) On statistical properties of a test for model structure selection using the extended instrumental variable approach. IEEE Trans Autom Control AC-39:211–215 MathSciNetCrossRefGoogle Scholar
  6. Duong HG, Landau ID (1996) An IV based criterion for model order selection. Automatica 32:909–914 MathSciNetMATHCrossRefGoogle Scholar
  7. Landau ID (1979) Adaptive control—the model reference approach. Marcel Dekker, New York MATHGoogle Scholar
  8. Landau ID (1990a) Algorithmes d’adaptation paramétrique. In: Dugard L, Landau ID (eds) Ecole d’Eté d’Automatique, LAG, Grenoble Google Scholar
  9. Ljung L (1999) System identification: theory for the user, 2nd edn. Prentice-Hall, Englewood Cliffs Google Scholar
  10. Ljung L, Söderström T (1983) Theory and practice of recursive identification. MIT Press, Cambridge MATHGoogle Scholar
  11. Söderström T, Stoica P (1989) System identification. Prentice-Hall, New York MATHGoogle Scholar
  12. Stoica P, Söderström T (1981) Analysis of an output error identification algorithm. Automatica 17(6):861–863 MathSciNetMATHCrossRefGoogle Scholar
  13. Young PC (1969) An instrumental variable method for real time identification of a noisy process. Automatica 66:271–288 Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Ioan Doré Landau
    • 1
  • Rogelio Lozano
    • 2
  • Mohammed M’Saad
    • 3
  • Alireza Karimi
    • 4
  1. 1.Département d’AutomatiqueGIPSA-LAB (CNRS/INPG/UJF)St. Martin d’HeresFrance
  2. 2.UMR-CNRS 6599, Centre de Recherche de Royalieu, Heuristique et Diagnostic des Systèmes ComplexesUniversité de Technologie de CompiègneCompiègneFrance
  3. 3.Centre de Recherche (ENSICAEN), Laboratoire GREYCÉcole Nationale Supérieure d’Ingénieurs de CaenCaen CedexFrance
  4. 4.Laboratoire d’AutomatiqueÉcole Polytechnique Fédérale de LausanneLaussanneSwitzerland

Personalised recommendations