Parameter Adaptation Algorithms—Deterministic Environment

  • Ioan Doré Landau
  • Rogelio Lozano
  • Mohammed M’Saad
  • Alireza Karimi
Part of the Communications and Control Engineering book series (CCE)


Parameter adaptation algorithms are the key step for building an adaptive control system. An extensive coverage of the subject is provided in this chapter. Both synthesis and analysis of the parameter adaptation algorithms in a deterministic environment will be considered. Stability and convergence issues will be emphasized.


Recursive Little Square Exciting Signal Feedback Path Adaptation Error Adaptation Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson BDO, Johnson CR (1982) Exponential convergence of adaptive identification and control algorithms. Automatica 18(1):1–13 MathSciNetMATHCrossRefGoogle Scholar
  2. Anderson BDO, Landau ID (1994) Least squares identification and the robust strict positive real property. IEEE Trans Circuits Syst 41(9) Google Scholar
  3. Anderson BDO, Bitmead RR, Johnson CR, Kokotovic PV, Kosut R, Mareels I, Praly L, Riedle BD (1986) Stability of adaptive systems—passivity and averaging analysis. MIT Press, Cambridge Google Scholar
  4. Åström KJ (1970) Introduction to stochastic control theory. Academic Press, New York MATHGoogle Scholar
  5. Åström KJ, Wittenmark B (1995) Adaptive control, 2nd edn. Addison Wesley, Boston MATHGoogle Scholar
  6. Brogliato B, Lozano R, Landau ID (1993) New relationships between Lyapunov functions and the passivity theorem. Int J Adapt Control Signal Process 7(5):353–366 MathSciNetMATHCrossRefGoogle Scholar
  7. Glower JS (1996) MRAC for systems with sinusoidal parameters. Int J Adapt Control Signal Process 10:85–92 MathSciNetMATHCrossRefGoogle Scholar
  8. Landau ID (1979) Adaptive control—the model reference approach. Marcel Dekker, New York MATHGoogle Scholar
  9. Landau ID (1990b) System identification and control design. Prentice Hall, Englewood Cliffs MATHGoogle Scholar
  10. Ljung L, Söderström T (1983) Theory and practice of recursive identification. MIT Press, Cambridge MATHGoogle Scholar
  11. Shah S, Franklin GF (1982) On satisfying strict positive real condition for convergence by overparameterization. IEEE Trans Autom Control AC-27(3):715–716 MathSciNetCrossRefGoogle Scholar
  12. Tomizuka M (1982) Parallel MRAS without compensation block. IEEE Trans Autom Control AC-27(2):505–506 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Ioan Doré Landau
    • 1
  • Rogelio Lozano
    • 2
  • Mohammed M’Saad
    • 3
  • Alireza Karimi
    • 4
  1. 1.Département d’AutomatiqueGIPSA-LAB (CNRS/INPG/UJF)St. Martin d’HeresFrance
  2. 2.UMR-CNRS 6599, Centre de Recherche de Royalieu, Heuristique et Diagnostic des Systèmes ComplexesUniversité de Technologie de CompiègneCompiègneFrance
  3. 3.Centre de Recherche (ENSICAEN), Laboratoire GREYCÉcole Nationale Supérieure d’Ingénieurs de CaenCaen CedexFrance
  4. 4.Laboratoire d’AutomatiqueÉcole Polytechnique Fédérale de LausanneLaussanneSwitzerland

Personalised recommendations