Advertisement

Robust Parameter Estimation

  • Ioan Doré Landau
  • Rogelio Lozano
  • Mohammed M’Saad
  • Alireza Karimi
Part of the Communications and Control Engineering book series (CCE)

Abstract

In practice a number of the hypotheses used for the development of parameter adaptation algorithms are violated. Therefore a number of modifications have to be introduced in order to accommodate these situations safely. The chapter presents and analyses several modifications of the parameter adaption algorithms which have been used in applications.

Keywords

Adaptive Control Dead Zone Reduce Order Model Unmodeled Dynamic Adaptive Control System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Dugard L, Goodwin GC (1985) Global convergence of Landau’s “output error with adjustable compensator” adaptive algorithm. IEEE Trans Autom Control AC-30:593–595 MathSciNetCrossRefGoogle Scholar
  2. Egardt B (1979) Stability of adaptive controllers. Lectures notes in control and information sciences. Springer, Heidelberg MATHCrossRefGoogle Scholar
  3. Franklin GF, Powell JD, Workman M (1990) Digital control of dynamic systems, 2nd edn. Addison Wesley, Reading MATHGoogle Scholar
  4. Ioannou PA, Sun J (1996) Robust adaptive control. Prentice Hall, Englewood Cliffs MATHGoogle Scholar
  5. Karimi A, Landau ID (1998) Comparison of the closed loop identification methods in terms of the bias distribution. Syst Control Lett 34(4):159–167 MathSciNetMATHCrossRefGoogle Scholar
  6. Knopp K (1956) Infinite sequence series. Dover, New York Google Scholar
  7. Ortega R, Tang Y (1989) Robustness of adaptive controllers—a survey. Automatica 25(5):651–677 MathSciNetMATHCrossRefGoogle Scholar
  8. Ortega R, Praly L, Landau ID (1985) Robustness of discrete-time direct adaptive controllers. IEEE Trans Autom Control AC-30(12):1179–1187 MathSciNetCrossRefGoogle Scholar
  9. Praly L (1983a) Commande adaptative avec modèle de référence: Stabilité et robustesse. In: Landau ID (ed) Outils et Modèles Mathématique pour l’Automatique, l’Analyse de Systèmes et le traitement du signal, vol 3. CNRS, Paris, pp 805–816 Google Scholar
  10. Praly L (1983b) Robustness of indirect adaptive control based on pole placement design. In: Proc IFAC workshop “Adaptive systems in control and signal processing”. Pergamon, San Fransisco, pp 55–60 Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Ioan Doré Landau
    • 1
  • Rogelio Lozano
    • 2
  • Mohammed M’Saad
    • 3
  • Alireza Karimi
    • 4
  1. 1.Département d’AutomatiqueGIPSA-LAB (CNRS/INPG/UJF)St. Martin d’HeresFrance
  2. 2.UMR-CNRS 6599, Centre de Recherche de Royalieu, Heuristique et Diagnostic des Systèmes ComplexesUniversité de Technologie de CompiègneCompiègneFrance
  3. 3.Centre de Recherche (ENSICAEN), Laboratoire GREYCÉcole Nationale Supérieure d’Ingénieurs de CaenCaen CedexFrance
  4. 4.Laboratoire d’AutomatiqueÉcole Polytechnique Fédérale de LausanneLaussanneSwitzerland

Personalised recommendations