Advertisement

State-of-the-Art Multi-Objective Optimisation of Manufacturing Processes Based on Thermo-Mechanical Simulations

  • Cem Celal Tutum
  • Jesper Hattel
Chapter

Abstract

During the last couple of decades the possibility of modelling multi-physics phenomena has increased dramatically, thus making simulation of very complex manufacturing processes possible and in some fields even an everyday event. A consequence of this has been improved products with respect to properties, weight/stiffness ratio and cost. However this development has mostly been based on “manual iterations” carried out by the user of the relevant simulation software rather than being based on a systematic search for optimal solutions. This is, however, about to change because of the very tough competition between manufacturers of products in combination with the possibility of doing these highly complex simulations. Thus, there is a crucial need for combining advanced simulation tools for manufacturing processes with systematic optimisation algorithms which are capable of searching for single or multiple optimal solutions. Nevertheless, despite this crucial need, it is interesting to notice the very limited number of contributions in this field and consequently this makes us wonder about the underlying reasons for it. The understanding of the physical phenomena behind the processes, the current numerical simulation tools and the optimisation capabilities which all mainly are driven by the industrial or academic demands as well as computational power and availability of both the simulation and the multi-objective optimisation oriented software on the market are the main concerns to look for. These limitations eventually determine what is in fact possible today and hence define what the “state-of-the-art” is. So, seen from that perspective the very definition of the state-of-the-art itself in the field of optimisation of manufacturing processes constitutes an important discussion. Moreover, in the major research fields of manufacturing process simulation and multi-objective optimisation there are still many issues to be reserved.

Keywords

Residual Stress Welding Speed Workpiece Material Heat Transfer Coefficient Tool Rotational Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Tekkaya, E. (2000). State-of-the-art of simulation of sheet metal forming. Journal of Materials Processing Technology, 103, 14–22.CrossRefGoogle Scholar
  2. 2.
    Tutum, C. C., & Hattel, J. H. (2010). Optimisation of process parameters in friction stir welding based on residual stress analysis: A feasibility study. Journal of Science and Technology of Welding and Joining, 15(5), 369–377.CrossRefGoogle Scholar
  3. 3.
    Tutum, C. C., & Hattel, J. H. (2010). Multi-objective optimization of process parameters in friction stir welding. In Genetic and evolutionary computation conference (GECCO 2010), Portland, Oregon (pp. 1323–1324).Google Scholar
  4. 4.
    Tutum, C. C., & Hattel, J. H. (2010). A multi-objective optimization application in friction stir welding: considering thermo-mechanical aspects. In IEEE congress on evolutionary computation (IEEE CEC 2010), Barcelona, Spain (pp. 427–434).Google Scholar
  5. 5.
    Kotas, P., Tutum, C. C., Snajdrova, O., Thorborg, J., & Hattel, J. H. (2010). A casting yield optimization case study: Forging ram. International Journal of Metalcasting, 4(4), 61–76.Google Scholar
  6. 6.
    Dulikravich, G. S., Egorov, I. N., & Colaco, M. J. (2008). Optimizing chemistry of bulk metallic glasses for improved thermal stability. Modelling and Simulation in Materials Science and Engineering, 16(7), 1–19.CrossRefGoogle Scholar
  7. 7.
    Dulikravich, G. S., Sikka, V. K., & Muralidharan, G. (2006). Development of semi-stochastic algorithm for optimizing alloy composition of high-temperature austenitic stainless steels (H-series) for desired mechanical and corrosion properties. Technical Report, U.S. Department of Energy, (http://www.osti.gov/bridge).
  8. 8.
    Wei, L., & Yuying, Y. (2008). Multi-objective optimization of sheet metal forming process using Pareto-based algorithm. Journal of Materials Processing Technology, 208, 499–506.CrossRefGoogle Scholar
  9. 9.
    Schenk, O., & Hillmann, M. (2004). Optimal design of metal forming die surfaces with evolution strategies. Journal of Computers and Structures, 82(20–21), 1695–1705.CrossRefGoogle Scholar
  10. 10.
    Jansson, T., Andersson, A., & Nilsson, L. (2005). Optimization of draw-in for an automotive sheet metal part–an evaluation using surrogate models and response surfaces. Journal of Materials Processing Technology, 159, 426–434.CrossRefGoogle Scholar
  11. 11.
    Oduguwa, V., & Roy, R. (2002). Multi-objective optimisation of rolling rod product design using meta-modelling approach. In Genetic and evolutionary computation conference (GECCO 2002), San Francisco, CA, USA (pp. 1164–1171).Google Scholar
  12. 12.
    Katayama, T., Nakamachi, E., Nakamura, Y., Ohata, T., Morishita, Y., & Murase, H. (2004). Development of process design system for press forming–multi-objective optimization of intermediate die shape in transfer forming. Journal of Materials Processing Technology, 155–156, 1564–1570.CrossRefGoogle Scholar
  13. 13.
    Han, Z. X., Xu, L., Wei, R., Wang, B. P., & Reinikainen, T. (2004). Reliability-based design optimization for land grid array solder joints under thermo-mechanical load. In 5th international conference on thermal and mechanical simulation and experiments in micro-electronics and micro-systems (EuroSimE2004) (pp. 219–224).Google Scholar
  14. 14.
    Kor, J., Chen, X., & Hu, H. (2009). Multi-objective optimal gating and riser design for metal-casting. In IEEE international symposium on intelligent control, Saint Petersburg, Russia (pp. 428–433).Google Scholar
  15. 15.
    Esparza, C. E., Guerrero-mata, M. P., & Ríos-mercado, R. Z. (2006). Optimal design of gating systems by gradient search methods. Computational Materials Science, 36, 57–467.CrossRefGoogle Scholar
  16. 16.
    Poloni, C., Poles, S., Odorizzi, S., Gramegna, N., & Bonollo, F. (2002). MAGMAfrontier: State of the art of an optimisation tool for the MAGMASOFT environment. MAGMASOFT international user meeting.Google Scholar
  17. 17.
    Hahn, I., & Hartmann, G. (2008). Automatic computerized optimization in die casting processes. Casting Plant & Technology, 4, 2–14.Google Scholar
  18. 18.
    Georgiev, G., & Ivanov, G. (2010) New interactive and automatic optimization procedures offered of the recent foundry simulation software. www.nts-bg.ttm.bg/journal/papers/25.pdf.
  19. 19.
    Kirk, D. B., & Hwu, W.-M. W. (2010). Programming massively parallel processors–a hans-on approach. San Francisco, USA: Morgan Kaufmann Publishers.Google Scholar
  20. 20.
  21. 21.
    Chapman, B., Jost, G., & Pas, R. V. D. (2008). Using openMP: Portable shared memory parallel programming. Cambridge: The MIT Press.Google Scholar
  22. 22.
    Pacheco, P. S. (1997). Parallel programming with MPI. San Francisco, USA: Morgan Kaufmann Publishers, Inc.MATHGoogle Scholar
  23. 23.
    Talbi, E.-G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., & Coello, C. A. C. (2008). Parallel approaches for multiobjective optimization. In J. Branke et al. (Eds.), Multiobjective optimization, LNCS 5252 (pp. 349–372). Berlin: Springer.Google Scholar
  24. 24.
    Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Chichester: Wiley.MATHGoogle Scholar
  25. 25.
    Deb, K. (2008). Introduction to evolutionary multiobjective optimization. In J. Branke et al. (Eds.), Multiobjective optimization, LNCS 5252 (pp. 59–96). Berlin: Springer.Google Scholar
  26. 26.
    Betounes, D. (1998). Partial differential equations for computational science: With Maple and vector analysis. New York: Springer.MATHCrossRefGoogle Scholar
  27. 27.
    Cook, R., Malkus, D., Plesha, M., & Witt, R. (2001). Concepts and applications of finite element analysis. New York: Wiley.Google Scholar
  28. 28.
    Simo, J. C., & Hughes, T. J. R. (1998). Computational inelasticity. New York, USA: Springer.MATHGoogle Scholar
  29. 29.
    Crisfield, M. (1991). Non-linear finite element analysis of solids and structures—volume 1: Essentials. Chichester: Wiley.Google Scholar
  30. 30.
    Crisfield, M. (1991). Non-linear finite element analysis of solids and structures—volume 2: Advanced topics. Chichester: Wiley.Google Scholar
  31. 31.
    Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6, 182–197.CrossRefGoogle Scholar
  32. 32.
    Zitzler, E., & Thiele, L. (1998). An evolutionary algorithm for multiobjective optimization: The strength pareto approach. Technical Report 43, Swiss Federal Institute of Technology (ETH) Zurich.Google Scholar
  33. 33.
    Knowles, J., & Corne, D. (1998). The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimization. Parallel problem solving from nature—PPSN V. In 5th International Conference (pp. 250–259).Google Scholar
  34. 34.
    Horn, J., Nafpliotis, N., & Goldberg, D. (1994). A niched Pareto genetic algorithm for multiobjective optimization. In First IEEE conference on evolutionary computation. IEEE world congress on computational intelligence (pp. 82–87).Google Scholar
  35. 35.
    Corne, D., Knowles, J., & Oates, M. (2000). The pareto envelope-based selection algorithm for multiobjective optimization. In 6th international conference on parallel problem solving from nature (pp. 839–848).Google Scholar
  36. 36.
    Fonseca, C., & Fleming, P. (1993). Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In 5th international conference on genetic algorithms, USA.Google Scholar
  37. 37.
    Knowles, J., Corne, D., & Deb, K. (2008). Multi-objective problem solving from nature. Natural computing series. Heidelberg: Springer.Google Scholar
  38. 38.
    Coello, C. A. C., Pulido, G., & Montes, E. (2005). Current and future research trends in evolutionary multiobjective optimization. Advanced Information and Knowledge Processing, pp. 213–231.Google Scholar
  39. 39.
    Miettinen, K., Deb, K., Jahn, J., Ogryczak, W., Shimoyama, K., & Vetschera, R. (2008). Future challenges. In J. Branke et al. (Eds.), Multiobjective optimization, LNCS 5252 (pp. 435–461). Berlin: Springer.Google Scholar
  40. 40.
    Poles, S., Vassileva, M., & Sasaki, D. (2008). Multiobjective optimization software. In J. Branke et al. (Eds.), Multiobjective optimization, LNCS 5252 (pp. 329–348). Berlin: Springer.Google Scholar
  41. 41.
    Miettinen, K., & Mäkelä, M. M. (2006). Synchronous approach in interactive multiobjective optimization. European Journal of Operational Research, 170(3), 909–922.MATHCrossRefGoogle Scholar
  42. 42.
    Hattel, J. H. (2005). Fundamentals of numerical modelling of casting processes. Kgs. Lyngby: Polyteknisk Forlag.Google Scholar
  43. 43.
    Lindgren, L. (2007). Computational welding mechanics: Thermomechanical and microstructural simulations. Cambridge: Woodhead Publishing, Ltd.CrossRefGoogle Scholar
  44. 44.
    Boley, B., & Weiner, J. (1960). Theory of thermal stresses. New York: Dover.MATHGoogle Scholar
  45. 45.
    Hattel, J. H., Schmidt, H. B., & Tutum, C. C. (2008). Thermomechanical modelling of friction stir welding. In 8th international conference on trends in welding research conference, ASM, Atlanta, USA.Google Scholar
  46. 46.
    Tutum, C. C. (2009). Optimization of thermo-mechanical conditions in friction stir welding. Ph.D. thesis, ISBN: 978-87-89502-89-2.Google Scholar
  47. 47.
  48. 48.
    Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials and Science Engineering A, 50, 1–78.MATHGoogle Scholar
  49. 49.
    Nandan, R., DebRoy, T., & Bhadeshia, H. (2008). Recent advances in friction stir welding—process, weldment structure and properties. Progress in Materials Science, 53, 980–1023.CrossRefGoogle Scholar
  50. 50.
    Tutum, C. C., Schmidt, H. N. B., & Hattel, J. H. (2008). Assessment of benchmark cases for modelling of residual stresses and distortions in friction stir welding. In 7th international symposium friction stir welding, TWI, Awaji Island, Japan.Google Scholar
  51. 51.
    Tutum, C. C., Schmidt, H., Hattel, J., & Bendsøe, M. (2007). Estimation of the welding speed and heat input in friction stir welding using thermal models and optimization. In 7th world congress on structural and multidisciplinary optimization, Seoul (pp. 2639–2646).Google Scholar
  52. 52.
    Tutum, C. C., Deb, K., & Hattel, J. H. (2010). Hybrid search for faster production and safer process conditions in friction stir welding. In The eighth international conference on simulated evolution and learning (SEAL-2010), IITK Kanpur, India (accepted).Google Scholar
  53. 53.
    Liao, T. W., & Daftardar, S. (2009). Model based optimization of friction stir welding processes. Science and Technology of Welding and Joining, 14(5), 426–435.CrossRefGoogle Scholar
  54. 54.
    Larsen, A. A., Bendsøe, M. P., Hattel, J. H., & Schmidt, H. N. B. (2009). Optimization of friction stir welding using space mapping and manifold mapping—an initial study of thermal aspects. Structural and Multidisciplinary Optimization, 38(3), 289–299.MathSciNetCrossRefGoogle Scholar
  55. 55.
    Nandan, R., Lienert, T. J., & DebRoy, T. (2008). Toward reliable calculations of heat and plastic flow during friction stir welding of Ti-6Al-4V alloy. International Journal of Materials Research, 99(4), 434–444.Google Scholar
  56. 56.
    Schmidt, H. N. B., & Hattel, J. H. (2008). Thermal modelling of friction stir welding. Scripta Materialia, 58, 332–337.CrossRefGoogle Scholar
  57. 57.
    Schmidt, H. N. B., & Hattel, J. H. (2005). Modelling heat flow around tool probe in friction stir welding. Science and Technology of Welding and Joining, 10(2), 176–186.CrossRefGoogle Scholar
  58. 58.
    Schmidt, H. N. B., Hattel, J. H., & Wert, J. (2004). An analytical model for the heat generation in friction stir welding. Modeling and Simulation in Materials Science and Engineering, 12(1), 143–157.CrossRefGoogle Scholar
  59. 59.
    Haimes, Y. Y., Lasdon, L. S., & Wismer, D. A. (1971). On a bi-criterion formulation of the problems of integrated system identification and system optimization. IEEE Transactions on Systems, Man and Cybernetics, 1(3), 296–297.MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Deb, K. (2003). Unveiling innovative design principles by means of multiple conflicting objectives. Engineering Optimization, 35(5), 445–470.CrossRefGoogle Scholar
  61. 61.
    Deb, K., & Srinivasan, A. (2006). Innovization: Innovating design principles through optimization. In Genetic and evolutionary computation conference (GECCO 2006), New York, NY, USA (pp. 1629–1636).Google Scholar
  62. 62.
    Deb, K., & Chaudhuri, S. (2005). Automated discovery of innovative designs of mechanical components using evolutionary multi-objective algorithms. In Evolutionary machine design: methodology and applications (pp. 143–168).Google Scholar
  63. 63.
    Bandaru, S., & Deb, K. (2010). Automated discovery of vital knowledge from Pareto-optimal solutions: First results from engineering design. In IEEE congress on evolutionary computation (CEC 2010) (pp. 1224–1231).Google Scholar
  64. 64.
    Michaleris, P., & Sun, X. (1997). Finite element analysis of thermal tensioning techniques mitigating weld buckling distortion. Welding Journal, 76, 451–457.Google Scholar
  65. 65.
    Michaleris, P., Dantzig, J., & Torterelli, D. (1999). Minimization of welding residual stress and distortion in large structures. Welding Journal, 78, 361–366.Google Scholar
  66. 66.
    Richards, D. G., Prangnell, P. B., Williams, S. W., & Withers, P. J. (2008). Global mechanical tensioning for the management of residual stresses in welds. Materials Science and Engineering, 489, 351–362.CrossRefGoogle Scholar
  67. 67.
    Hatamleh, O., Lyons, J., & Forman, R. (2007). Laser and shot peening effects on fatigue crack growth in friction stir welded 7075–T7351 aluminum alloy joints. International Journal of Fatigue, 29(3), 421–434.CrossRefGoogle Scholar
  68. 68.
    Hatamleh, O. (2008). The effects of laser peening and shot peening on mechanical properties in friction stir welded 7075–T7351 aluminum. Journal of Materials Engineering and Performance, 17, 688–694.CrossRefGoogle Scholar
  69. 69.
    Richards, D. G., Prangnell, P. B., Withers, P. J., Williams, S. W., Nagy, T., & Morgan, S. (2008). Simulation of the effectiveness of dynamic cooling for controlling residual stresses in friction stir welds. In 7th international symposium friction stir welding, TWI, Japan.Google Scholar
  70. 70.
    Feng, Z., Wang, X., David, S. A., & Sklad, P. (2007). Modelling of residual stresses and property distributions in friction stir welds of aluminium alloy 6061–T6. Science and Technology of Welding & Joining, 12(4), 348–356.CrossRefGoogle Scholar
  71. 71.
    Chao, Y. J., & Qi, X. H. (1999). Thermal and thermo-mechanical modelling of friction stir welding of aluminium alloy 6061–T6. Journal of Materials Processing Manufacturing Science, 7, 215–233.CrossRefGoogle Scholar
  72. 72.
    Zhu, X. K., & Chao, Y. J. (2004). Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel. Journal of Materials Processing Technology, 146, 263–272.CrossRefGoogle Scholar
  73. 73.
    Shi, Q., Dickerson, T., & Shercliff, H. (2003). Thermal-mechanical FE modeling of friction stir welding of Al-2024 including tool loads. In Proceedings of the 4th international symposium on FSW, TWI, Utah, USA.Google Scholar
  74. 74.
    Chen, C. M., & Kovacevic, R. (2006). Parametric finite element analysis of stress evolution during friction stir welding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220(8), 1359–1371.CrossRefGoogle Scholar
  75. 75.
    Bastier, A., Maitournam, M. H., Van, K. D., & Roger, F. (2006). Steady state thermomechanical modelling of friction stir welding. Science and Technology of Welding and Joining, 11, 278–288.CrossRefGoogle Scholar
  76. 76.
    Li, T., Shi, Q. Y., & Li, H. K. (2007). Residual stresses simulation for friction stir welded joint. Science and Technology of Welding and Joining, 12(8), 634–640.CrossRefGoogle Scholar
  77. 77.
    Dubourg, L., Doran, P., Larose, S., Gharghouri, M. A., & Jahazi, M. (2010). Prediction and measurements of thermal residual stresses in AA2024–T3 friction stir welds as a function of welding parameters. Materials Science Forum, 638–642, 1215–1220.CrossRefGoogle Scholar
  78. 78.
    Qin, X., & Michaleris, P. (2009). Thermo-elasto-viscoplastic modelling of friction stir welding. Science and Technology of Welding and Joining, 14(7), 640–649.CrossRefGoogle Scholar
  79. 79.
    Xu, S., & Deng, X. (2003). Two and three-dimensional finite element models for the friction stir welding process. In 4th international symposium on friction stir welding, UT, USA. Google Scholar
  80. 80.
    Schmidt, H. N. B., & Hattel, J. H. (2005). A local model for the thermomechanical conditions in friction stir welding. Modelling and Simulation in Materials Science and Engineering, 13, 77–93.CrossRefGoogle Scholar
  81. 81.
    Zhang, H., & Zhang, Z. (2007). Numerical modelling of friction stir welding process by using rate-dependent constitutive model. Journal of Materials Science and Technology, 23(1), 73–80.MATHCrossRefGoogle Scholar
  82. 82.
    Hamilton, R., MacKenzie, D., & Li, H. (2011). Multi-physics simulation of friction stir welding process. Engineering Computations, 27(8), 967–985.CrossRefGoogle Scholar
  83. 83.
    Bastier, A., Maitournam, M. H., Roger, F., & Dang Van, K. (2008). Modelling of the residual state of friction stir welded plates. Journal of Materials Processing Technology, 200, 25–37.CrossRefGoogle Scholar
  84. 84.
    Grujicic, M., Arakere, G., Yalavarthy, H. V., He, T., Yen, C.-F., & Cheeseman, B. A. (2010). Modeling of AA5083 material-microstructure evolution during butt friction stir welding. Journal of Materials Engineering and Performance, 19(5), 672–684.CrossRefGoogle Scholar
  85. 85.
    Vuyst, T. D, Madhavan, V., Ducoeur, B., Simar, A., Meester, B. D., & D’Alvise, L. (2008). A thermo-fluid/thermo-mechanical modeling approach for computing temperature cycles and residual stresses in FSW. In 7th international symposium on friction stir welding, Japan.Google Scholar
  86. 86.
    Altenkirch, J., Steuwer, A., Peel, M., Richards, D. G., & Withers, P. J. (2008). The effect of tensioning and sectioning on residual stresses in aluminum AA7749 friction stir welds. Materials Science and Engineering A, 488, 16–24.CrossRefGoogle Scholar
  87. 87.
    Hattel, J. H., & Tutum, C. C. (2011). Modelling residual stresses in friction stir welding of Al-alloys - A review of possibilities and future trends. International Journal of Advanced Manufacturing Technology (under review).Google Scholar
  88. 88.
    Zhu, X. K., & Chao, Y. J. (2002). Effects of temperature-dependent material properties on welding simulation. Computers & Structures, 80, 967–976.CrossRefGoogle Scholar
  89. 89.
    Jahazi, M., Dubourg, L., & Cao, X. (2008). Friction stir welding of aerospace alloys. http://www.smecanada.ca/montreal/presentations/Jahazi-Mohammad-FSW.pdf.
  90. 90.
    ESAB Holdings Ltd., UK, http://www.esab.com.
  91. 91.
  92. 92.
    Groover, M. P. (2002). Fundamentals of modern manufacturing–materials, processes, and systems. Hoboken: Wiley.Google Scholar
  93. 93.
  94. 94.
    Flender, E., & Sturm, J. (2010). Thirty years of casting process simulation. International Journal of Metalcasting, Spring, 10, 7–23.Google Scholar
  95. 95.
    Winterscheidt, D. L., & Huang, G. X. (2002). Fundamentals of casting process modeling. In Yu Kuang-o (Ed.), Modeling for casting and solidification processing (pp. 17–54). New York, USA: Marcel Dekker, Inc.Google Scholar
  96. 96.
    Chandra, U., & Ahmed, A. (2002). Stress analysis. In Yu Kuang-o (Ed.), Modeling for casting and solidification processing (pp. 55–93). New York, USA: Marcel Dekker, Inc.Google Scholar
  97. 97.
    Suri, V., & Yu, K.-O (2002). Defects formation. In Yu Kuang-o (Ed.), Modeling for casting and solidification processing (pp. 95–122). New York, USA: Marcel Dekker, Inc.Google Scholar
  98. 98.
    Stefanescu, D. M. (2002). Microstructure evolution. In Yu Kuang-o (Ed.), Modeling for casting and solidification processing (pp. 123–187). New York, USA: Marcel Dekker, Inc.Google Scholar
  99. 99.
    Cleary, P. W., Ha, J., Prakash, M., & Nguyen, T. (2006). 3D SPH flow predictions and validation for high pressure die casting of automotive components. Applied Mathematical Modelling, 30, 1406–1427.CrossRefGoogle Scholar
  100. 100.
    Thorborg, J., Hattel, J. H., & Bellini, A. (2006). Thermo-mechanical conditions in heat treated aluminium cast parts. In Proceedings of 11th modelling of casting, welding and advanced solidification processes (pp. 193–200).Google Scholar
  101. 101.
    Campbell, J. (2003). Castings, (2 nd ed.). Oxford: Butterworth Heinemann.Google Scholar
  102. 102.
    Hansen, S. S. (2007). Reduced energy consumption for melting in foundries. Ph.D. thesis, Technical University of Denmark, ISBN 978-87-91035-63-5.Google Scholar
  103. 103.
    Niyama, E., Uchida, T., Morikawa, M., & Saito, S. (1982). Method of schrinkage prediction and its application to steel casting practice. AFS International Cast Metals Journal, 7(3), 52–63.Google Scholar
  104. 104.
    Carlson, K. D., & Beckermann, Ch. (2009). Prediction of schrinkage pore volume fraction using a dimensionless Niyama criterion. Metallurgical and Materials Transactions A, 40A, 163–175.CrossRefGoogle Scholar
  105. 105.
    Carlson, K. D., Ou, S., & Beckermann, C. (2005). Feeding of high-nickel alloy castings. Metallurgical Materials Transactions B, 36B, 843–856.CrossRefGoogle Scholar
  106. 106.
    Jain, N., Carlson, K. D., & Beckermann, C. (2007). Round robin study to assess variations in casting simulation Niyama criterion predictions. In Proceedings of the 61st technical and operating conference, Steel Founders’ Society of America, Chicago.Google Scholar
  107. 107.
    Carlson, K. D., Ou, S., Hardin, R. A., & Beckermann, C. (2001). Development of a methodology to predict and prevent leaks caused by microporosity in steel castings. In Proceedings of the 55th technical and operating conference, SFSA, Chicago.Google Scholar
  108. 108.
    Hardin, R. A., Ou, S., Carlson, K. D., & Beckermann, C. (2002). Development of new feeding distance rules using casting simulation; Part I: Methodology. Metallurgical Materials Transactions B, 33B, 731–740.Google Scholar
  109. 109.
    Beckermann, C. (2002). Modelling of macrosegregation: Applications and future needs. International Materials Reviews, 47, 243–261.CrossRefGoogle Scholar
  110. 110.
    Beeley, P. (2001). Foundry technology (2 nd ed.). Oxford: Butterworth Heinemann.Google Scholar
  111. 111.
    Porter, D. A., & Easterling, K. E. (2004). Phase transformations in metals and alloys, (2 nd ed.). London: Taylor & Francis Group.Google Scholar
  112. 112.
    Sobol, I. (1979). On the systematic search in a hypercube. SIAM Journal on Numerical Analysis, 16, 790–793.MathSciNetMATHCrossRefGoogle Scholar
  113. 113.
    Hattel, J. H., Nielsen, K. L., & Tutum, C. C. (2010). The effect of post-welding conditions in friction stir welds: From weld simulation to ductile failure. European Journal of Mechanics - A/Solids (under review).Google Scholar
  114. 114.
    Fleming, P. J., Purshouse, R. C., & Lygoe, R. J. (2005). Many-objective optimization: An engineering design perspective. In C. A.Coello Coello et al. (Eds.), EMO 2005, LNCS 3410 (pp. 14–32). Berlin: Springer.Google Scholar
  115. 115.
    Deb, K., & Saxena, D. K. (2005). On finding Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. KanGAL Report Number 2005011.Google Scholar
  116. 116.
    Saxena, D. K., Ray, T., Deb, K., & Tiwari, A. (2009). Constrained many-objective optimization: A way forward. In IEEE congress on evolutionary computation (CEC 2009) (pp. 545–552).Google Scholar
  117. 117.
    Brockhoff, D., & Zitzler, E. (2006). Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective optimization. In T. P. Runarsson et al. (Eds.), PPSN IX, LNCS 4193 (pp. 533–542). Berlin: Springer.Google Scholar
  118. 118.
    Corne, D., & Knowles, J. (2007). Techniques for highly multiobjective optimisation: Some nondominated points are better than others. In Genetic and evolutionary computation conference (GECCO 2007), London, England, United Kingdom (pp. 773–780).Google Scholar
  119. 119.
    Saxena, D. K., Duro, J. A., Tiwari, A., Deb, K., & Zhang, Q. (2010). Objective reduction in many-objective optimization: Linear and nonlinear algorithms. KanGAL Report Number 2010008.Google Scholar
  120. 120.
    Deb, K., Sundar, J., Rao, U. B., & Chaudhuri, S. (2006). Reference point based multi-objective optimization using evolutionary algorithms. International Journal of Computational Intelligence Research, 2(3), 273–286.MathSciNetCrossRefGoogle Scholar
  121. 121.
    Deb, K., & Kumar, A. (2007). Light beam search based multi-objective optimization using evolutionary algorithms. KanGAL Report 2007005.Google Scholar
  122. 122.
    Jin, Y. (2005). A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing, 9(1), 3–12.CrossRefGoogle Scholar
  123. 123.
    Branke, J. (2008) Consideration of partial user preferences in evolutionary multiobjective optimization. In J. Branke et al. (Eds.), Multiobjective optimization, LNCS 5252 (pp. 157–178). Berlin: Springer.Google Scholar
  124. 124.
    Sigmund, O. (2001). A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 21, 120–127.CrossRefGoogle Scholar
  125. 125.
    Bendsøe, M. P., & Sigmund, O. (2003). Topology optimization—theory, methods and applications. Berlin: Springer.Google Scholar
  126. 126.
    Jahn, J. (2004). Introduction to the theory on nonlinear optimization. Heidelberg: Springer.Google Scholar
  127. 127.
    Krog, L., Tucker, A., & Rollema, G. (2002). Application of topology, sizing and shape optimization methods to optimal design of aircraft components. Seattle: Altair Engineering Ltd.Google Scholar
  128. 128.
    Krog, L., Tucker, A., Kemp, M., & Boyd, R. (2004). Topology optimization of aircraft wing box ribs. In The Altair technology conference (pp. 6.1–6.16).Google Scholar
  129. 129.
    Colegrove, P. A., & Shercliff, H. R. (2004). Development of trivex friction stir welding tool. Part 1–two-dimensional flow modeling and experimental validation. Science and Technology of Welding and Joining, 9, 345–351.CrossRefGoogle Scholar
  130. 130.
    Vlahinos, A., & Kelkar, S. G. (2002). Designing for six-sigma quality with robust optimization using CAE. In Proceedings of the 2002 SAE international body. Deb, K. (2007). Current trends in evolutionary multi-objective optimization. International Journal for Simulation and Multidisciplinary Design Optimization, 1, 1–8.Google Scholar
  131. 131.
    Vlahinos, A., Suryatama, D., Ullahkhan, M., TenBrink, J. T., & Baker, E. (2002). Robust design of a catalytic converter with material and manufacturing variations. In Powertrain & fluid systems conference & exhibition, San Diego, California USA.Google Scholar
  132. 132.
    ANSYS Inc: Probabilistic design techniques.Google Scholar
  133. 133.
    Ferreira, J., Fonseca, C. M., Covas, J. A., & Gaspar-Cunha, A. (2008). Evolutionary multi-objective robust optimization. Advances in evolutionary algorithms (pp. 261–278). Vienna, Austria: I-Tech Education and Publishing.Google Scholar
  134. 134.
    Wiesmann, D., Hammel, U., & Back, T. (1998). Robust design of multilayer optical coatings by means of evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 2(4), 162–167.CrossRefGoogle Scholar
  135. 135.
    Du, X., & Chen, W. (1998). Towards a better understanding of modelling feasibility robustness in engineering design. In Proceedings of DETC 99, Las Vegas, USA.Google Scholar
  136. 136.
    Arrold, D. V., & Beyer, H.-G. (2003). A comparison of evolution strategies with other direct search methods in the presence of noise. Computational Optimization and Applications, 24(1), 135–159.MathSciNetCrossRefGoogle Scholar
  137. 137.
    Deb, K., & Gupta, H. (2005). Searching for robust pareto-optimal solutions in multi-objective optimization. In C. A. C. Coello et al. (Eds.), EMO 2005, LNCS 3410 (pp. 150–164). Heidelberg: Springer.Google Scholar
  138. 138.
    Daum, D. A., Deb, K., & Branke, J. (2007). Reliability-based optimization for multiple constraints with evolutionary algorithms. In IEEE congress on evolutionary computation (CEC 2007), Singapore (pp. 911–918).Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Section of Manufacturing, Department of Mechanical EngineeringTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations