Multi-Objective Optimisation in Manufacturing Supply Chain Systems Design: A Comprehensive Survey and New Directions

  • Tehseen Aslam
  • Philip Hedenstierna
  • Amos H. C. Ng
  • Lihui Wang


Research regarding supply chain optimisation has been performed for a long time. However, it is only in the last decade that the research community has started to investigate multi-objective optimisation for supply chains. Supply chains are in general complex networks composed of autonomous entities whereby multiple performance measures in different levels, which in most cases are in conflict with each other, have to be taken into account. In this chapter, we present a comprehensive literature review of existing multi-objective optimisation applications, both analytical-based and simulation-based, in supply chain management publications. Later on in the chapter, we identify the needs of an integration of multi-objective optimisation and system dynamics models, and present a case study on how such kind of integration can be applied for the investigation of bullwhip effects in a supply chain.


Supply Chain Analytic Network Process Supply Chain Network Supply Selection Bullwhip Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cohen, M. A., & Lee, H. L. (1989). Resource deployment analysis of global manufacturing and distribution networks. Journal of Manufacturing and Operations Management, 2, 81–104.Google Scholar
  2. 2.
    Arntzen, B. C., Brown, G. G., Harrison, T. P., & Trafton, L. L. (1995). Global supply chain management at digital equipment corporation. Interfaces, 25, 69–93.CrossRefGoogle Scholar
  3. 3.
    Voudouris, V. T. (1996). Mathematical programming techniques to debottleneck the supply chain of fine chemical industries. Computers and Chemical Engineering, 20, S1269–S1274.CrossRefGoogle Scholar
  4. 4.
    Jayaraman, V., & Pirkul, H. (2001). Planning and coordination of production and distribution facilities for multiple commodities. European Journal of Operational Research, 133, 394–408.MATHCrossRefGoogle Scholar
  5. 5.
    Amiri, A. (2006). Designing a distribution network in a supply chain system: formulation and efficient solution procedure. European Journal of Operational Research, 171, 567–576.MATHCrossRefGoogle Scholar
  6. 6.
    Meixell, M. J., & Gargeya, V. B. (2005). Global supply chain design: a literature review and critique. Transportation Research Part E, 41(6), 531–550.CrossRefGoogle Scholar
  7. 7.
    Vidal, C. J., & Goetschalckx, M. (1997). Strategic production–distribution models: a critical review with emphasis on global supply chain models. European Journal of Operational Research, 98, 1–18.MATHCrossRefGoogle Scholar
  8. 8.
    Deb, K. (2001). Multi-objective optimisation using evolutionary algorithms. Chichester: Wiley.Google Scholar
  9. 9.
    Kadadevaramath, R. S., & Mohanasundaram, K. M. (2008). Evolutionary multiobjective decision making in supply chain revenue management: A literature review. International Journal of Revenue Management, 2(2), 137–179.CrossRefGoogle Scholar
  10. 10.
    Yimer, A. D., & Demirli, K. (2010). A genetic approach to two-phase optimisation of dynamic supply chain scheduling. Computers & Industrial Engineering, 58(3), 411–442.CrossRefGoogle Scholar
  11. 11.
    Altiparmak, F., Gen, M., Lin, L., & Paksoy, T. (2006). A genetic algorithm approach for multi-objective optimisation of supply chain networks. Computers & Industrial Engineering, 51(1), 196–215.CrossRefGoogle Scholar
  12. 12.
    Hugo, A., Rutter, P., Pistikopoulos, S., Amorelli, A., & Zoia, G. (2005). Hydrogen infrastructure strategic planning using multi-objective optimisation. International Journal of Hydrogen Energy, 30(15), 1523–1534.CrossRefGoogle Scholar
  13. 13.
    Chen, C.-L., & Lee, W.-C. (2004). Multi objective optimisation of multi echelon supply chain networks with uncertain product demands and prices. Computers & Chemical Engineering, 28(6–7), 1131–1144.CrossRefGoogle Scholar
  14. 14.
    Guillén, G., Mele, F. D., Bagajewicz, M. J., Espuña, A., & Puigjaner, L. (2005). Multi objective supply chain design under uncertainty. Chemical Engineering Science, 60(6), 1535–1553.CrossRefGoogle Scholar
  15. 15.
    Sabri, E. H., & Beamon, B. M. (2000). A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega, 28(5), 581–598.CrossRefGoogle Scholar
  16. 16.
    Xu, J., Liu, Q., & Wang, R. (2008). A class of multi-objective supply chain networks optimal model under random fuzzy environment and its application to the industry of Chinese liquor. Information Sciences, 178(8), 2022–2043.MATHCrossRefGoogle Scholar
  17. 17.
    Guillen-Gosalbez, G., & Grossmann, I. (2010). A global optimisation strategy for the environmentally conscious design of chemical supply chains under uncertainty in the damage assessment model. Computers & Chemical Engineering, 34(1), 42–58.CrossRefGoogle Scholar
  18. 18.
    Pishvaee, M. S., Farahani, R. Z., & Dullaert, W. (2010). A memetic algorithm for bi-objective integrated forward/reverse logistics network design. Computers & Operations Research, 37(6), 1100–1112.MATHCrossRefGoogle Scholar
  19. 19.
    Chen, C.-L., Wang, B.-W., & Lee, W.-C. (2003). Multiobjective optimisation for a multienterprise supply chain network. Industrial & Engineering Chemistry Research, 42(9), 1879–1889.CrossRefGoogle Scholar
  20. 20.
    Mitra, K., Gudi, R. D., Patwardhan, S. C., & Sardar, G. (2009). Towards resilient supply chains: uncertainty analysis using fuzzy mathematical programming. Chemical Engineering Research and Design, 87(7), 967–981.CrossRefGoogle Scholar
  21. 21.
    McDonald, C. M., & Karimi, I. A. (1997). Planning and scheduling of parallel semicontinuous processes: 1. production planning. Industrial and Engineering Chemistry Research, 36, 2691–2700.CrossRefGoogle Scholar
  22. 22.
    Franca, R. B., Jones, E. C., Richards, C. N., & Carlson, J. P. (2009). Multi-objective stochastic supply chain modeling to evaluate tradeoffs between profit and quality. International Journal of Production Economics,
  23. 23.
    Azaron, A., Brown, K. N., Tarim, S. A., & Modarres, M. (2008). A multi-objective stochastic programming approach for supply chain design considering risk. International Journal of Production Economics, 116(1), 129–138.CrossRefGoogle Scholar
  24. 24.
    Al-Mutawah, K., Lee, V., & Cheung, Y. (2006). Modeling supply chain complexity using a distributed multi-objective genetic algorithm (vol. 3980, pp. 586–595). Lecture Notes in Computer Science, Berlin: Springer.Google Scholar
  25. 25.
    Demirtas, E. A., & Ozden, U. (2008). An integrated multi-objective decision-making process for multi-period lot-sizing with supplier selection. Omega, 36(4), 509–521 (Special Issue on Logistics: New Perspectives and Challenges).Google Scholar
  26. 26.
    Narasimhan, R., Talluri, S., & Mahapatra, S. (2006). Multiproduct, multicriteria model for supplier selection with product life-cycle considerations. Decision Sciences, 37(4), 557.CrossRefGoogle Scholar
  27. 27.
    Du, F., & Evans, G. W. (2008). A bi-objective reverse logistics network analysis for post-sale service. Computers & Operations Research, 35, 2617–2634.MATHGoogle Scholar
  28. 28.
    Jayaraman, V. (1999). A multi-objective logistics model for a capacitated service facility problem. International Journal of Physical Distribution & Logistics Management, 29(1), 65–81.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Farahani, R. Z., & Asgari, N. (2007). Combination of MCDM and covering techniques in a hierarchical model for facility location: a case study. European Journal of Operational Research, 176, 1839–1858.MATHCrossRefGoogle Scholar
  30. 30.
    Karpak, B., Kumcu, E., & Kasuganti, R. R. (2001). Purchasing materials in the supply chain: managing a multi-objective task. European Journal of Purchasing & Supply Management, 7, 209–216.CrossRefGoogle Scholar
  31. 31.
    Wadhwa, V., & Ravindran, R. (2007). Vendor selection in outsourcing. Computers & Operations Research, 34(12), 3725–3737.MATHCrossRefGoogle Scholar
  32. 32.
    Erol, I., & Ferrell, W. G., Jr. (2004). A methodology to support decision making across the supply chain of an industrial distributor. International Journal of Production Economics, 89, 119–129.CrossRefGoogle Scholar
  33. 33.
    Li, L., & Zabinsky, Z. B. (2010). Incorporating uncertainty into a supplier selection problem. International Journal of Production Economics,
  34. 34.
    Che, Z. H., & Chiang, C. J. (2010). A modified Pareto genetic algorithm for multi-objective build-to-order supply chain planning with product assembly. Advances in Engineering Software, 41(7–8), 1011–1022.MATHCrossRefGoogle Scholar
  35. 35.
    Quariguasi Frota Neto, J., Walther, G., Bloemhof, J., van Nunen, J. A. E. E., & Spengler, T. (2009). A methodology for assessing eco-efficiency in logistics networks. European Journal of Operational Research, 193(3), 670–682.MATHCrossRefGoogle Scholar
  36. 36.
    Sheu, J.-B. (2008). Green supply chain management, reverse logistics and nuclear power generation. Transportation Research Part E: Logistics and Transportation Review, 44(1), 19–46.MathSciNetCrossRefGoogle Scholar
  37. 37.
    Banarjee, S., Dangayac, G. S., Mukherjee, S. K., & Mohanti, P. K. (2008). Modelling process and supply chain scheduling using hybrid meta-heuristics. In Metaheuristics for Scheduling in Industrial and Manufacturing Applications (vol. 128 of Studies in Computational Intelligence, pp. 277–300). Heidelberg: Springer.Google Scholar
  38. 38.
    Fu, M. C., Glover, F., & April, J. (2005). Simulation optimisation: a review, new development, and applications. In Proceedings of the 2005 Winter Simulation Conference (pp. 83–95). Orlando, FLGoogle Scholar
  39. 39.
    Ding, H., Benyoucef, L., & Xie, X. (2006). A simulation-based multi-objective genetic algorithm approach for networked enterprises optimisation. Engineering Applications of Artificial Intelligence, 19(6), 609–623.CrossRefGoogle Scholar
  40. 40.
    Ding, H., Benyoucef, L., & Xie, X. (2008). Simulation-based evolutionary multi-objective optimisation approach for integrated decision-making in supplier selection. International Journal of Computer Applications in Technology, 31(3/4), 144–157.CrossRefGoogle Scholar
  41. 41.
    Ding, H., Benyoucef, L., & Xie, X. (2009). Stochastic multi-objective production-distribution network design using simulation-based optimisation. International Journal of Production Research, 47(2), 479–505.CrossRefGoogle Scholar
  42. 42.
    Amodeo, L., Chen, H., & El Hadji, A. (2007). Multi-objective supply chain optimisation: an industrial case study. In Applications of Evolutionary Computing (vol. 4448, pp. 732–741). Berlin: Springer.Google Scholar
  43. 43.
    Amodeo, L., Chen, H., & El Hadji, A. (2007). Supply chain inventory optimisation with multi-objectives: an industrial case study. In Advances in Computational Intelligence in Transport, Logistics, and Supply Chain Management (vol. 144, pp. 211–230). Berlin: Springer.Google Scholar
  44. 44.
    Duggan, J. (2007). Using system dynamics and multiple objective optimisation to support policy analysis for complex systems. In Complex Decision Making (pp. 59–81). Berlin: Springer.Google Scholar
  45. 45.
    Sterman, J. D. (1989). Modeling managerial behaviour: misperceptions of feedback in a dynamic decision making environment. Management Science, 35(3), 321–339.CrossRefGoogle Scholar
  46. 46.
    Mahnam, M., Yadollahpour, M. R., Famil-Dardashti, V., & Hejazi, S. R. (2009). Supply chain modeling in uncertain environment with bi-objective approach. Computers and Industrial Engineering, 56(4), 1535–1544.CrossRefGoogle Scholar
  47. 47.
    Komoto, H., Tomiyama, T., Silvester, S., & Brezet, H. (2009). Analyzing supply chain robustness for OEMs from a life cycle perspective using life cycle simulation. International Journal of Production Economics, Available online
  48. 48.
    Brintrup, A. (2010). Behaviour adaptation in the multi-agent, multi-objective and multi-role supply chain. Computers in Industry, 61(7), 636–645.CrossRefGoogle Scholar
  49. 49.
    Ding, H., Benyoucef, L., & Xie, X. (2005). A simulation optimisation methodology for supplier selection problem. International Journal of Computer Integrated Manufacturing, 18(2), 210–224.CrossRefGoogle Scholar
  50. 50.
    Mansouri, S. A. (2006). A simulated annealing approach to a bi-criteria sequencing problem in a two-stage supply chain. Computers & Industrial Engineering, 50, 105–119.CrossRefGoogle Scholar
  51. 51.
    Daniel, S. R., & Rajendran, C. (2006). Heuristic approaches to determine base-stock levels in a serial supply chain with a single objective and with multiple objectives. European Journal of Operational Research, 175, 566–592.MATHCrossRefGoogle Scholar
  52. 52.
    Pokharel, S. (2008). A two objective model for decision making in a supply chain. International Journal of Production Economics, 111(2), 378–388.MathSciNetCrossRefGoogle Scholar
  53. 53.
    Ruiz-Torres, A. J., Ho, J. C., & Lopez, F. J. (2006). Generating Pareto schedules with outsource and internal parallel resources. International Journal of Production Economics, 103(2), 810–825.CrossRefGoogle Scholar
  54. 54.
    Ho, J. C., & Chang, Y.-L. (1995). Minimizing the number of tardy jobs for m parallel machines. European Journal of Operational Research, 84(2), 343–355.MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Lau, H., Chan, T., Tsui, W., Chan, F., Ho, G., & Choy, K. (2009). A fuzzy guided multi-objective evolutionary algorithm model for solving transportation problem. Expert Systems with Applications, 36(4), 8255–8268.CrossRefGoogle Scholar
  56. 56.
    Deb, K., & Jain, S. (2004). Evaluating evolutionary multi-objective optimization algorithms using running performance metrics. In K. C. Tan, M. H. Lim, X. Yao, & L. Wang (Eds.), Recent Advances in Simulated Evolution and Learning (pp. 307–326). Singapore: World Scientific Publishers.Google Scholar
  57. 57.
    Deb, K. (2001). Multi-objective optimisation using evolutionary algorithms. Chchester, UK: Wiley.Google Scholar
  58. 58.
    Forrester, J. (1958). Industrial dynamics: a major breakthrough for decision makers. Harvard Business Review, 36(4), 37–66.Google Scholar
  59. 59.
    Towill, D. R. (1982). Dynamic analysis of an inventory and order based production control system. International Journal of Production Research, 20(6), 671–687.CrossRefGoogle Scholar
  60. 60.
    John, S., Naim, M. M., & Towill, D. R. (1994). Dynamic analysis of a WIP compensated decision support system. International Journal of Manufacturing System Design, 1(4), 83–297.Google Scholar
  61. 61.
    Lee, H. L., Padmanabhan, V., & Whang, S. (1997). Information distortion in a supply chain: the bullwhip effect. Management Science, 43(4), 546–558.MATHCrossRefGoogle Scholar
  62. 62.
    Disney, S. M., Naim, M. M., & Potter, A. (2004). Assessing the impact of e-business on supply chain dynamics. International Journal of Production Economics, 89, 109–118.CrossRefGoogle Scholar
  63. 63.
    Sarimveis, H., Panagiotis, P., Tarantilis, C. D., & Kiranoudis, C. T. (2008). Dynamical modeling and control of supply chain systems: a review. Computers & Operations Research, 35, 3530–3561.MATHCrossRefGoogle Scholar
  64. 64.
    Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation, 6(2), 181–197.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Tehseen Aslam
    • 1
  • Philip Hedenstierna
    • 1
  • Amos H. C. Ng
    • 1
  • Lihui Wang
    • 1
  1. 1.Virtual Systems Research CentreUniversity of SkövdeSkövdeSweden

Personalised recommendations