A Simulation Optimisation Framework for Container Terminal Layout Design

  • Loo Hay Lee
  • Ek Peng Chew
  • Kee Hui Chua
  • Zhuo Sun
  • Lu Zhen


Port designers are facing challenges in choosing appropriate terminal layouts to maximise operational efficiencies. This study aims to address this problem by providing a simulation optimisation framework for container terminal layout design. This framework consists of three main modules which are automated layout generator (ALG), the multi-objective optimal computing budget allocation (MOCBA) algorithm and the genetic algorithm (GA). ALG is to automatically generate a simulation model for a set of given design parameters; MOCBA is to intelligently determine the simulation replications to different designs for identifying promising designs; GA is to help generate new design parameters for optimisation. Numerical examples are used to demonstrate the applicability of this framework.


Genetic Algorithm Design Alternative Container Terminal Quay Crane Simulation Optimisation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Steenken, D., Voß, S., & Stahlbock, R. (2004). Container terminal operation and operations research—a classification and literature review. OR Spectrum, 26, 3–49.Google Scholar
  2. 2.
    Vis, I. F. A., & de Koster, R. (2003). Transshipment of containers at a container terminal: An overview. European Journal of Operational Research, 147, 1–16.MATHCrossRefGoogle Scholar
  3. 3.
    Kozan, E. (1997). Comparison of analytical and simulation planning models of seaport container terminals. Transportation Planning and Technology, 20, 235–248.CrossRefGoogle Scholar
  4. 4.
    Bruzzone, A.G., Giribone, P., & Revetria, R. (1999). Operative requirements and advances for the new generation simulators in multimodal container terminals: Proceedings of the 1999 Winter Simulation Conference (pp. 1243–1252).Google Scholar
  5. 5.
    Yun, W. Y., & Choi, Y. S. (1999). A simulation model for container-terminal operation analysis using an object-oriented approach. International Journal of Production Economics, 59, 221–230.CrossRefGoogle Scholar
  6. 6.
    Nam, K., Kwak, K., & Yu, M. (2002). Simulation study of container terminal performance. Journal of Waterway, Port, Coastal, and Ocean Engineering, 128, 126–132.CrossRefGoogle Scholar
  7. 7.
    Shabayek, A. A., & Yeung, W. W. (2002). A simulation model for the Kwai Chung container terminals in Hong Kong. European Journal of Operational Research, 140, 1–11.MATHCrossRefGoogle Scholar
  8. 8.
    Sgouridis, S. P., Makris, D., & Angelides, D. C. (2003). Simulation analysis for midterm yard planning in container terminal. Journal of Waterway, Port Coastal and Ocean Engineering, 129, 178–187.CrossRefGoogle Scholar
  9. 9.
    Yang, C. H., Choi, Y. S., & Ha, T. Y. (2004). Simulation-based performance evaluation of transport vehicles at automated container terminals. OR Spectrum, 26, 149–170.MATHCrossRefGoogle Scholar
  10. 10.
    Lee, L.H., Chew, E.P., Cheng, H.X. & Han Y.B. (2008). A study of port design automation concept: Proceedings of the 2008 Winter Simulation Conference, 15 (pp. 2726–2731).Google Scholar
  11. 11.
    Olafsson, S., & Kim, J. (2002). Simulation optimization: Proceedings of the 2002 Winter Simulation Conference.Google Scholar
  12. 12.
    Fu, M.C., Glover, F.W. & April, J. (2005). Simulation optimization: A review, new developments, and applications: Proceedings of the 2005 Winter Simulation Conference, 14 (pp. 83–95).Google Scholar
  13. 13.
    Ramaekers, K. (2009). A simulation optimization approach for inventory management decision support based on incomplete information. 4OR: A Quarterly Journal of Operations Research, 7, 93–96.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Adewunmi, A., & Aickelin, U. (2007). Noise Reduction Technique for a Simulation Optimization Study, 2007.Google Scholar
  15. 15.
    Lee, L. H., Chew, E. P., Teng, S. Y., & Chen, Y. K. (2008). Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem. European Journal of Operational Research, 189, 476–491.MATHCrossRefGoogle Scholar
  16. 16.
    Lee, L.H., Chew, E.P., & Teng, S.Y. (2006). Integration of statistical selection with search mechanism for solving multiobjective simulation-optimization problems: Proceedings of the 2006 Winter Simulation Conference, 15 (pp. 359–368).Google Scholar
  17. 17.
    Lee, L. H., Chew, E. P., Teng, S. Y., & Goldsman, D. (2010). Finding the non-dominated Pareto set for multi-objective simulation models. IIE Transactions, 42(9), 656–674.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Loo Hay Lee
    • 1
  • Ek Peng Chew
    • 1
  • Kee Hui Chua
    • 1
  • Zhuo Sun
    • 2
  • Lu Zhen
    • 1
  1. 1.Department of Industrial and Systems EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Centre for Maritime StudiesNational University of SingaporeSingaporeSingapore

Personalised recommendations