Advertisement

Reconstruction of Sensor Faults

  • Halim Alwi
  • Christopher Edwards
  • Chee Pin Tan
Part of the Advances in Industrial Control book series (AIC)

Abstract

This chapter will focus specifically on sensor faults. Different formulations will be considered in which the measured output signals are filtered to yield ‘fictitious systems’ in which sensor faults appear as ‘actuator faults’. Consequently, the actuator fault reconstruction ideas from the previous chapters can be applied to the fictitious system to reconstruct the sensor fault. The results will also be extended to the case of unstable plants which result in nonminimum phase configurations post-filtering.

Keywords

Sensor Fault Sideslip Angle Actuator Fault Symmetric Positive Definite Matrix Pitch Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 15.
    Baev, S., Shtessel, Y., Edwards, C.: HOSM observer for a class of non-minimum phase causal nonlinear MIMO systems. In: Proceedings of the IFAC World Congress, Seoul, pp. 4797–4802 (2008) Google Scholar
  2. 21.
    Bejarano, F.J., Fridman, L., Poznyak, A.: Estimation of unknown inputs, with application to fault detection via partial hierarchical observation. In: Proceedings of the European Control Conference, Kos, Greece, pp. 5154–5161 (2007) Google Scholar
  3. 52.
    Chen, J., Zhang, H.: Robust detection of faulty actuators via unknown input observers. Int. J. Syst. Sci. 22, 1829–1839 (1991) CrossRefMATHGoogle Scholar
  4. 54.
    Chen, W., Saif, M.: Actuator fault diagnosis for uncertain linear systems using a high-order sliding mode robust differentiator (HOSMRD). Int. J. Robust Nonlinear Control 18, 413–426 (2008) MathSciNetCrossRefGoogle Scholar
  5. 55.
    Chilali, M., Gahinet, P.: \(\mathcal{H}_{\infty}\) design with pole placement constraints: an LMI approach. IEEE Trans. Autom. Control 41, 358–367 (1996) MathSciNetCrossRefMATHGoogle Scholar
  6. 80.
    Edwards, C., Lombaerts, T., Smaili, H.: Fault Tolerant Flight Control: A Benchmark Challenge vol. 399. Springer, Berlin (2010) CrossRefGoogle Scholar
  7. 82.
    Edwards, C., Spurgeon, S.K.: On the development of discontinuous observers. Int. J. Control 59, 1211–1229 (1994) MathSciNetCrossRefMATHGoogle Scholar
  8. 84.
    Edwards, C., Spurgeon, S.K.: Sliding mode stabilization of uncertain systems using only output information. Int. J. Control 62, 1129–1144 (1995) MathSciNetCrossRefMATHGoogle Scholar
  9. 86.
    Edwards, C., Spurgeon, S.K.: A sliding mode control observer based FDI scheme for the ship benchmark. Eur. J. Control 6, 341–356 (2000) Google Scholar
  10. 87.
    Edwards, C., Tan, C.P.: A comparison of sliding mode and unknown input observers for fault reconstruction. Eur. J. Control 16, 245–260 (2006) MathSciNetCrossRefGoogle Scholar
  11. 93.
    Floquet, T., Barbot, J.P.: An observability form for linear systems with unknown inputs. Int. J. Control 79, 132–139 (2006) MathSciNetCrossRefMATHGoogle Scholar
  12. 96.
    Floquet, T., Edwards, C., Spurgeon, S.K.: On sliding mode observers for systems with unknown inputs. Int. J. Adapt. Control Signal Process. 21, 638–656 (2007) MathSciNetCrossRefMATHGoogle Scholar
  13. 97.
    Forssell, L., Nilsson, U.: ADMIRE, the aero-data model in a research environment version 4.0, model description. Technical report FOI-R-1624-SE, Swedish Defence Agency (FOI) (2005) Google Scholar
  14. 101.
    Fridman, L., Davila, J., Levant, A.: High-order sliding mode observation of linear systems with unknown inputs. In: Proceedings of the IFAC World Congress, Seoul, pp. 4779–4790 (2008) Google Scholar
  15. 122.
    Härkegård, O., Glad, S.T.: Resolving actuator redundancy—optimal control vs. control allocation. Automatica 41(1), 137–144 (2005) MathSciNetCrossRefMATHGoogle Scholar
  16. 124.
    Heck, B.S., Yallapragada, S.V., Fan, M.K.H.: Numerical methods to design the reaching phase of output feedback variable structure control. Automatica 31, 275–279 (1995) MathSciNetCrossRefMATHGoogle Scholar
  17. 183.
    Marcos, A., Balas, G.J.: A Boeing 747-100/200 aircraft fault tolerant and diagnostic benchmark. Technical report AEM-UoM-2003-1, Department of Aerospace and Engineering Mechanics, University of Minnesota (2003) Google Scholar
  18. 197.
    Ng, K.Y., Tan, C.P., Edwards, C., Kuang, Y.C.: New results in robust actuator fault reconstruction in linear uncertain systems. Int. J. Robust Nonlinear Control 17, 1294–1319 (2007) MathSciNetCrossRefMATHGoogle Scholar
  19. 219.
    Saif, M., Guan, Y.: A new approach to robust fault detection and identification. IEEE Trans. Aerosp. Electron. Syst. 29, 685–695 (1993) CrossRefGoogle Scholar
  20. 228.
    Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design. Wiley, New York (1996) Google Scholar
  21. 234.
    Smaili, M.H., Breeman, J., Lombaerts, T.J.J., Joosten, D.A.: A simulation benchmark for integrated fault tolerant flight control evaluation. In: AIAA Modeling and Simulation Technologies Conference and Exhibit, Keystone, CO, USA, pp. 563–585 (2006) Google Scholar
  22. 256.
    Utkin, V.I.: Sliding Modes in Control Optimization. Springer, Berlin (1992) MATHGoogle Scholar
  23. 276.
    Xiong, Y., Saif, M.: A novel design for robust fault diagnostic observer. In: IEEE Conference on Desicion and Control, pp. 952–957 (1998) Google Scholar
  24. 297.
    Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall, New Jersey (1996) MATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Halim Alwi
    • 1
  • Christopher Edwards
    • 1
  • Chee Pin Tan
    • 2
  1. 1.Department of EngineeringUniversity of LeicesterLeicesterUK
  2. 2.School of EngineeringMonash University Sunway CampusBandar SunwayMalaysia

Personalised recommendations