Advertisement

Robust Fault Reconstruction using Observers in Cascade

  • Halim Alwi
  • Christopher Edwards
  • Chee Pin Tan
Part of the Advances in Industrial Control book series (AIC)

Abstract

This chapter examines the assumptions that must be made for the observer schemes described earlier in the book to be applicable. (These amount to relative degree one minimum phase limitations on the transfer function matrices relating the unknown fault signals to the measurements.) This chapter explores ways of obviating these limitations, at the expense of creating cascaded observer structures. The components of the cascade will be observer formulations taken from earlier chapters, and explicit constructive algorithms will be given to ensure the overall scheme can still accurately estimate actuator faults in the case where the relative degree between the faults and the measurements is greater than or equal to two. The advantages that these schemes offer over traditional linear methods (particularly Unknown Input Observers) will be demonstrated.

Keywords

Minimum Phase Augmented System Slide Mode Observer Multiple Observer Fault Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 19.
    Barbot, J.P., Djemai, M., Boukhobza, T.: Implicit triangular observer form dedicated to a sliding mode observer for systems with unknown inputs. Asian J. Control 5, 513–527 (2003) Google Scholar
  2. 22.
    Bejarano, F.J., Fridman, L., Poznyak, A.: Exact state estimation for linear systems with unknown inputs based on hierarchical super-twisting algorithm. Int. J. Robust Nonlinear Control 17, 1734–1753 (2007) MathSciNetCrossRefMATHGoogle Scholar
  3. 23.
    Bejarano, F.J., Fridman, L., Poznyak, A.: Hierarchical observer for strongly detectable systems via second order sliding mode. In: Proceedings of the Conference on Decision and Control, New Orleans, USA, pp. 487–492 (2007) Google Scholar
  4. 51.
    Chen, J., Patton, R.J.: Robust Model-based Fault Diagnosis for Dynamic Systems. Kluwer Academic, Norwell (1999) MATHGoogle Scholar
  5. 54.
    Chen, W., Saif, M.: Actuator fault diagnosis for uncertain linear systems using a high-order sliding mode robust differentiator (HOSMRD). Int. J. Robust Nonlinear Control 18, 413–426 (2008) MathSciNetCrossRefGoogle Scholar
  6. 93.
    Floquet, T., Barbot, J.P.: An observability form for linear systems with unknown inputs. Int. J. Control 79, 132–139 (2006) MathSciNetCrossRefMATHGoogle Scholar
  7. 94.
    Floquet, T., Barbot, J.P.: Simultaneous robust state observation and unknown input estimation. In: International Workshop on Variable Structure Systems, Barcelona, Spain (2007) Google Scholar
  8. 95.
    Floquet, T., Edwards, C., Spurgeon, S.K.: On sliding mode observers with unknown inputs. In: International Workshop on Variable Structure Systems, Alghero, Italy (2006) Google Scholar
  9. 96.
    Floquet, T., Edwards, C., Spurgeon, S.K.: On sliding mode observers for systems with unknown inputs. Int. J. Adapt. Control Signal Process. 21, 638–656 (2007) MathSciNetCrossRefMATHGoogle Scholar
  10. 100.
    Fridman, L., Davila, J., Levant, A.: High-order sliding mode observation and fault detection. In: Proceedings of the Conference on Decision and Control, New Orleans, USA, pp. 4317–4322 (2007) Google Scholar
  11. 123.
    Hasakara, I., Özgüner, U., Utkin, V.I.: On sliding mode observers via equivalent control approach. Int. J. Control 71, 1051–1067 (1998) CrossRefGoogle Scholar
  12. 166.
    Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998) MathSciNetCrossRefMATHGoogle Scholar
  13. 190.
    Moreno, J.A., Osorio, M.: A Lyapunov approach to second-order sliding mode controllers and observers. In: 47th IEEE Conference on Decision and Control, Cancun, Mexico, pp. 2856–2861 (2008) CrossRefGoogle Scholar
  14. 197.
    Ng, K.Y., Tan, C.P., Edwards, C., Kuang, Y.C.: New results in robust actuator fault reconstruction in linear uncertain systems. Int. J. Robust Nonlinear Control 17, 1294–1319 (2007) MathSciNetCrossRefMATHGoogle Scholar
  15. 227.
    Sira-Ramirez, H., Spurgeon, S.K.: On the robust design of sliding observers for linear systems. Syst. Control Lett. 23, 9–14 (1994) MathSciNetCrossRefMATHGoogle Scholar
  16. 248.
    Tan, C.P., Edwards, C.: Sliding mode observers for robust detection and reconstruction of actuator and sensor faults. Int. J. Robust Nonlinear Control 13, 443–463 (2003) MathSciNetCrossRefMATHGoogle Scholar
  17. 277.
    Xiong, Y., Saif, M.: Sliding mode observer for nonlinear uncertain systems. IEEE Trans. Autom. Control 46, 2012–2017 (2001) MathSciNetCrossRefMATHGoogle Scholar
  18. 297.
    Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall, New Jersey (1996) MATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Halim Alwi
    • 1
  • Christopher Edwards
    • 1
  • Chee Pin Tan
    • 2
  1. 1.Department of EngineeringUniversity of LeicesterLeicesterUK
  2. 2.School of EngineeringMonash University Sunway CampusBandar SunwayMalaysia

Personalised recommendations