Advertisement

Sliding Mode Observers for Fault Detection

  • Halim Alwi
  • Christopher Edwards
  • Chee Pin Tan
Part of the Advances in Industrial Control book series (AIC)

Abstract

This chapter considers sliding modes applied to the problem of observer design. The historical development is outlined leading to the description of a specific class of sliding mode observer which will be used throughout the book. It will be shown how the unique properties associated with the so-called equivalent injection signal necessary to maintain sliding can be exploited to reconstruct actuator and sensor faults modelled as additive perturbations to the inputs and the outputs of the plant. Design methodologies based on Linear Matrix Inequalities (LMIs) are presented. These approaches exploit all the available degrees of freedom associated with the choice of the observer gains. The chapter describes sliding mode observers which can reconstruct faults and yet be robust to disturbances/uncertainties which may corrupt the quality of the reconstructions resulting from mismatches between the model about which the observer is designed and the real system. Initially, the design method is formulated for the case of actuator faults. A comparison is also made between the sliding mode observer schemes developed in the chapter and more traditional linear unknown input observers which are prevalent in the literature.

Keywords

Reachability Condition Actuator Fault Symmetric Positive Definite Matrix Observer Gain Distribution Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 6.
    Anderson, B.D.O., Moore, J.B.: Optimal Control: Linear Quadratic Methods. Prentice Hall, New York (1989) Google Scholar
  2. 18.
    Barbot, J.P., Boukhobza, T., Djemai, M.: Sliding mode observer for triangular input form. In: Proceedings of the 35th IEEE Conference on Decision and Control, CDC, pp. 1489–1490 (1996) CrossRefGoogle Scholar
  3. 19.
    Barbot, J.P., Djemai, M., Boukhobza, T.: Implicit triangular observer form dedicated to a sliding mode observer for systems with unknown inputs. Asian J. Control 5, 513–527 (2003) Google Scholar
  4. 33.
    Boyd, S.P., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia (1994) Google Scholar
  5. 45.
    Burton, J.A., Zinober, A.S.I.: Continuous approximation of variable structure control. Int. J. Syst. Sci. 17, 876–885 (1986) CrossRefGoogle Scholar
  6. 50.
    Chen, J., Patton, R., Zhang, H.: Design of unknown input observers and robust fault detection filters. Int. J. Control 63, 85–105 (1996) MathSciNetCrossRefMATHGoogle Scholar
  7. 51.
    Chen, J., Patton, R.J.: Robust Model-based Fault Diagnosis for Dynamic Systems. Kluwer Academic, Norwell (1999) MATHGoogle Scholar
  8. 52.
    Chen, J., Zhang, H.: Robust detection of faulty actuators via unknown input observers. Int. J. Syst. Sci. 22, 1829–1839 (1991) CrossRefMATHGoogle Scholar
  9. 55.
    Chilali, M., Gahinet, P.: \(\mathcal{H}_{\infty}\) design with pole placement constraints: an LMI approach. IEEE Trans. Autom. Control 41, 358–367 (1996) MathSciNetCrossRefMATHGoogle Scholar
  10. 61.
    Darouach, M.: On the novel approach to the design of unknown input observers. IEEE Trans. Autom. Control 39, 698–699 (1994) MathSciNetCrossRefMATHGoogle Scholar
  11. 62.
    Darouach, M., Zasadzinski, M., Xu, S.J.: Full-order observers for linear systems with unknown inputs. IEEE Trans. Autom. Control 39, 606–609 (1994) MathSciNetCrossRefMATHGoogle Scholar
  12. 64.
    Davies, R., Spurgeon, S.K.: Robust implementation of sliding mode control schemes. Int. J. Syst. Sci. 24, 733–743 (1993) MathSciNetCrossRefMATHGoogle Scholar
  13. 67.
    de Jager, B.: Comparison of methods to eliminate chattering and avoid steady state errors in sliding mode digital control. In: Proceedings of the IEEE VSC and Lyapunov Workshop, Sheffield, UK, pp. 37–42 (1992) Google Scholar
  14. 71.
    Dorling, C.M., Zinober, A.S.I.: A comparative study of the sensitivity of observers. In: Proceedings of the IASTED Symposium on Applied Control and Identification, Copenhagen, Denmark, pp. 6–32638 (1983) Google Scholar
  15. 74.
    Drakunov, S., Utkin, V.I.: Sliding mode observers: tutorial. In: Proceedings of the 34th IEEE Conference of Decision and Control, pp. 3376–3378 (1995) Google Scholar
  16. 82.
    Edwards, C., Spurgeon, S.K.: On the development of discontinuous observers. Int. J. Control 59, 1211–1229 (1994) MathSciNetCrossRefMATHGoogle Scholar
  17. 83.
    Edwards, C., Spurgeon, S.K., Patton, R.J.: Sliding mode observers for fault detection. Automatica 36, 541–553 (2000) MathSciNetCrossRefMATHGoogle Scholar
  18. 85.
    Edwards, C., Spurgeon, S.K.: Sliding Mode Control: Theory and Applications. Taylor & Francis, London (1998) Google Scholar
  19. 86.
    Edwards, C., Spurgeon, S.K.: A sliding mode control observer based FDI scheme for the ship benchmark. Eur. J. Control 6, 341–356 (2000) Google Scholar
  20. 102.
    Fridman, L., Shtessel, Y., Edwards, C., Yan, X.G.: Higher-order sliding mode observer for state estimation and input reconstruction in nonlinear systems. Int. J. Robust Nonlinear Control 18(4–5), 399–412 (2008) MathSciNetCrossRefGoogle Scholar
  21. 104.
    Gahinet, P., Nemirovski, A., Laub, A., Chilali, M.: Lmi Control Toolbox, User Guide. The Mathworks, Natick (1995) Google Scholar
  22. 141.
    Jiang, B., Staroswiecki, M., Cocquempot, V.: Fault estimation in nonlinear uncertain systems using robust sliding mode observers. IEE Proc., Control Theory Appl. 151, 29–37 (2004) CrossRefGoogle Scholar
  23. 161.
    Kudva, P., Viswanadham, N., Ramakrishna, A.: Observers for linear systems with unknown inputs. IEEE Trans. Autom. Control 25, 113–115 (1980) MathSciNetCrossRefMATHGoogle Scholar
  24. 174.
    Luenberger, D.G.: An introduction to observers. IEEE Trans. Autom. Control 16, 596–602 (1971) CrossRefGoogle Scholar
  25. 175.
    Maciejowski, J.M.: Multivariable Feedback Design. Addison-Wesley, Reading (1989) MATHGoogle Scholar
  26. 207.
    Patton, R.J., Chen, J.: Optimal unknown input distribution matrix selection for robust fault diagnosis. Automatica 29, 837–841 (1993) CrossRefMATHGoogle Scholar
  27. 216.
    Rosenbrock, H.H.: State Space and Multivariable Theory. Wiley, New York (1970) MATHGoogle Scholar
  28. 219.
    Saif, M., Guan, Y.: A new approach to robust fault detection and identification. IEEE Trans. Aerosp. Electron. Syst. 29, 685–695 (1993) CrossRefGoogle Scholar
  29. 229.
    Slotine, J.J.E., Hedrick, J.K., Misawa, E.A.: On sliding observers for nonlinear systems. Trans. ASME J. Dyn. Syst. Meas. Control 109, 245–252 (1987) CrossRefMATHGoogle Scholar
  30. 246.
    Takahashi, R.H.C., Peres, P.L.D.: Unknown input observers for uncertain systems: a unifying approach. Eur. J. Control 5, 261–275 (1995) Google Scholar
  31. 248.
    Tan, C.P., Edwards, C.: Sliding mode observers for robust detection and reconstruction of actuator and sensor faults. Int. J. Robust Nonlinear Control 13, 443–463 (2003) MathSciNetCrossRefMATHGoogle Scholar
  32. 256.
    Utkin, V.I.: Sliding Modes in Control Optimization. Springer, Berlin (1992) MATHGoogle Scholar
  33. 265.
    Walcott, B.L., Corless, M.J., Żak, S.H.: Comparative study of nonlinear state observation techniques. Int. J. Control 45, 2109–2132 (1987) CrossRefMATHGoogle Scholar
  34. 266.
    Walcott, B.L., Żak, S.H.: State observation of nonlinear uncertain dynamical systems. IEEE Trans. Autom. Control 32, 166–170 (1987) CrossRefMATHGoogle Scholar
  35. 271.
    Willems, J.C.: Least squares optimal control and the algebraic Ricatti equation. IEEE Trans. Autom. Control 16, 621–634 (1971) MathSciNetCrossRefGoogle Scholar
  36. 276.
    Xiong, Y., Saif, M.: A novel design for robust fault diagnostic observer. In: IEEE Conference on Desicion and Control, pp. 952–957 (1998) Google Scholar
  37. 277.
    Xiong, Y., Saif, M.: Sliding mode observer for nonlinear uncertain systems. IEEE Trans. Autom. Control 46, 2012–2017 (2001) MathSciNetCrossRefMATHGoogle Scholar
  38. 279.
    Yan, X.G., Edwards, C.: Sensor fault detection and isolation for nonlinear systems based on sliding mode observers. Int. J. Adapt. Control Signal Process. 21, 657–673 (2007) MathSciNetCrossRefMATHGoogle Scholar
  39. 280.
    Yan, X.G., Edwards, C.: Adaptive sliding mode observer-based fault reconstruction for nonlinear systems with parametric uncertainties. IEEE Trans. Ind. Electron. 55, 4029–4036 (2008) CrossRefGoogle Scholar
  40. 281.
    Yan, X.G., Edwards, C.: Fault estimation for single output nonlinear systems using an adaptive sliding mode observer. IET Control Theory Appl. 2, 841–850 (2008) MathSciNetCrossRefGoogle Scholar
  41. 282.
    Yan, X.G., Edwards, C.: Nonlinear robust fault reconstruction and estimation using a sliding mode observer. Automatica 43(9), 1605–1614 (2007) MathSciNetCrossRefMATHGoogle Scholar
  42. 297.
    Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall, New Jersey (1996) MATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Halim Alwi
    • 1
  • Christopher Edwards
    • 1
  • Chee Pin Tan
    • 2
  1. 1.Department of EngineeringUniversity of LeicesterLeicesterUK
  2. 2.School of EngineeringMonash University Sunway CampusBandar SunwayMalaysia

Personalised recommendations