Nanotube- and Nanorod-Based Dye-Sensitized Solar Cells

  • Yung-Eun Sung
  • Soon Hyung Kang
  • Jae-Yup Kim
Part of the Green Energy and Technology book series (GREEN)


Considerable efforts have been devoted to the design and synthesis of low-dimensional, nanostructured materials due to their morphology-dependent performances. In particular, one-dimensional (1-D) TiO2 nanostructures, including nanorods (NRs), nanowires (NWs), and nanotubes (NTs), have attracted considerable interest due to their unique characteristics. In dye-sensitized solar cell (DSSC) operation, 1-D nanostructure-based photoanodes can contribute to rapid electron transport, ensuring efficient charge collection by the conducting substrate in competition with recombination. Relying on the ordering of 1-D TiO2 nanomaterial, the conversion efficiency of DSSCs was affected because electron collection is determined by trapping/detrapping events at the site of the electron traps, such as defects, surface states, grain boundaries, and self-trapping. This point has promoted research on self-ordered, 1-D photoanodes stretched on a substrate with enhanced electron transport properties due to their desirable features: highly decreased intercrystalline contacts and a structure with a specified directionality. In this literature review, the preparation of various 1-D nanomaterials from disordered to ordered states and their electron dynamics in the application of DSSCs are reviewed.


TiO2 Film Oriented Attachment TiO2 Nanocrystals Photoconversion Efficiency Transparent Conductive Oxide Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Research Center for Energy Conversion and Storage (Contract No. R11-2002-102-00000-0) and the WCU (World Class University) program (R31-10013) through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology.


  1. 1.
    Bennett JM, Pelletier E, Albrand G et al (1989) Comparison of the properties of titanium dioxide films prepared by various techniques. Appl Opt 28:3303–3317CrossRefGoogle Scholar
  2. 2.
    Wang TM, Zheng SK, Hao WC et al (2002) Studies on photocatalytic activity and transmittance spectra of TiO2 thin films prepared by r.f. magnetron sputtering method. Surf Coat Technol 155:141–145Google Scholar
  3. 3.
    Manna L, Scher EC, Li L-S, Alivisatos AP (2002) Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. J Am Chem Soc 124:7136–7145CrossRefGoogle Scholar
  4. 4.
    Nelson J (1987) Organic photovoltaic films. Curr Opin Solid State Mater Sci 6:87–95CrossRefGoogle Scholar
  5. 5.
    Law M, Greene LE, Yang PD et al (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459CrossRefGoogle Scholar
  6. 6.
    Naoi K, Ohko Y, Tatsuma T (2004) TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior. J Am Chem Soc 125:3664–3668CrossRefGoogle Scholar
  7. 7.
    Yang Z, Xu T, Ito Y, Welp U et al (2009) Enhanced electron transport in dye-sensitized solar cells using short ZnO nanotips on a rough metal anode. J Phys Chem C 113:20521–20526CrossRefGoogle Scholar
  8. 8.
    O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  9. 9.
    Wang Z-S, Kawauchi H, Kashima T, Arakawa H (2004) Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord Chem Rev 248:1381–1389CrossRefGoogle Scholar
  10. 10.
    Kopidakis N, Benkstein KD, van de Lagemaat J, Frank AJ (2003) Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 107:11307–11315CrossRefGoogle Scholar
  11. 11.
    Solbrand A, Henningsson A, Södergren S, Lindström H, Hagfeldt A, Lindquist S-E (1999) Charge transport properties in dye-sensitized nanostructured TiO2 thin film electrodes studied by photoinduced current transients. J Phys Chem B 103:1078–1083CrossRefGoogle Scholar
  12. 12.
    You M, Kim TG, Sung Y-M (2010) Synthesis of Cu-doped TiO2 nanorods with various aspect ratios and dopant concentrations. Cryst Growth Des 10:983–987CrossRefGoogle Scholar
  13. 13.
    Pradhan SK, Reucroft PJ, Yang F, Dozier A (2003) Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J Cryst Growth 256:83–88CrossRefGoogle Scholar
  14. 14.
    Lei Y, Zhang LD, Meng GW et al (2001) Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. Appl Phys Lett 78:1125–1127CrossRefGoogle Scholar
  15. 15.
    Wolcott A, Smith WA, Kuykendall TR et al (2009) Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small 5:104–111CrossRefGoogle Scholar
  16. 16.
    Polleux J, Pinna N, Niederberger M (2005) Ligand functionality as a versatile tool to control the assembly behavior of preformed titania nanocrystals. Chem Eur J 11:3541–3551CrossRefGoogle Scholar
  17. 17.
    Cozzoli PD, Kornowski A, Weller H (2003) Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J Am Chem Soc 125:14539–14548CrossRefGoogle Scholar
  18. 18.
    Schubert U, Tewinkel S, Lamber R (1996) Metal complexes in inorganic matrixes. 15. Coordination of metal ions by lysinate-modified titanium and zirconium alkoxides and the preparation of metal/titania and metal/zirconia nanocomposites. Chem Mater 8:2047–2055CrossRefGoogle Scholar
  19. 19.
    Jiu J, Isoda S, Wang F, Adachi M (2006) Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. J Phys Chem B 110:2087–2092CrossRefGoogle Scholar
  20. 20.
    Penn RL, Banfield JF (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281:969–971CrossRefGoogle Scholar
  21. 21.
    Penn RL, Banfield JF (1999) Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochim Cosmochim Acta 63:1549–1557CrossRefGoogle Scholar
  22. 22.
    Penn RL (2004) Kinetics of oriented aggregation. J Phys Chem B 108:12707–12712CrossRefGoogle Scholar
  23. 23.
    Han S, Choi S-H, Hyeon T et al (2005) Low-temperature synthesis of highly crystalline TiO2 nanocrystals and their application to photocatalysis. Small 1:812–816CrossRefGoogle Scholar
  24. 24.
    Kang SH, Choi S-H, Hyeon T, Sung Y-E (2008) Nanorod-based dye-sensitized solar cells with improved charge collection efficiency. Adv Mater 20:54–58CrossRefGoogle Scholar
  25. 25.
    Nakade S, Kanzaki T, Yanagida S et al (2005) Stepped light-induced transient measurements of photocurrent and voltage in dye-sensitized solar cells: application for highly viscous electrolyte systems. Langmuir 21:10803–10807CrossRefGoogle Scholar
  26. 26.
    Fisher AC, Peter LM, Ponomarev EA et al (2000) Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 104:949–958CrossRefGoogle Scholar
  27. 27.
    Bisquert J, Zaban A, Salvador P (2002) Analysis of the mechanisms of electron recombination in nanoporous TiO2 dye-sensitized solar cells. Nonequilibrium steady-state statistics and interfacial electron transfer via surface states. J Phys Chem B 106:8774–8782CrossRefGoogle Scholar
  28. 28.
    Usami A, Ozaki H (2001) Computer simulations of charge transport in dye-sensitized nanocrystalline photovoltaic cells. J Phys Chem B 105:4577–4583CrossRefGoogle Scholar
  29. 29.
    Adachi M, Murata Y et al (2004) Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2nanowires made by the “oriented attachment” mechanism. J Am Chem Soc 126:14943–14949CrossRefGoogle Scholar
  30. 30.
    Li S, Li Y, Wang H et al (2009) Peptization-hydrothermal method as a surfactant-free process toward nanorod-like anatase TiO2 nanocrystals. Eur J Inorg Chem 2009:4078–4084CrossRefGoogle Scholar
  31. 31.
    Brinker CJ, Schere GW (1989) Sol-gel science: the physics and chemistry of sol-gel processing. Elsevier Science, USAGoogle Scholar
  32. 32.
    Chemseddine A, Moritz T (1999) Nanostructuring titania: control over nanocrystal structure, size, shape, and organization. Eur J Inorg Chem 1999:235–245CrossRefGoogle Scholar
  33. 33.
    Kasuga T, Hiramatsu M, Hoson A et al (1999) Titania nanotubes prepared by chemical processing. Adv Mater 11:1307–1311CrossRefGoogle Scholar
  34. 34.
    Ohsaki Y, Masaki N, Yanagida S et al (2005) Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. Phys Chem Chem Phys 7:4157–4163CrossRefGoogle Scholar
  35. 35.
    Koo B, Park J, Hyeon T et al (2006) Simultaneous phase- and size-controlled synthesis of TiO2 nanorods via non-hydrolytic sol-gel reaction of syringe pump delivered precursors. J Phys Chem B 110:24318–24323CrossRefGoogle Scholar
  36. 36.
    Cheng H, Ma J, Qi L et al (1995) Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem Mater 7:663–671CrossRefGoogle Scholar
  37. 37.
    Matthews A (1976) The crystallisation of anatase and rutile from amorphous titanium dioxide under hydrothermal conditions. Am Mineral 61:419–424Google Scholar
  38. 38.
    Izumi F (1978) The polymorphic crystallization of Titanium(IV) oxide under hydro-thermal conditions II. The roles of inorganic anions in the nucleation of rutile and anatase from acid solutions. Bull Chem Soc Jpn 51:1771–1776CrossRefGoogle Scholar
  39. 39.
    Matijevic E (1977) The role of chemical complexing in the formation and stability of colloidal dispersions. J Colloid Interface Sci 58:374–389CrossRefGoogle Scholar
  40. 40.
    Wei M, Konishi Y, Zhou H, Arakawa H et al (2006) Utilization of titanate nanotubes as an electrode material in dye-sensitized solar cells. J Electrochem Soc 153:A1232–A1236CrossRefGoogle Scholar
  41. 41.
    Chen A, Zhou W, Du G, Peng L-M (2002) Trititanate nanotubes made via a single alkali treatment. Adv Mater 14:1208–1211CrossRefGoogle Scholar
  42. 42.
    Boercker JE, Enache-Pommer E, Adyil ES (2008) Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells. Nanotechnology 19:095604–095613CrossRefGoogle Scholar
  43. 43.
    Enache-Pommer E, Boercker JE, Adyil ES (2007) Electron transport and recombination in polycrystalline TiO2nanowire dye-sensitized solar cells. Appl Phys Lett 91:123116–123118CrossRefGoogle Scholar
  44. 44.
    Tan B, Wu Y (2006) Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J Phys Chem B 110:15932–15938CrossRefGoogle Scholar
  45. 45.
    Beppu T, Yamaguchi S, Hayase S (2007) Improvement of heat resistant properties of TiO2 nanowires and application to dye-sensitized solar cells. Jpn J Appl Phys 46:4307–4311CrossRefGoogle Scholar
  46. 46.
    Oh J-K, Lee J-K, Park K-W (2010) TiO2 branched nanostructure electrodes synthesized by seeding method for dye-sensitized solar cells. Chem Mater 22:1114–1118CrossRefGoogle Scholar
  47. 47.
    Meekins BH, Kamat PV (2009) Got TiO2 nanotubes lithium ion intercalation can boost their photoelectrochemical performance. ACS Nano 3:3437–3446CrossRefGoogle Scholar
  48. 48.
    Kuang D, Brillet J, Chen P, Grätzel M et al (2008) Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2:1113–1116CrossRefGoogle Scholar
  49. 49.
    Shankar K, Mor GK, Prakasam HE, Grimes CA (2007) Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells. Langmuir 23:12445–12449CrossRefGoogle Scholar
  50. 50.
    Yu B-Y, Tsai A, Tsai S-P, Wong K-T, Shyue J-J (2008) Efficient inverted solar cells using TiO2 nanotube arrays. Nanotechnology 19:255202–255206CrossRefGoogle Scholar
  51. 51.
    Wang J, Lin Z (2010) Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering. Chem Mater 22:579–584CrossRefGoogle Scholar
  52. 52.
    Zwilling V, Aucouturier M, Darque-Ceretti E (1999) Anodic oxidation of titanium and TA6 V alloy in chromic media. An electrochemical approach. Electrochim Acta 45:921–929CrossRefGoogle Scholar
  53. 53.
    Macäk JM, Tsuchiya H, Schmuki P (2005) High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed 44:2100–2102CrossRefGoogle Scholar
  54. 54.
    Cai QPM, Varghese OK, Grimes CA et al (2005) The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J Mater Res 20:230–236CrossRefGoogle Scholar
  55. 55.
    Taveira LV, Macäk JM, Tsuchiya H, Schmuki P et al (2005) Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH4)2SO4 electrolytes. J Electrochem Soc 152:B405–B410CrossRefGoogle Scholar
  56. 56.
    Kang SH, Kim J-Y, Sung Y-E et al (2008) Formation and mechanistic study of self-ordered TiO2 nanotubes on Ti substrate. J Ind Eng Chem 14:52–59Google Scholar
  57. 57.
    Bayoumi FM, Ateya BG (2006) Formation of self-organized titania nano-tubes by dealloying and anodic oxidation. Electrochem Comm 8:38–44CrossRefGoogle Scholar
  58. 58.
    Paulose M, Shankar K, Varghese OK, Grimes CA et al (2006) Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnology 17:1446–1448CrossRefGoogle Scholar
  59. 59.
    Hahn R, Stergiopoulus T, Schmuki P et al (2007) Efficient solar energy conversion using TiO2 nanotubes produced by rapid breakdown anodization—a comparison. Phys Stat Sol (RRL) 1:135–137CrossRefGoogle Scholar
  60. 60.
    Kang SH, Kim J-Y, Sung Y-E et al (2007) Surface modification of stretched TiO2 nanotubes for solid-state dye-sensitized solar cells. J Phys Chem C 111:9614–9623CrossRefGoogle Scholar
  61. 61.
    Bisquert J, Zaban A, Greenshtein M, Mora-Seró I (2004) Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J Am Chem Soc 126:13550–13559CrossRefGoogle Scholar
  62. 62.
    Fabregat-Santiago F, García-Cañadas J (2004) The origin of slow electron recombination processes in dye-sensitized solar cells with alumina barrier coatings. J Appl Phys 96:6903–6907CrossRefGoogle Scholar
  63. 63.
    Macak JM, Tsuchiya H, Schmuki P et al (2005) Smooth anodic TiO2 nanotubes. Angew Chem Int Ed 44:7463–7465CrossRefGoogle Scholar
  64. 64.
    Shankar K, Mor GK, Grimes CA et al (2007) Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18:065707–065717CrossRefGoogle Scholar
  65. 65.
    Paulose M, Shankar K, Yoriya S, Grimes CA et al (2006) Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J Phys Chem B 110:16179–16184CrossRefGoogle Scholar
  66. 66.
    Lee W, Kang SH, Sung Y-E, Han S-H et al (2008) Co-sensitization of vertically aligned TiO2 nanotubes with two different sizes of CdSe quantum dots for broad spectrum. Electrochem Comm 10:1579–1582CrossRefGoogle Scholar
  67. 67.
    Wang J, Lin Z (2008) Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chem Mater 20:1257–1261CrossRefGoogle Scholar
  68. 68.
    Zhu K, Neale NR, Frank AJ et al (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7:69–74CrossRefGoogle Scholar
  69. 69.
    Kang SH, Kim HS, Sung Y-E et al (2009) An investigation on electron behavior employing vertically-aligned TiO2 nanotube electrodes for dye-sensitized solar cells. Nanotechnology 20:355307–355312CrossRefGoogle Scholar
  70. 70.
    Kim D, Ghicov A, Schmuki P et al (2008) Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells. J Am Chem Soc 130:16454–16455CrossRefGoogle Scholar
  71. 71.
    Zhu K, Neale NR, Frank AJ et al (2007) Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano Lett 7:3739–3746CrossRefGoogle Scholar
  72. 72.
    Roy P, Kim D, Schmuki P et al (2009) Improved efficiency of TiO2 nanotubes in dye sensitized solar cells by decoration with TiO2 nanoparticles. Electrochem Comm 11:1001–1004CrossRefGoogle Scholar
  73. 73.
    Park H, Yang D-J, Kim H-G et al (2009) Fabrication of MgO-coated TiO2 nanotubes and application to dye-sensitized solar cells. J Electroceram 23:146–149CrossRefGoogle Scholar
  74. 74.
    Ito S, Cevey Ha N-L, Grätzel M et al. (2006) High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem Comm 4004–4006Google Scholar
  75. 75.
    Mor GK, Shankar K, Paulose M, Grimes CA et al (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218CrossRefGoogle Scholar
  76. 76.
    Varghese OK, Paulose M, Grimes CA (2009) Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat Mater 4:592–597Google Scholar
  77. 77.
    Liu B, Boercker JE, Aydil ES (2008) Oriented single crystalline titanium dioxide nanowires. Nanotechnology 19:505604–505610CrossRefGoogle Scholar
  78. 78.
    Wang H, Liu Y, Li M et al (2009) Hydrothermal growth of large-scale macroporous TiO2 nanowires and its application in 3D dye-sensitized solar cells. Appl Phys A 97:25–29CrossRefGoogle Scholar
  79. 79.
    Tian ZR, Voigt JA, Xu H et al (2003) Large oriented arrays and continuous films of TiO2-based nanotubes. J Am Chem Soc 125:12384–12385CrossRefGoogle Scholar
  80. 80.
    Liu B, Adyil ES (2009) Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J Am Chem Soc 131:3985–3990CrossRefGoogle Scholar
  81. 81.
    Kang SH, Kang M-S, Sung Y-E et al (2008) Columnar rutile TiO2 based dye-sensitized solar cells by radio-frequency magnetron sputtering. J Power Sources 184:331–335CrossRefGoogle Scholar
  82. 82.
    Enache-Pommer E, Liu B, Adyil ES (2009) Electron transport and recombination in dye-sensitized solar cells made from single-crystal rutile TiO2 nanowires. Phys Chem Chem Phys 11:9648–9652CrossRefGoogle Scholar
  83. 83.
    Han Y, Wu G, Wang M, Chen H (2009) The growth of a c-axis highly oriented sandwiched TiO2 film with superhydrophilic properties without UV irradiation on SnO:F substrate. Nanotechnology 20:235605–235611CrossRefGoogle Scholar
  84. 84.
    Miyauchi M, Tokudome H (2007) Super-hydrophilic and transparent thin films of TiO2 nanotube arrays by a hydrothermal reaction. J Mater Chem 17:2095–2100CrossRefGoogle Scholar
  85. 85.
    Zhang H, Liu P, Zhao H et al (2010) Facile formation of branched titanate nanotubes to grow a three-dimensional nanotubular network directly on a solid substrate. Langmuir 26:1574–1578CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.World Class University (WCU) Program of Chemical Convergence for Energy Environment (C2E2), School of Chemical Biological EngineeringSeoul National UniversitySeoulKorea
  2. 2.Department of Chemistry EducationChonnam National UniversityGwangjuKorea
  3. 3.School of chemical and Biological Engineering and Interdisciplinary Program in Nano Science and TechnologySeoul National UniversitySeoulKorea

Personalised recommendations