Nanoarchitectured Electrodes for Enhanced Electron Transport in Dye-Sensitized Solar Cells

Part of the Green Energy and Technology book series (GREEN)


The invention of dye-sensitized solar cell (DSSC) provided a promising alternative to Si-based photovoltaic devices. The first generation of DSSCs was constructed on nanoparticle wide bandgap semiconductor photoanodes. However, despite its unmatched success to date, the nanoparticle-based photoanode suffers from exceedingly slow electron transport due to the intrinsic defect states in the nanoparticle network, which eventually limits any further advancement in the device efficiency. Recent efforts have been directed toward developing ordered electron transport pathways using a variety of pseudo-1D photoanodes that exhibit enhanced charge transport and greater material versatility. Further exploration and optimization of these alternative nanoarchitectured photoanodes may eventually lead to device performance exceeding the current state-of-the-art.


Lower Unoccupied Molecular Orbital TiO2 Nanotubes Transparent Conducting Oxide Anodic Aluminum Oxide Template Redox Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Basic Research Needs for Solar Energy Utilization, DoE Report of Basic Energy Sciences Workshop on Solar Energy Utilization August 18–21, 2005Google Scholar
  2. 2.
    O’ Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  3. 3.
    Nazeeruddin MK, Kay A, Rodicio I et al (1993) Conversion of light to electricity by cis-X2bis(2, 2’-bipyridyl-4, 4’-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115:6382–6390CrossRefGoogle Scholar
  4. 4.
    Nazeeruddin MK, De Angelis F, Fantacci S et al (2005) Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc 127:16835–16847CrossRefGoogle Scholar
  5. 5.
    Chiba Y, Islam A, Watanabe Y et al. (2006) Dye-sensitized solar cells with conversion efficiency of 11.1%. Jap J Appl Phys 45: L638–L640Google Scholar
  6. 6.
    Grätzel M (2003) Applied physics—solar cells to dye for. Nature 421:586–587CrossRefGoogle Scholar
  7. 7.
    Gratzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851CrossRefGoogle Scholar
  8. 8.
    Gratzel M (2005) Dye-sensitized solid–state heterojunction solar cells. MRS Bull 30:23–27Google Scholar
  9. 9.
    Fisher AC, Peter LM, Ponomarev EA et al (2000) Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 104:949–958CrossRefGoogle Scholar
  10. 10.
    Oekermann T, Zhang D, Yoshida T, Minoura H (2004) Electron transport and back reaction in nanocrystalline TiO2 fi lms prepared by hydrothermal crystallization. J Phys Chem B 108:2227–2235CrossRefGoogle Scholar
  11. 11.
    Nelson J (1999) Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. Phys Rev B 59:15374–15380CrossRefGoogle Scholar
  12. 12.
    van de Lagemaat J, Frank AJ (2001) Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies. J Phys Chem B 105:11194–11205CrossRefGoogle Scholar
  13. 13.
    Kopidakis N, Schiff EA, Park NG et al (2000) Ambipolar diffusion of photocarriers in electrolyte-fi lled, nanoporous TiO2. J Phys Chem B 104:3930–3936CrossRefGoogle Scholar
  14. 14.
    Benkstein KD, Kopidakis N, van de Lagemaat J (2003) Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. J Phys Chem B 107:7759–7767CrossRefGoogle Scholar
  15. 15.
    Kopidakis N, Benkstein KD, van de Lagemaat J et al (2003) Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 107:11307–11315CrossRefGoogle Scholar
  16. 16.
    Kavan L, Grätzel M, Gilbert SE et al (1996) Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc 118:6716–6723CrossRefGoogle Scholar
  17. 17.
    Peter L (2009) “Sticky electrons” transport and interfacial transfer of electrons in the dye-sensitized solar cell. Acc Chem Res 42:1839–1847CrossRefGoogle Scholar
  18. 18.
    Boschloo G, Hagfeldt A (2009) Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc Chem Res 42:1819–1826CrossRefGoogle Scholar
  19. 19.
    Asano T, Kubo T, Nishikitani Y (2005) Short-circuit current density behavior of dye-sensitized solar cells. Jpn J Appl Phys 44:6776–6780CrossRefGoogle Scholar
  20. 20.
    Zistler M, Wachter P, Wasserscheid P et al (2006) Comparison of electrochemical methods for triiodide diffusion coefficient measurements and observation of non-stokesian diffusion behaviour in binary mixtures of two ionic liquids. Electrochim Acta 52:161–169CrossRefGoogle Scholar
  21. 21.
    Haque SA, Tachibana Y, Klug DR (1998) Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films under externally applied bias. J Phys Chem B 102:1745–1749CrossRefGoogle Scholar
  22. 22.
    Roy JC, Hamill WH, Williams RR (1955) Diffusion kinetics of the photochemical and thermal dissociation-recombination of trihalide ions. J Am Chem Soc 77:2953–2957CrossRefGoogle Scholar
  23. 23.
    Kubo W, Kambe S, Nakade S et al (2003) Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes. J Phys Chem B 107:4374–4381CrossRefGoogle Scholar
  24. 24.
    ITO S, Zakeeruddin SM, Comte P et al (2008) Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte. Nature Photonics 2:693–698CrossRefGoogle Scholar
  25. 25.
    Li G, Shrotriya V, Huang JS et al (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868CrossRefGoogle Scholar
  26. 26.
    Martinson ABF, Hamann TW, Pellin MJ et al (2008) New architectures for dye-sensitized solar cells. Chem Eur J 14:4458–4467CrossRefGoogle Scholar
  27. 27.
    Law M, Greene LE, Johnson JC et al (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459CrossRefGoogle Scholar
  28. 28.
    Greene LE, Law M, Goldberger J et al (2003) Low-temperature wafer-scale production of ZnO nanowire arrays. Angew Chem Int Ed 42:3031–3034CrossRefGoogle Scholar
  29. 29.
    Mora-Seró I, Fabregat-Santiago F, Denier B et al (2006) Determination of carrier density of ZnO nanowires by electrochemical techniques. Appl Phys Lett 89:203117CrossRefGoogle Scholar
  30. 30.
    Guillén E, Casanueva F, Anta JA et al (2008) Photovoltaic performance of nanostructured zinc oxide sensitised with xanthene dyes. J Photochem Photobio A Chem 200:364–370CrossRefGoogle Scholar
  31. 31.
    Keis K, Lindgren J, Lindquist SE et al (2000) Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes. Langmuir 16:4688–4694CrossRefGoogle Scholar
  32. 32.
    Horiuchi H, Katoh R, Hara K (2003) Electron injection efficiency from excited N3 into nanocrystalline ZnO films: effect of (N3 − Zn2+) aggregate formation. J Phys Chem B 107:2570–2574CrossRefGoogle Scholar
  33. 33.
    Sayama K, Tsukagoshi S, Hara K et al (2002) Photoelectrochemical properties of j aggregates of benzothiazole merocyanine dyes on a nanostructured TiO2 film. J Phys Chem B 106:1363–1371CrossRefGoogle Scholar
  34. 34.
    Feng X, Shankar K, Varghese OK et al (2008) Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett 8:3781–3786CrossRefGoogle Scholar
  35. 35.
    Paulose M, Shankar K, Varghese OK et al (2006) Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. J Phys D Appl Phys 39:2498–2503CrossRefGoogle Scholar
  36. 36.
    Paulose M, Prakasam HE, Varghese OK et al (2007) TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: phenol red diffusion. J Phys Chem C 111:14992–14997CrossRefGoogle Scholar
  37. 37.
    Martinson ABF, Elam JW, Hupp JT et al (2007) ZnO nanotube based dye-sensitized solar cells. Nano Lett 7:2183–2187CrossRefGoogle Scholar
  38. 38.
    Martinson ABF, Elam JW, Liu J et al (2008) Radial electron collection in dye-sensitized solar cells. Nano Lett 8:2862–2866CrossRefGoogle Scholar
  39. 39.
    Martinson ABF, Goes MS, Fabregat-Santiago F (2009) Electron transport in dye-sensitized solar cells based on ZnO nanotubes: evidence for highly efficient charge collection and exceptionally rapid dynamics. J Phys Chem A 113:4015–4021CrossRefGoogle Scholar
  40. 40.
    Irwin MD, Buchholz DB, Hains AW (2008) p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc Natl Acad Sci 105:2783–2787CrossRefGoogle Scholar
  41. 41.
    Liang Y, Zhen C, Zou D et al (2004) Preparation of free-standing nanowire arrays on conductive substrates. J Am Chem Soc 126:16338–16339CrossRefGoogle Scholar
  42. 42.
    Ko S, Lee D, Jee S et al (2006) Mechanical properties and residual stress in porous anodic alumina structures. Thin Solid Films 515:1932–1937CrossRefGoogle Scholar
  43. 43.
    Jiang CY, Sun XW, Lo GQ et al (2007) Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl Phys Lett 90:263501CrossRefGoogle Scholar
  44. 44.
    Cheng HM, Chiu WH, Lee CH et al (2008) Formation of branched ZnO nanowires from solvothermal method and dye-sensitized solar cells applications. J Phys Chem C 112:16359–16364CrossRefGoogle Scholar
  45. 45.
    Zhu K, Neale NR, Miedaner A et al (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO0 nanotube arrays. Nano Lett 7:69–74CrossRefGoogle Scholar
  46. 46.
    Zhu K, Vinzant TB, Neale NR et al (2007) Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano Lett 7:3739–3754CrossRefGoogle Scholar
  47. 47.
    Kim D, Ghicov A, Albu SP et al (2008) Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells. J Am Chem Soc 130:16454–16455CrossRefGoogle Scholar
  48. 48.
    Yang Z, Xu T, Ito Y et al (2009) Enhanced electron transport in dye-sensitized solar cells using short ZnO nanotips on a rough metal anode. J Phys Chem C 113:20521–20526CrossRefGoogle Scholar
  49. 49.
    Du Pasquier A, Chen HH, Lu YC (2006) Dye sensitized solar cells using well-aligned zinc oxide nanotip arrays. Appl Phys Lett 89:253513CrossRefGoogle Scholar
  50. 50.
    Chen HH, Du Pasquier A, Saraf G et al (2008) Dye-sensitized solar cells using ZnO nanotips and Ga-doped ZnO films. Semicond Sci Technol 23:045004CrossRefGoogle Scholar
  51. 51.
    Peter LM (2007) Characterization and modeling of dye-sensitized solar cells. J Phys Chem C 111:6601–6612CrossRefGoogle Scholar
  52. 52.
    Anderson PA (1940) The contact difference of potential between barium and zinc the external work function of zinc. Phys Rev 57:122–127CrossRefGoogle Scholar
  53. 53.
    Reinaudi L, DelPopolo M, Leiva E (1997) Work function calculation for thick metal slabs with local pseudopotentials. Surf Sci 372:L309–L314CrossRefGoogle Scholar
  54. 54.
    Sun Z, Wang C, Yang J, Zhao B, Lombardi JR (2008) Nanoparticle metal—semiconductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhanced Raman spectroscopy. J Phys Chem C 112:6093–6098CrossRefGoogle Scholar
  55. 55.
    Katoh R, Furube A, Barzykin AV, Arakawa H, Tachiya M (2004) Kinetics and mechanism of electron injection and charge recombination in dye-sensitized nanocrystalline semiconductors. Coord Chem Rev 248:1195–1213CrossRefGoogle Scholar
  56. 56.
    Kamiya T, Tajima K, Nomura K, Yanagi H, Hosono H (2008) Interface electronic structures of zinc oxide and metals: first-principle study. Physica Status Solidi (a) 205:1929–1933CrossRefGoogle Scholar
  57. 57.
    Benda V, Gowar J, Grant DA (1999) Power semiconductor devices: theory and applications. Wiley, New York, pp 62–65Google Scholar
  58. 58.
    Kieven D, Dittrich T, Belaidi A, Tornow J, Schwarzburg K, Allsop N, Lux-Steiner M (2008) Effect of internal surface area on the performance of ZnO/In2S3/CuSCN solar cells with extremely thin absorber. Appl Phys Lett 92:153107CrossRefGoogle Scholar
  59. 59.
    Hahn R, Schmidt-Stein F, Salonen J, Thiemann S, Song Y, Kunze J, Lehto V, Schmuki P (2009) Semimetallic TiO2 nanotubes. Angew Chem Int Ed 48:7236–7239CrossRefGoogle Scholar
  60. 60.
    Hamann TW, Jensen RA, Martinson ABF, Ryswyk HV, Hupp JT (2008) Advancing beyond current generation dye-sensitized solar cells energy. Environ Sci 1:66–78Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryNorthern Illinois UniversityDeKalbUSA

Personalised recommendations