On the Importance of Morphology Control for Printable Solar Cells

  • Svetlana S. van Bavel
  • Joachim Loos
Part of the Green Energy and Technology book series (GREEN)


Polymer and hybrid solar cells have the potential to become the leading technology of the twenty-first century to convert sunlight to electrical energy because they can be easily processed from solution printing devices in a roll-to-roll fashion with high speed and low-cost. The performance of such devices critically depends on the nanoscale organization of the photoactive layer, which is composed of at least two functional materials, the electron donor and the electron acceptor forming a bulk-heterojunction; however, control of its volume morphology still is a challenge. The main requirements for the morphology of efficient photoactive layers are nanoscale phase separation for a large donor/acceptor interface area and hence efficient exciton dissociation, short and continuous percolation pathways of both components leading through the layer thickness to the corresponding electrodes for efficient charge transport and collection, and high crystallinity of both donor and acceptor materials for high charge mobility. In this chapter we review recent progress of our understanding on how the efficiency of a bulk-heterojunction printable solar cell largely depends on the local nanoscale volume organization of the photoactive layer.


Solar Cell High Occupied Molecular Orbital Free Charge Hybrid Solar Cell Solar Cell Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to use this opportunity to thank René Janssen, Martijn Wienk, Jan Kroon, Sjoerd Veenstra, Volker Schmidt, and Xiaoniu Yang for helpful discussions. Supported by the Dutch Polymer Institute (DPI), the Royal Dutch Academy of Sciences (KNAW), and the Chinese Academy of Sciences (Grant 2009J2-28: Visiting Professorship for Senior International Scientists).


  1. 1.
    Gunes S, Neugebauer H, Sariciftci NS (2007) Chem Rev 107:1324CrossRefGoogle Scholar
  2. 2.
    Hoppe H, Sariciftci NS (2008) Adv Polym Sci 214:1Google Scholar
  3. 3.
    Liang Y, Xu Z, Xia J et al (2010) Adv Mater 22:1CrossRefGoogle Scholar
  4. 4.
    Koster LJA, Mihailetchi VD, Blom PWM (2006) Appl Phys Lett 88:09351Google Scholar
  5. 5.
    Jorgensen M, Norrman K, Krebs FC (2008) Sol Energy Mater Sol Cells 92:686CrossRefGoogle Scholar
  6. 6.
    Dennler G, Brabec CJ (2008) Socio-economic impact of low-cost PV technologies. In: Brabec CJ, Dyakonov V, Scherf U (eds) Organic photovoltaics. Wiley–VCH, Weinheim, p 531CrossRefGoogle Scholar
  7. 7.
    Roes AL, Alsema EA, Blok K et al (2009) Prog Photovolt Res Appl 17:372CrossRefGoogle Scholar
  8. 8.
    Bube RH (1992) Photoelectronic properties of semiconductors. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers. Oxford University Press, OxfordGoogle Scholar
  10. 10.
    Sariciftci NS, Smilowitz L, Heeger AJ et al (1992) Science 258:1474CrossRefGoogle Scholar
  11. 11.
    Haugeneder A, Neges M, Kallinger C et al (1999) Phys Rev B 59:15346CrossRefGoogle Scholar
  12. 12.
    Tang CW (1986) Appl Phys Lett 48:183CrossRefGoogle Scholar
  13. 13.
    Peumans P, Yakimov A, Forrest SR (2003) J Appl Phys 93:3693CrossRefGoogle Scholar
  14. 14.
    Smilowitz L, Sariciftci NS, Wu R et al (1993) Phys Rev B 47:13835CrossRefGoogle Scholar
  15. 15.
    Yoshino K, Hong YX, Muro K et al (1993) Jpn J Appl Phys Part 2 32:L357CrossRefGoogle Scholar
  16. 16.
    Halls JJM, Pichler K, Friend RH et al (1996) Appl Phys Lett 68:3120CrossRefGoogle Scholar
  17. 17.
    Savenije TJ, Warman JM, Goossens A (1998) Chem Phys Lett 287:148CrossRefGoogle Scholar
  18. 18.
    Kroeze JE, Savenije TJ, Vermeulen MJW et al (2003) J Phys Chem B 107:7696CrossRefGoogle Scholar
  19. 19.
    Yu G, Heeger AJ (1995) J Appl Phys 78:4510CrossRefGoogle Scholar
  20. 20.
    Halls JJM, Walsh CA, Greenham NC et al (1995) Nature 376:498CrossRefGoogle Scholar
  21. 21.
    Yu G, Gao J, Hummelen JC et al (1995) Science 270:1789CrossRefGoogle Scholar
  22. 22.
    Sirringhaus H, Brown PJ, Friend RH et al (1999) Nature 401:685CrossRefGoogle Scholar
  23. 23.
    Yang X, Loos J, Veenstra SC et al (2005) Nano Lett 5:579CrossRefGoogle Scholar
  24. 24.
    Kim Y, Choulis SA, Nelson J et al (2005) Appl Phys Lett 86:063502CrossRefGoogle Scholar
  25. 25.
    Heutz S, Sullivan P, Sanderson BM et al (2004) Sol Energy Mater Sol Cells 83:229CrossRefGoogle Scholar
  26. 26.
    Yang X, Loos J (2007) Macromolecules 40:1353CrossRefGoogle Scholar
  27. 27.
    van Bavel SS, Veenstra S, Loos J (2010) Macromol Rapid Commun 31:1835CrossRefGoogle Scholar
  28. 28.
    van Bavel SS, Loos J (2010) Adv Mater 20:3217CrossRefGoogle Scholar
  29. 29.
    Mihailetchi VD, Xie HX, de Boer B et al (2006) Adv Funct Mater 16:699CrossRefGoogle Scholar
  30. 30.
    Mihailetchi VD, Blom PWM, Hummelen JC et al (2003) J Appl Phys 94:6849CrossRefGoogle Scholar
  31. 31.
    Brabec CJ, Cravino A, Meissner D et al (2001) Adv Funct Mater 11:374CrossRefGoogle Scholar
  32. 32.
    Scharber MC, Mühlbacher D, Koppe M et al (2006) Adv Mater 18:78CrossRefGoogle Scholar
  33. 33.
    Cravino A (2007) Appl Phys Lett 91:243502CrossRefGoogle Scholar
  34. 34.
    Koster LJA, Mihailetchi VD, Ramaker R et al (2005) Appl Phys Lett 86:123509 (the expression in question has the following form: Voc = Egap/q − (kT/q) * ln[C*(1 − P)/P], where P is the dissociation probability of excitons into free charges; unless P is approaching zero, the dependency of Voc on P can be neglected)CrossRefGoogle Scholar
  35. 35.
    Mandoc MM, Kooistra FB, Hummelen JC et al (2007) Appl Phys Lett 91:263505CrossRefGoogle Scholar
  36. 36.
    Mandoc MM, Koster LJA, Blom PWM (2007) Appl Phys Lett 90:133504 (very high carrier mobilities (above 10−3 m2 V−1 s−1) affect the difference between the quasi-Fermi levels and lead to the reduction of Voc. For comparison, mobilities of holes and electrons in annealed P3HT/PCBM blends are around 10−8 m2 V−1 s−1 and 10−7 m2 V−1 s−1, respectively, ref. 30)CrossRefGoogle Scholar
  37. 37.
    Wudl F (1992) Acc Chem Res 25:157CrossRefGoogle Scholar
  38. 38.
    Mozer A, Denk P, Scharber M et al (2004) J Phys Chem B 108:5235CrossRefGoogle Scholar
  39. 39.
    Vandewal K, Tvingstedt K, Gadisa A et al (2009) Nat Mater 8:904CrossRefGoogle Scholar
  40. 40.
    Hoppe H, Sariciftci NS (2006) J Mater Chem 16:45CrossRefGoogle Scholar
  41. 41.
    van Bavel SS, Sourty E, de With G et al (2009) Nano Lett 9:507CrossRefGoogle Scholar
  42. 42.
    Yang X, van Duren JKJ, Janssen RAJ et al (2004) Macromolecules 37:2152Google Scholar
  43. 43.
    Martens T, D’Haen J, Munters T et al (2003) Synth Met 138:243CrossRefGoogle Scholar
  44. 44.
    Hoppe H, Drees M, Schwinger W et al (2005) Synth Met 152:117CrossRefGoogle Scholar
  45. 45.
    Hoppe H, Niggemann M, Winder C et al (2004) Adv Funct Mater 14:1005CrossRefGoogle Scholar
  46. 46.
    Shaheen SE, Brabec CJ, Sariciftci NS et al (2001) Appl Phys Lett 78:841CrossRefGoogle Scholar
  47. 47.
    Chirvase D, Parisi J, Hummelen JC et al (2004) Nanotechnology 15:1317CrossRefGoogle Scholar
  48. 48.
    van Duren JKJ, Yang X, Loos J et al (2004) Adv Funct Mater 14:425CrossRefGoogle Scholar
  49. 49.
    Zhong H, Yang X, de With G et al (2006) Macromolecules 39:218CrossRefGoogle Scholar
  50. 50.
    Alexeev A, Loos J (2008) Org Electron 9:149CrossRefGoogle Scholar
  51. 51.
    Loos J, van Duren JKJ, Morrissey F et al (2002) Polymer 43:7493CrossRefGoogle Scholar
  52. 52.
    van Duren JKJ, Loos J, Morrissey F et al (2002) Adv Funct Mater 12:665CrossRefGoogle Scholar
  53. 53.
    Weyland M (2002) Top Catal 21:17CrossRefGoogle Scholar
  54. 54.
    Weyland M, Midgley PA (2004) Mater Today 7:32CrossRefGoogle Scholar
  55. 55.
    Jinnai H, Spontak RJ (2009) Polymer 50:1067CrossRefGoogle Scholar
  56. 56.
    Möbus G, Inkson BJ (2007) Mater Today 10:18CrossRefGoogle Scholar
  57. 57.
    Cormack AM (1963) J Appl Phys 34:2722MATHCrossRefGoogle Scholar
  58. 58.
    Radermacher M (1980) PhD thesis, Department of Physics, University of Munich, Munich, GermanyGoogle Scholar
  59. 59.
    Hummelen JC, Knight BW, LePeq F et al (1995) J Org Chem 60:532CrossRefGoogle Scholar
  60. 60.
    Padinger F, Rittberger RS, Sariciftci NS (2003) Adv Funct Mater 13:85CrossRefGoogle Scholar
  61. 61.
    Waldauf C, Schilinsky P, Hauch J et al (2004) Thin Solid Films 451–452:503CrossRefGoogle Scholar
  62. 62.
    Al-Ibrahim M, Ambacher O, Sensfuss S et al (2005) Appl Phys Lett 86:201120CrossRefGoogle Scholar
  63. 63.
    Ma W, Yang C, Gong X et al (2005) Adv Funct Mater 15:1617CrossRefGoogle Scholar
  64. 64.
    Svensson M, Zhang F, Veenstra SC et al (2003) Adv Mater 15:988CrossRefGoogle Scholar
  65. 65.
    Yohannes T, Zhang F, Svensson M et al (2004) Thin Solid Films 449:152CrossRefGoogle Scholar
  66. 66.
    Slooff LH, Veenstra SC, Kroon JM et al (2007) Appl Phys Lett 90:43506CrossRefGoogle Scholar
  67. 67.
    Inganäs O, Zhang F, Andersson MR (2009) Acc Chem Res 42:1731CrossRefGoogle Scholar
  68. 68.
    Kroon R, Lenes M, Hummelen JC et al (2008) Polym Rev 48:531CrossRefGoogle Scholar
  69. 69.
    Peet J, Kim JY, Coates NE et al (2007) Nat Mater 6:497CrossRefGoogle Scholar
  70. 70.
    Qin R, Li W, Li C et al (2009) J Am Chem Soc 131:14612CrossRefGoogle Scholar
  71. 71.
    Chu T-Y, Alem S, Verly PG et al (2009) Appl Phys Lett 95:063304CrossRefGoogle Scholar
  72. 72.
    Rispens MT, Meetsma A, Rittberger R et al (2003) Chem Commun 2116Google Scholar
  73. 73.
    Yang X, Alexeev A, Michels MAJ et al (2005) Macromolecules 38:4289CrossRefGoogle Scholar
  74. 74.
    Merlo JA, Frisbie CD (2004) J Phys Chem B 108:19169CrossRefGoogle Scholar
  75. 75.
    Bertho S, Janssen G, Cleij TJ et al (2008) Sol Energy Mater Sol Cells 92:753CrossRefGoogle Scholar
  76. 76.
    Ihn KJ, Moulton J, Smith P (1993) J Polym Sci Polym Phys 31:735CrossRefGoogle Scholar
  77. 77.
    Li G, Shrotriya V, Huang J et al (2005) Nat Mater 4:864CrossRefGoogle Scholar
  78. 78.
    Reyes-Reyes M, Kim K, Carroll D (2005) Appl Phys Lett 87:083506CrossRefGoogle Scholar
  79. 79.
    Peet J, Soci C, Coffin RC et al (2006) Appl Phys Lett 89:252105CrossRefGoogle Scholar
  80. 80.
    Zhao Y, Yuan GX, Roche P et al (1995) Polymer 36:2211CrossRefGoogle Scholar
  81. 81.
    Savenije TJ, Kroeze JE, Yang X et al (2005) Adv Funct Mater 15:1260CrossRefGoogle Scholar
  82. 82.
    Koster LJA, Mihailetchi VD, Lenes M et al (2008) Performance improvement of polymer:fullerene solar cells due to balanced charge transport. In: Brabec CJ, Dyakonov V, Scherf U (eds) Organic photovoltaics. Wiley–VCH, Weinheim, p 283Google Scholar
  83. 83.
    van Bavel SS, Sourty E, de With G et al (2009) Macromolecules 42:7396CrossRefGoogle Scholar
  84. 84.
    Campoy-Quiles M, Ferenczi T, Agostinelli T et al (2008) Nat Mater 7:158CrossRefGoogle Scholar
  85. 85.
    Xu Z, Chen L-M, Yang G et al (2009) Adv Funct Mater 19:1227CrossRefGoogle Scholar
  86. 86.
    Nilsson S, Bernasik A, Budkowski A et al (2007) Macromolecules 40:8291CrossRefGoogle Scholar
  87. 87.
    van Hal PA, Christiaans MPT, Wienk MM et al (1999) J Phys Chem B 103:4352CrossRefGoogle Scholar
  88. 88.
    Halls JJM, Arias AC, MacKenzie JD et al (2000) Adv Mater 12:498CrossRefGoogle Scholar
  89. 89.
    Stalmach U, de Boer B, Videlot C et al (2000) J Am Chem Soc 122:5464CrossRefGoogle Scholar
  90. 90.
    Zhang F, Jonforsen M, Johansson DM et al (2003) Synth Met 138:555CrossRefGoogle Scholar
  91. 91.
    Veenstra SC, Verhees WJH, Kroon JM et al (2004) Chem Mater 16:2503CrossRefGoogle Scholar
  92. 92.
    Saunders BR, Turner ML (2008) Adv Colloid Interface Sci 138:1CrossRefGoogle Scholar
  93. 93.
    Beek WJE, Wienk MM, Janssen RAJ (2004) Adv Mater 16:1009CrossRefGoogle Scholar
  94. 94.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2425CrossRefGoogle Scholar
  95. 95.
    Kuo CY, Tang WC, Gau C et al (2008) Appl Phys Lett 93:033307CrossRefGoogle Scholar
  96. 96.
    Wang H, Oey CC, Djurisic AB et al (2005) Appl Phys Lett 87:023507CrossRefGoogle Scholar
  97. 97.
    Ravirajan P, Peiro AM, Nazeeruddin MK et al (2006) J Phys Chem B 110:7635CrossRefGoogle Scholar
  98. 98.
    Zhu R, Jiang C-Y, Ramakrishna S (2009) Adv Mater 21:994CrossRefGoogle Scholar
  99. 99.
    van Hal PA, Wienk MM, Kroon JM et al (2003) Adv Mater 15:118CrossRefGoogle Scholar
  100. 100.
    Beek WJE, Slooff LH, Kroon JM et al (2005) Adv Funct Mater 15:1703CrossRefGoogle Scholar
  101. 101.
    Oosterhout SD, Wienk MM, van Bavel SS et al (2009) Nat Mater 8:818CrossRefGoogle Scholar
  102. 102.
    Jenekhe S, Chen XL (1998) Science 279:1903CrossRefGoogle Scholar
  103. 103.
    Nishizawa T, Lim HK, Tajima K et al (2009) Chem Commun 2469Google Scholar
  104. 104.
    Yang C, Lee JK, Heeger AJ et al (2009) J Mater Chem 19:5416CrossRefGoogle Scholar
  105. 105.
    Moule AJ, Meerholz K (2009) Adv Funct Mater 19:3028CrossRefGoogle Scholar
  106. 106.
    Hayakawa A, Yoshikawa O, Fujieda T et al (2007) Appl Phys Lett 90:163517CrossRefGoogle Scholar
  107. 107.
    Hansel H, Zettl H, Krausch G et al (2003) Adv Mater 15:2056CrossRefGoogle Scholar
  108. 108.
    Gilot J, Barbu I, Wienk MM et al (2007) Appl Phys Lett 91:113520CrossRefGoogle Scholar
  109. 109.
    Kim JY, Lee K, Coates NE et al (2007) Science 317:222CrossRefGoogle Scholar
  110. 110.
    Gilot J, Wienk MM, Janssen RAJ (2007) Appl Phys Lett 90:143512CrossRefGoogle Scholar
  111. 111.
    Hadipour A, de Boer B, Wildeman J et al (2006) Adv Funct Mater 16:1897CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Chemical Engineering and ChemistryEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Dutch Polymer InstituteEindhovenThe Netherlands
  3. 3.School of Physics and AstronomyUniversity of GlasgowGlasgowScotland, UK

Personalised recommendations