Skip to main content

On the Importance of Morphology Control for Printable Solar Cells

  • Chapter
  • First Online:
Energy Efficiency and Renewable Energy Through Nanotechnology

Part of the book series: Green Energy and Technology ((GREEN))

  • 4207 Accesses

Abstract

Polymer and hybrid solar cells have the potential to become the leading technology of the twenty-first century to convert sunlight to electrical energy because they can be easily processed from solution printing devices in a roll-to-roll fashion with high speed and low-cost. The performance of such devices critically depends on the nanoscale organization of the photoactive layer, which is composed of at least two functional materials, the electron donor and the electron acceptor forming a bulk-heterojunction; however, control of its volume morphology still is a challenge. The main requirements for the morphology of efficient photoactive layers are nanoscale phase separation for a large donor/acceptor interface area and hence efficient exciton dissociation, short and continuous percolation pathways of both components leading through the layer thickness to the corresponding electrodes for efficient charge transport and collection, and high crystallinity of both donor and acceptor materials for high charge mobility. In this chapter we review recent progress of our understanding on how the efficiency of a bulk-heterojunction printable solar cell largely depends on the local nanoscale volume organization of the photoactive layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gunes S, Neugebauer H, Sariciftci NS (2007) Chem Rev 107:1324

    Article  Google Scholar 

  2. Hoppe H, Sariciftci NS (2008) Adv Polym Sci 214:1

    Google Scholar 

  3. Liang Y, Xu Z, Xia J et al (2010) Adv Mater 22:1

    Article  Google Scholar 

  4. Koster LJA, Mihailetchi VD, Blom PWM (2006) Appl Phys Lett 88:09351

    Google Scholar 

  5. Jorgensen M, Norrman K, Krebs FC (2008) Sol Energy Mater Sol Cells 92:686

    Article  Google Scholar 

  6. Dennler G, Brabec CJ (2008) Socio-economic impact of low-cost PV technologies. In: Brabec CJ, Dyakonov V, Scherf U (eds) Organic photovoltaics. Wiley–VCH, Weinheim, p 531

    Chapter  Google Scholar 

  7. Roes AL, Alsema EA, Blok K et al (2009) Prog Photovolt Res Appl 17:372

    Article  Google Scholar 

  8. Bube RH (1992) Photoelectronic properties of semiconductors. Cambridge University Press, Cambridge

    Google Scholar 

  9. Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers. Oxford University Press, Oxford

    Google Scholar 

  10. Sariciftci NS, Smilowitz L, Heeger AJ et al (1992) Science 258:1474

    Article  Google Scholar 

  11. Haugeneder A, Neges M, Kallinger C et al (1999) Phys Rev B 59:15346

    Article  Google Scholar 

  12. Tang CW (1986) Appl Phys Lett 48:183

    Article  Google Scholar 

  13. Peumans P, Yakimov A, Forrest SR (2003) J Appl Phys 93:3693

    Article  Google Scholar 

  14. Smilowitz L, Sariciftci NS, Wu R et al (1993) Phys Rev B 47:13835

    Article  Google Scholar 

  15. Yoshino K, Hong YX, Muro K et al (1993) Jpn J Appl Phys Part 2 32:L357

    Article  Google Scholar 

  16. Halls JJM, Pichler K, Friend RH et al (1996) Appl Phys Lett 68:3120

    Article  Google Scholar 

  17. Savenije TJ, Warman JM, Goossens A (1998) Chem Phys Lett 287:148

    Article  Google Scholar 

  18. Kroeze JE, Savenije TJ, Vermeulen MJW et al (2003) J Phys Chem B 107:7696

    Article  Google Scholar 

  19. Yu G, Heeger AJ (1995) J Appl Phys 78:4510

    Article  Google Scholar 

  20. Halls JJM, Walsh CA, Greenham NC et al (1995) Nature 376:498

    Article  Google Scholar 

  21. Yu G, Gao J, Hummelen JC et al (1995) Science 270:1789

    Article  Google Scholar 

  22. Sirringhaus H, Brown PJ, Friend RH et al (1999) Nature 401:685

    Article  Google Scholar 

  23. Yang X, Loos J, Veenstra SC et al (2005) Nano Lett 5:579

    Article  Google Scholar 

  24. Kim Y, Choulis SA, Nelson J et al (2005) Appl Phys Lett 86:063502

    Article  Google Scholar 

  25. Heutz S, Sullivan P, Sanderson BM et al (2004) Sol Energy Mater Sol Cells 83:229

    Article  Google Scholar 

  26. Yang X, Loos J (2007) Macromolecules 40:1353

    Article  Google Scholar 

  27. van Bavel SS, Veenstra S, Loos J (2010) Macromol Rapid Commun 31:1835

    Article  Google Scholar 

  28. van Bavel SS, Loos J (2010) Adv Mater 20:3217

    Article  Google Scholar 

  29. Mihailetchi VD, Xie HX, de Boer B et al (2006) Adv Funct Mater 16:699

    Article  Google Scholar 

  30. Mihailetchi VD, Blom PWM, Hummelen JC et al (2003) J Appl Phys 94:6849

    Article  Google Scholar 

  31. Brabec CJ, Cravino A, Meissner D et al (2001) Adv Funct Mater 11:374

    Article  Google Scholar 

  32. Scharber MC, Mühlbacher D, Koppe M et al (2006) Adv Mater 18:78

    Article  Google Scholar 

  33. Cravino A (2007) Appl Phys Lett 91:243502

    Article  Google Scholar 

  34. Koster LJA, Mihailetchi VD, Ramaker R et al (2005) Appl Phys Lett 86:123509 (the expression in question has the following form: Voc = Egap/q − (kT/q) * ln[C*(1 − P)/P], where P is the dissociation probability of excitons into free charges; unless P is approaching zero, the dependency of Voc on P can be neglected)

    Article  Google Scholar 

  35. Mandoc MM, Kooistra FB, Hummelen JC et al (2007) Appl Phys Lett 91:263505

    Article  Google Scholar 

  36. Mandoc MM, Koster LJA, Blom PWM (2007) Appl Phys Lett 90:133504 (very high carrier mobilities (above 10−3 m2 V−1 s−1) affect the difference between the quasi-Fermi levels and lead to the reduction of Voc. For comparison, mobilities of holes and electrons in annealed P3HT/PCBM blends are around 10−8 m2 V−1 s−1 and 10−7 m2 V−1 s−1, respectively, ref. 30)

    Article  Google Scholar 

  37. Wudl F (1992) Acc Chem Res 25:157

    Article  Google Scholar 

  38. Mozer A, Denk P, Scharber M et al (2004) J Phys Chem B 108:5235

    Article  Google Scholar 

  39. Vandewal K, Tvingstedt K, Gadisa A et al (2009) Nat Mater 8:904

    Article  Google Scholar 

  40. Hoppe H, Sariciftci NS (2006) J Mater Chem 16:45

    Article  Google Scholar 

  41. van Bavel SS, Sourty E, de With G et al (2009) Nano Lett 9:507

    Article  Google Scholar 

  42. Yang X, van Duren JKJ, Janssen RAJ et al (2004) Macromolecules 37:2152

    Google Scholar 

  43. Martens T, D’Haen J, Munters T et al (2003) Synth Met 138:243

    Article  Google Scholar 

  44. Hoppe H, Drees M, Schwinger W et al (2005) Synth Met 152:117

    Article  Google Scholar 

  45. Hoppe H, Niggemann M, Winder C et al (2004) Adv Funct Mater 14:1005

    Article  Google Scholar 

  46. Shaheen SE, Brabec CJ, Sariciftci NS et al (2001) Appl Phys Lett 78:841

    Article  Google Scholar 

  47. Chirvase D, Parisi J, Hummelen JC et al (2004) Nanotechnology 15:1317

    Article  Google Scholar 

  48. van Duren JKJ, Yang X, Loos J et al (2004) Adv Funct Mater 14:425

    Article  Google Scholar 

  49. Zhong H, Yang X, de With G et al (2006) Macromolecules 39:218

    Article  Google Scholar 

  50. Alexeev A, Loos J (2008) Org Electron 9:149

    Article  Google Scholar 

  51. Loos J, van Duren JKJ, Morrissey F et al (2002) Polymer 43:7493

    Article  Google Scholar 

  52. van Duren JKJ, Loos J, Morrissey F et al (2002) Adv Funct Mater 12:665

    Article  Google Scholar 

  53. Weyland M (2002) Top Catal 21:17

    Article  Google Scholar 

  54. Weyland M, Midgley PA (2004) Mater Today 7:32

    Article  Google Scholar 

  55. Jinnai H, Spontak RJ (2009) Polymer 50:1067

    Article  Google Scholar 

  56. Möbus G, Inkson BJ (2007) Mater Today 10:18

    Article  Google Scholar 

  57. Cormack AM (1963) J Appl Phys 34:2722

    Article  MATH  Google Scholar 

  58. Radermacher M (1980) PhD thesis, Department of Physics, University of Munich, Munich, Germany

    Google Scholar 

  59. Hummelen JC, Knight BW, LePeq F et al (1995) J Org Chem 60:532

    Article  Google Scholar 

  60. Padinger F, Rittberger RS, Sariciftci NS (2003) Adv Funct Mater 13:85

    Article  Google Scholar 

  61. Waldauf C, Schilinsky P, Hauch J et al (2004) Thin Solid Films 451–452:503

    Article  Google Scholar 

  62. Al-Ibrahim M, Ambacher O, Sensfuss S et al (2005) Appl Phys Lett 86:201120

    Article  Google Scholar 

  63. Ma W, Yang C, Gong X et al (2005) Adv Funct Mater 15:1617

    Article  Google Scholar 

  64. Svensson M, Zhang F, Veenstra SC et al (2003) Adv Mater 15:988

    Article  Google Scholar 

  65. Yohannes T, Zhang F, Svensson M et al (2004) Thin Solid Films 449:152

    Article  Google Scholar 

  66. Slooff LH, Veenstra SC, Kroon JM et al (2007) Appl Phys Lett 90:43506

    Article  Google Scholar 

  67. Inganäs O, Zhang F, Andersson MR (2009) Acc Chem Res 42:1731

    Article  Google Scholar 

  68. Kroon R, Lenes M, Hummelen JC et al (2008) Polym Rev 48:531

    Article  Google Scholar 

  69. Peet J, Kim JY, Coates NE et al (2007) Nat Mater 6:497

    Article  Google Scholar 

  70. Qin R, Li W, Li C et al (2009) J Am Chem Soc 131:14612

    Article  Google Scholar 

  71. Chu T-Y, Alem S, Verly PG et al (2009) Appl Phys Lett 95:063304

    Article  Google Scholar 

  72. Rispens MT, Meetsma A, Rittberger R et al (2003) Chem Commun 2116

    Google Scholar 

  73. Yang X, Alexeev A, Michels MAJ et al (2005) Macromolecules 38:4289

    Article  Google Scholar 

  74. Merlo JA, Frisbie CD (2004) J Phys Chem B 108:19169

    Article  Google Scholar 

  75. Bertho S, Janssen G, Cleij TJ et al (2008) Sol Energy Mater Sol Cells 92:753

    Article  Google Scholar 

  76. Ihn KJ, Moulton J, Smith P (1993) J Polym Sci Polym Phys 31:735

    Article  Google Scholar 

  77. Li G, Shrotriya V, Huang J et al (2005) Nat Mater 4:864

    Article  Google Scholar 

  78. Reyes-Reyes M, Kim K, Carroll D (2005) Appl Phys Lett 87:083506

    Article  Google Scholar 

  79. Peet J, Soci C, Coffin RC et al (2006) Appl Phys Lett 89:252105

    Article  Google Scholar 

  80. Zhao Y, Yuan GX, Roche P et al (1995) Polymer 36:2211

    Article  Google Scholar 

  81. Savenije TJ, Kroeze JE, Yang X et al (2005) Adv Funct Mater 15:1260

    Article  Google Scholar 

  82. Koster LJA, Mihailetchi VD, Lenes M et al (2008) Performance improvement of polymer:fullerene solar cells due to balanced charge transport. In: Brabec CJ, Dyakonov V, Scherf U (eds) Organic photovoltaics. Wiley–VCH, Weinheim, p 283

    Google Scholar 

  83. van Bavel SS, Sourty E, de With G et al (2009) Macromolecules 42:7396

    Article  Google Scholar 

  84. Campoy-Quiles M, Ferenczi T, Agostinelli T et al (2008) Nat Mater 7:158

    Article  Google Scholar 

  85. Xu Z, Chen L-M, Yang G et al (2009) Adv Funct Mater 19:1227

    Article  Google Scholar 

  86. Nilsson S, Bernasik A, Budkowski A et al (2007) Macromolecules 40:8291

    Article  Google Scholar 

  87. van Hal PA, Christiaans MPT, Wienk MM et al (1999) J Phys Chem B 103:4352

    Article  Google Scholar 

  88. Halls JJM, Arias AC, MacKenzie JD et al (2000) Adv Mater 12:498

    Article  Google Scholar 

  89. Stalmach U, de Boer B, Videlot C et al (2000) J Am Chem Soc 122:5464

    Article  Google Scholar 

  90. Zhang F, Jonforsen M, Johansson DM et al (2003) Synth Met 138:555

    Article  Google Scholar 

  91. Veenstra SC, Verhees WJH, Kroon JM et al (2004) Chem Mater 16:2503

    Article  Google Scholar 

  92. Saunders BR, Turner ML (2008) Adv Colloid Interface Sci 138:1

    Article  Google Scholar 

  93. Beek WJE, Wienk MM, Janssen RAJ (2004) Adv Mater 16:1009

    Article  Google Scholar 

  94. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2425

    Article  Google Scholar 

  95. Kuo CY, Tang WC, Gau C et al (2008) Appl Phys Lett 93:033307

    Article  Google Scholar 

  96. Wang H, Oey CC, Djurisic AB et al (2005) Appl Phys Lett 87:023507

    Article  Google Scholar 

  97. Ravirajan P, Peiro AM, Nazeeruddin MK et al (2006) J Phys Chem B 110:7635

    Article  Google Scholar 

  98. Zhu R, Jiang C-Y, Ramakrishna S (2009) Adv Mater 21:994

    Article  Google Scholar 

  99. van Hal PA, Wienk MM, Kroon JM et al (2003) Adv Mater 15:118

    Article  Google Scholar 

  100. Beek WJE, Slooff LH, Kroon JM et al (2005) Adv Funct Mater 15:1703

    Article  Google Scholar 

  101. Oosterhout SD, Wienk MM, van Bavel SS et al (2009) Nat Mater 8:818

    Article  Google Scholar 

  102. Jenekhe S, Chen XL (1998) Science 279:1903

    Article  Google Scholar 

  103. Nishizawa T, Lim HK, Tajima K et al (2009) Chem Commun 2469

    Google Scholar 

  104. Yang C, Lee JK, Heeger AJ et al (2009) J Mater Chem 19:5416

    Article  Google Scholar 

  105. Moule AJ, Meerholz K (2009) Adv Funct Mater 19:3028

    Article  Google Scholar 

  106. Hayakawa A, Yoshikawa O, Fujieda T et al (2007) Appl Phys Lett 90:163517

    Article  Google Scholar 

  107. Hansel H, Zettl H, Krausch G et al (2003) Adv Mater 15:2056

    Article  Google Scholar 

  108. Gilot J, Barbu I, Wienk MM et al (2007) Appl Phys Lett 91:113520

    Article  Google Scholar 

  109. Kim JY, Lee K, Coates NE et al (2007) Science 317:222

    Article  Google Scholar 

  110. Gilot J, Wienk MM, Janssen RAJ (2007) Appl Phys Lett 90:143512

    Article  Google Scholar 

  111. Hadipour A, de Boer B, Wildeman J et al (2006) Adv Funct Mater 16:1897

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to use this opportunity to thank René Janssen, Martijn Wienk, Jan Kroon, Sjoerd Veenstra, Volker Schmidt, and Xiaoniu Yang for helpful discussions. Supported by the Dutch Polymer Institute (DPI), the Royal Dutch Academy of Sciences (KNAW), and the Chinese Academy of Sciences (Grant 2009J2-28: Visiting Professorship for Senior International Scientists).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Loos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

van Bavel, S.S., Loos, J. (2011). On the Importance of Morphology Control for Printable Solar Cells. In: Zang, L. (eds) Energy Efficiency and Renewable Energy Through Nanotechnology. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-0-85729-638-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-638-2_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-637-5

  • Online ISBN: 978-0-85729-638-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics