Skip to main content

Organic Solar Cells and Their Nanostructural Improvement

  • Chapter
  • First Online:
Energy Efficiency and Renewable Energy Through Nanotechnology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Organic solar cells comprised of organic semiconductors have attracted considerable attention in the areas of photonics and electronics during the last decade. Organic semiconductors are a less expensive alternative to inorganic semiconductors. Organic molecules and conjugated polymers as organic semiconductors can be processed by simple techniques that are not available to crystalline inorganic semiconductors. The flexibility in the synthesis of organic molecules allows for the alteration of molecular weight, band gap, energy levels, and structural order, which makes organic semiconductors unique. The conversion of sunlight to electricity by organic solar cells is very interesting and promising since organic solar cells offer the possibility of fabricating large area, light-weight, cost-effective, flexible devices using simple and environmental friendly techniques. Also, organic solar cells can be integrated into wide variety of structures and products in ways not possible for conventional solar cells. As a clean renewable energy source organic solar cells are rapidly developing. A power conversion efficiency over 6% was reported recently. However, this value must be improved to compete with conventional solar cells. On the other hand, there is a considerable progress in the evolution of organic solar cells from pure scientific research to a possible industrial application. Recent efforts are devoted to the investigation of operating mechanisms, new synthesis routes, new device architectures, stability of the organic materials, lifetime, encapsulation, etc. If comparable or even slightly lower efficiencies than those of conventional technologies can be achieved, the cost-effectiveness and versatility of organic compounds will make organic solar cells more favorable. In this chapter, an overview on principles of operation, critical parameters, nanomorphology, charge transport and mobility, stability, possible routes for improvement, and the recent status and future aspects of organic solar cells will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ginley D, Green MA, Collins R (2008) Solar energy conversion toward 1 Terawatt. MRS Bull 33:355–363

    Article  Google Scholar 

  2. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of pn junction solar cells. J App Phys 32:510–519

    Article  Google Scholar 

  3. Poortmans J (2007) Organic solar cells: linking nanoscale to gigawatts? Prog Photovolt Res App 15:657–658

    Article  Google Scholar 

  4. Minnaert B, Burgelman M (2007) Efficiency potential of organic bulk heterojunction solar cells. Prog Photovolt Res App 15:741–748

    Article  Google Scholar 

  5. Halls JM, Walsh CA, Greenham NC et al (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376:498–500

    Article  Google Scholar 

  6. Yu G, Heeger AJ (1995) Charge separation and photovoltaic conversion in polymer composites. J App Phys 78:4510–4515

    Article  Google Scholar 

  7. Xue J, Uchida S, Rand BP et al (2004) 4.2% Efficient organic photovoltaic cells with low series resistances. Appl Phys Lett 84:3013–3015

    Article  Google Scholar 

  8. Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J App Phys 93:3693–3723

    Article  Google Scholar 

  9. Thompson BC, Frechet JMJ (2008) Polymer-fullerene composite solar cells. Angew Chem Int Ed 47:58–77

    Article  Google Scholar 

  10. Shaheen SE, Brabec C, Padinger F et al (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78:841–843

    Article  Google Scholar 

  11. Wienk M, Kroon JM, Verhees WJH et al (2003) Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chemie Int Ed 42:3371–3375

    Article  Google Scholar 

  12. Chen T, Rieke RD (1992) The first regioregular head-to-tail poly(3-hexylthiophene-2, 5-diyl) and a regiorandom isopolymer: nickel versus palladium catalysis of 2(5)-bromo-5(2)-(bromozincio)-3-hexylthiophene polymerization. J Am Chem Soc 114:10087–10088

    Article  Google Scholar 

  13. McCullough RD, Lowe RD, Jayaraman M et al (1993) Design, synthesis, and control of conducting polymer architectures: structurally homogeneous poly(3-alkylthiophenes). J Org Chem 58:904–912

    Article  Google Scholar 

  14. Padinger F, Rittberger RS, Sariciftci NS (2003) Effects of post production treatment on plastic solar cells. Adv Func Mat 13:85–88

    Article  Google Scholar 

  15. Chirvaze D, Parisi J, Hummelen JC et al (2004) Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites. Nanotechnology 15:1317–1323

    Article  Google Scholar 

  16. Ma WL, Yang CY, Gong X et al (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Func Mat 15:1617–1622

    Article  Google Scholar 

  17. Yu G, Gao J, Hummelen JC et al (1995) Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791

    Article  Google Scholar 

  18. Sariciftci NS, Braun D, Zhang C et al (1993) Semiconducting polymer-buckminster fullerene heterojunctions: diodes, photodiodes and photovoltaic cells. Appl Phys Lett 62:585–587

    Article  Google Scholar 

  19. Alem S, Bettignies R, Nunzi JM et al (2004) Efficient polymer based interpenetrated network photovoltaic cells. Appl Phys Lett 84:2178

    Article  Google Scholar 

  20. Hummelen JC, Knight BW, LePeq F et al (1995) Preparation and characterization of fulleroid and methanofullerene derivatives. J Org Chem 60:532–538

    Article  Google Scholar 

  21. Drechsel J, Maennig B, Kozlowski F et al (2004) High efficiency organic solar cells based on single or multi PIN structures. Thin Solid Films 451–452:515–517

    Article  Google Scholar 

  22. Drechsel J, Maennig B, Gebeyehu D et al (2004) MIP-type organic solar cells incorporating phthalocyanine/fullerene mixed layers and doped wide-gap transport layers. Org Electron 5:175–186

    Article  Google Scholar 

  23. Peumans P, Uchida S, Forrest SR (2003) Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425:16–158

    Article  Google Scholar 

  24. Peet J, Kim JY, Coates NE et al (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6(7):497–500

    Article  Google Scholar 

  25. Park SH, Roy A, Beaupre S et al (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3(5):297–302

    Article  Google Scholar 

  26. Kim Y, Cook S, Tuladhar S et al (2006) A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Nat Mater 5:197–203

    Article  Google Scholar 

  27. Green M, Emery E, Hisikawa Y et al (2007) Solar cell efficiency tables. Prog Photovolt Res Appl 15:425–430

    Article  Google Scholar 

  28. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk heterojunction solar cells. Adv Mater 21:1323–1338

    Article  Google Scholar 

  29. Dennler G, Scharber MC, Ameri T et al (2008) Design rules for donors in bulk-heterojunction tandem solar cells?Towards 15% energy-conversion efficiency. Adv Mater 20:579–583

    Article  Google Scholar 

  30. Scharber MC, Mühlbacher D, Koppe M et al (2006) Design rules for donors in bulk heterojunction solar cells-towards 10% energy conversion efficiency. Adv Func Mat 18:789–794

    Google Scholar 

  31. Servaites JD, Yeganeh S, Marks TJ et al (2010) Efficiency enhancement in organic photovoltaic cells: consequences of optimizing series resistance. Adv Func Mat 20:97–104

    Article  Google Scholar 

  32. Wang X, Liu D, Li J (2010) Organic photovoltaic materials and thin film solar cells. Front Chem China 5:45–60

    Article  Google Scholar 

  33. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod polymer solar cells. Science 295:2425–2427

    Article  Google Scholar 

  34. Coakley KM, McGehee MD (2003) Photovoltaic cells made from conjugated polymers infiltrated into mesaporous Titania. Appl Phys Lett 83:3380–3383

    Article  Google Scholar 

  35. Kim JY, Lee K, Coates NE et al (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317:222–225

    Article  Google Scholar 

  36. Wienk MM, Turbiez MGR, Struijk MK et al (2006) Low-band gap poly(di-2 thienylthienopyrazine):fullerene solar cells. Appl Phys Lett 88:153511–153514

    Article  Google Scholar 

  37. Hou J, Chen HY, Zhang S et al (2008) Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2, 1, 3-benzothiadiazole. J Am Chem Soc 130:16144–16145

    Article  Google Scholar 

  38. Koetse MM, Sweelsson J, Hoekerd KT et al (2006) Efficient polymer:polymer bulk heterojunction solar cells. Appl Phys Lett 88:083504–083507

    Article  Google Scholar 

  39. Tada K, Hirohata, Hosada M et al (1997) Donor polymer (PAT6)—acceptor polymer (CNPPV) fractal network photocells. Synth Met 85:1305–1306

    Article  Google Scholar 

  40. Liao H, Chen LM, Xu Z et al (2008) Highly efficient inverted polymer solar cell by low temperature annealing of CS2CO3 interlayer. Appl Phys Lett 92:173303–173306

    Article  Google Scholar 

  41. Katz EA, Gevorgyan S, Orynbayev MS et al (2007) Outdoor testing and long-term stability of plastic solar cells. Eur Phys J Appl Phys 36:307–311

    Article  Google Scholar 

  42. Hauch JA, Schilinsky P, Choulis SA et al (2008) Flexible organic P3HT:PCBM bulk heterojunction modules with more than 1 year outdoor lifetime. Solar Energy Mater Solar Cells 92:727–731

    Article  Google Scholar 

  43. Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Chem 19:1924–1945

    Google Scholar 

  44. Heeger AJ (2001) Nobel lecture: semiconducting and metallic polymers: the fourth generation of polymeric materials. Rev Mod Phys 73:681–700

    Article  Google Scholar 

  45. Borroughes JH, Bradley DDC, Brown AR et al (1990) Light emitting diodes based on conjugated polymers. Nature 347:539–541

    Article  Google Scholar 

  46. Berggren M, Gustafsson G, Ingaenes O et al (1994) Green electroluminescence in Poly-(3-cyclohexylthiophene) light-emitting diodes. Adv Mater 6:488–490

    Article  Google Scholar 

  47. Gadisa A, Person E, Andersson MR et al (2007) Red and near infrared polarized light emissions from polyfluorene copolymer based light emitting diodes. Appl Phys Lett 90:113510–113513

    Article  Google Scholar 

  48. Bao Z, Dodabalapur A, Lovinger A et al (1996) Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility. Appl Phys Lett 69:4108–4111

    Article  Google Scholar 

  49. Sirringhaus H, Tessler N, Friend RH (1998) Integrated optoelectronic devices based on conjugated polymers. Science 280:1741–1744

    Article  Google Scholar 

  50. Neugebauer H, Brabec C, Hummelen JC, Sariciftci NS (2000) Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells 61:35–42

    Google Scholar 

  51. Kanicki J (1986) Handbook of conducting polymers Marcel Dekker, New York, p 544

    Google Scholar 

  52. Sariciftci NS, Smilowitz L, Heeger AJ et al (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258:1474–1476

    Article  Google Scholar 

  53. Smilowitz L, Sariciftctci NS, Wu R et al (1993) Photoexcitation spectroscopy of conducting-polymer–C60 composites: photoinduced electron transfer. Phys Rev B 47:13835–13842

    Article  Google Scholar 

  54. Kraabel B, Hummelen JC, Vacar D et al (1996) Subpicosecond photoinduced electron transfer from conjugated polymers to functionalized fullerenes. J Chem Phys 104:4267–4274

    Article  Google Scholar 

  55. Morita S, Zakhidov AA, Yoshino K (1992) Doping effect of Buckminsterfullerene in conducting polymer: change of absorption spectrum and quenching of luminescene. Solid State Commun 82:249–252

    Article  Google Scholar 

  56. Yoshino K, Yin XH, Morita S et al (1993) Enhanced photoconductivity of C60 doped Poly(3-alkylthiophene). Solid State Commun 85:85–88

    Article  Google Scholar 

  57. Wudl F (1992) The chemical properties of Buckminsterfullerene (C60) and the birth and infancy of fulleroids. Acc Chem Res 25:157–161

    Article  Google Scholar 

  58. Tang CW (1986) Two layer organic photovoltaic cell. App Phys Lett 43:183–186

    Article  Google Scholar 

  59. Heremans P, Cheyns D, Rand BP (2009) Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Acc Chem Res 42:1740–1747

    Article  Google Scholar 

  60. Archer M, Hill R (2001) Clean electricity from photovoltaics. Imprerial College Press, London

    Google Scholar 

  61. Würfel P (2007) Photovoltaic principles and organic solar cells. Chimia 61:770–774

    Article  Google Scholar 

  62. Haugeneder A, Neges M, Kallinger C et al (1999) Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures. Phys Rev B 59:15346–15351

    Article  Google Scholar 

  63. Theander M, Yartsev A, Zigmantas D et al (2000) Photoluminescence quenching at a polythiophene/C60 heterojunction. Phys Rev B 61:12957–12963

    Article  Google Scholar 

  64. Stübinger T, Brütting W (2001) Exciton diffusion and optical interference in organic donor/acceptor photovoltaic cells. J Appl Phys 90:3632–3642

    Article  Google Scholar 

  65. Mozer A, Sariciftci NS (2006) Conjugated polymer photovoltaic devices and materials. C R Chimie 9:568–577

    Article  Google Scholar 

  66. Gregg BA, Hanna MC (2003) Comparing organic to inorganic photovoltaic cells: theory, experiment, and simulation. J Appl Phys 93:3605–3614

    Article  Google Scholar 

  67. Popovic ZD, Hor A, Loutfy R (1988) A study of carrier generation mechanism in benzimidazole perylene/tetraphenyldiamine thin film structures. Chem Phys 127:451–457

    Article  Google Scholar 

  68. Arkhipov V, Emelianova EV, Baessler (1999) Hot eciton dissociation in a conjugated polymer. Phys Rev Lett 82:1321–1324

    Article  Google Scholar 

  69. Koster LJA, Smits ECP, Mihailetchi VD et al (2005) Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys Rev B 72:085205–085214

    Article  Google Scholar 

  70. Na S, Kim S, Jo J et al (2008) Efficient and flexible ITO free organic solar cells using highly conductive polymer anodes. Adv Mater 20:4061–4067

    Article  Google Scholar 

  71. Cui J, Wang A, Edleman NL et al (2001) Indium tin oxide alternatives—high work function transparent conducting oxides as anodes for organic light-emitting diodes. Adv Mater 13:1476–1480

    Article  Google Scholar 

  72. Rowell MW, Topinka MA, McGehee MA et al (2006) Organic solar cells with carbon nanotube network electrodes. Appl Phys Lett 88:233506–233509

    Article  Google Scholar 

  73. Frohne H, Shaheen S, Brabec C et al (2002) Influence of anodic work function on the performance of organic solar cells. Chem Phys Chem 3:795–799

    Google Scholar 

  74. Zhang F, Johansson M, Andersson MR et al (2002) Polymer photovoltaic cells with conducting polymer anodes. Adv Mater 14:662–665

    Article  Google Scholar 

  75. Huang J, Miller PF, Wilson JS et al (2005) Investigation of the effects of doping and post-deposition treatments on the conductivity, morphology, and work function of poly(3, 4-ethylenedioxythiophene)/poly(styrene sulfonate) films. Adv Func Mater 15:290–296

    Article  Google Scholar 

  76. Hiramoto M, Fujiwara H, Yokoyama M et al (1991) Three‐layered organic solar cell with a photoactive interlayer of codeposited pigments. Appl Phys Lett 58:1062–1065

    Article  Google Scholar 

  77. Brütting W Introduction to the physics of organic semiconductors

    Google Scholar 

  78. Geens W, Aernouts T, Poortmans J et al (2002) Organic co-evaporated films of a PPV-pentamer and C60: model systems for donor/acceptor polymer blends. Thin Solid Films 403–404:438–443

    Article  Google Scholar 

  79. Tsuzuki TT, Shirota J, Rostalski J et al (2000) The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment. Sol Energy Mater Sol Cells 61:1–8

    Article  Google Scholar 

  80. Brabec CJ, Shaheen SE, Winder C et al (2002) Effect of LiF/metal electrodes on the performance of plastic solar cells. App Phys Lett 80:1288–1291

    Article  Google Scholar 

  81. Hung LS, Tang CW, Mason NG (1997) Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. App Phys Lett 70:152–155

    Article  Google Scholar 

  82. Jabbour GE, Kawahe Y, Shaheen S et al (1997) Highly efficient and bright organic electroluminescent devices with an aluminum cathode. Appl Phys Lett 71:1762–1765

    Article  Google Scholar 

  83. Jong D, Friedlein MP, Osikowicz RW et al (2006) Ultraviolet photoelectron spectroscopy of polymers. Mol Cryst Liq Cryst 455:193–203

    Article  Google Scholar 

  84. Parker I (1994) Carrier tunneling and device characteristics in light emitting diodes. J Appl Phys 75:1656–1667

    Article  Google Scholar 

  85. Horowitz G (1990) Organic semiconductors for new electronic devices. Adv Mater 2:287–292

    Article  Google Scholar 

  86. Glenis S, Tourillon G, Garnier F (1984) Electrochemically grown polythiophene and Poly (3-methylthiophene) organic photovoltaic cells. Thin Solid Films 111:93–103

    Article  Google Scholar 

  87. Braun D, Heeger AJ (1991) Visible light emission from semiconducting polymer diodes. Appl Phys Lett 58:1982–1985

    Article  Google Scholar 

  88. Yu G, Zhang C, Heeger AJ (1994) Dual function semiconducting polymer devices light emitting and photodetecting diodes. Appl Phys Lett 64:154–1540

    Google Scholar 

  89. Antoniadis H, Hsieh BR, Abkowitz MA et al (1994) Photovoltaic and photoconductive properties of aluminum/poly(p-phenylene vinylene) interfaces. Synt Metals 62:265–271

    Article  Google Scholar 

  90. Hoppe H, Sariciftci NS (2008) Polymer solar cells. Adv Poly Sci Springer Berlin Heidelberg 1–86

    Google Scholar 

  91. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Plastic solar cells. Adv Func Mater 11:15–26

    Article  Google Scholar 

  92. Yamashita Y, Takashima W, Kaneto K (1993) Characteristics of heterojunction diode of C60/tetratiafulvalene (TTF). Jpn J Appl Phys 32:L1017–L1020

    Article  Google Scholar 

  93. Halls JJM, Friend R (1997) The photovoltaic effect in a poly(p-phenylenevinylene)/perylene heterojunction. Synth Met 85:1307–1308

    Article  Google Scholar 

  94. Peumans P, Forrest SR (2001) Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells. Appl Phys Lett 79:126–129

    Article  Google Scholar 

  95. Van Duren JKJ, Yang XN, Loos J et al (2004) Relating the morphology of Poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance. Adv Func Mat 14:425–434

    Article  Google Scholar 

  96. Martens T, Dhaen J, Munters T et al (2003) Disclosure of the nanostructure of MDMO-PPV:PCBM bulk hetero-junction organic solar cells by a combination of SPM and TEM). Synth Met 138:243–247

    Article  Google Scholar 

  97. Mihailetchi VD, Blom PWM, Hummelen JC et al (2003) Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells. J Appl Phys 94:6849–6855

    Article  Google Scholar 

  98. Brabec CJ, Cravino A, Meissner D et al (2001) Origin of the open circuit voltage of plastic solar cells. Adv Func Mat 11:374–380

    Article  Google Scholar 

  99. Mihailetchi VD, Koster LJA, Blom PWM (2004) Effect of metal electrodes on the performance of polymer:fullerene bulk heterojunction solar cells. Appl Phys Lett 85:970–973

    Article  Google Scholar 

  100. Hoppe H, Niggemann M, Winder C et al (2004) Nanoscale morphology of conjugated polymer/fullerene based bulk heterojunction solar cells. Adv Func Mat 14:1005

    Article  Google Scholar 

  101. Schilinsky P, Waldauf C, Brabec CJ (2002) Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Appl Phys Lett 81:3885–3888

    Article  Google Scholar 

  102. Kim JY, Kim SH, Lee HH et al (2006) New architecture for high efficiency polymer photovoltaic cells using solution based titanium oxide as an optical spacer. Adv Mat 18:572–576

    Article  Google Scholar 

  103. Spanggaard H, Krebs F (2004) A brief history of the development of organic and polymeric photovoltaics. Sol Energy Mater Sol Cells 83:125–146

    Article  Google Scholar 

  104. Rostalski J, Meissner D (2000) Monochromatic versus solar efficiencies of organic solar cells. Sol Energy Mater Sol Cells 61:87–95

    Article  Google Scholar 

  105. Shrotriya V, Li G, Yao Y et al (2006) Accurate measurement and characterization of organic solar cells. Adv Func Mat 16:2016–2023

    Article  Google Scholar 

  106. Dutta U, Chatterjee P (2004) The open circuit voltage in amorphous silicon p-i-n solar cells and its relationship to material, device and dark diode parameters. J Appl Phys 96:2261–2272

    Article  Google Scholar 

  107. Marks RN, Halls JJM, Bradley DDC et al (1994) The photovoltaic response in poly(p-phenylene vinylene) thin film devices. J Phys Condens Matter 6:1379–1394

    Article  Google Scholar 

  108. Cravino A, Schilinsky P, Brabec C (2007) Characterization of organic solar cells: the importance of device layout. Adv Func Mat 17:3906–3910

    Article  Google Scholar 

  109. Kim M-S, Kang M-G, Guo L-J et al (2008) Choice of electrode geometry for accurate measurement of organic photovoltaic cell performance. Appl Phys Lett 92:133301–133304

    Article  Google Scholar 

  110. Li G, Shrotriya V, Huang J et al (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868

    Article  Google Scholar 

  111. Miller S, Fanchini G, Lin Y-Y et al (2008) Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing. J Mater Chem 18:306–312

    Article  Google Scholar 

  112. Dennler G, Lungenschmied C, Neugebauer H et al (2006) A new encapsulation solution for flexible organic solar cells. Thin Solid Films 511:349–353

    Article  Google Scholar 

  113. Koster LJA, Mihailetchi VD, Ramaker R et al (2005) Light intensity dependence of open circuit voltage of polymer:fullerene solar cells. Appl Phys Lett 86:123509–123512

    Article  Google Scholar 

  114. Malliaras GG, Salem JR, Brock PJ et al (1998) Photovoltaic measurement of the built-in potential in organic light emitting diodes and photodiodes. J Appl Phys 84:1583–1588

    Article  Google Scholar 

  115. Gregg B (2003) Exitonic solar cells. J Phys Chem B 107:4688–4698

    Article  Google Scholar 

  116. Ramsdale CM, Barker JA, Arias AC et al (2002) The origin of the open circuit voltage in polyfluorene-based photovoltaic devices. J Appl Phys 92:4266–4271

    Article  Google Scholar 

  117. Antoniadis H, Hsieh BR, Abkowitz MA et al (1993) Polymer preprints 34:490

    Google Scholar 

  118. Karg S, Riess W, Dyakonov V et al (1993) Electrical and optical characterization of poly(phenylene-vinylene) light emitting diodes. Synth Met 54:427–433

    Article  Google Scholar 

  119. Gadisa A, Svensson M, Andersson MR et al (2004) Correlation between oxidation potential and open circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative. Appl Phys Lett 84:1609–1612

    Article  Google Scholar 

  120. Liu J, Shi Y, Yang Y (2001) Solvation induced morphology effects on the performance of polymer-based photovoltaic devices. Adv Func Mat 11:420–424

    Article  Google Scholar 

  121. Soci C, Hwang IW, Moses D et al (2007) Photoconductivity of a low-bandgap conjugated polymer. Adv Func Mat 17:632–636

    Article  Google Scholar 

  122. Nunzi JM (2002) Organic photovoltaic materials and devices. C R Physique 3:523–542

    Article  Google Scholar 

  123. Winder C, Sariciftci NS (2004) Low band gap polymers for photon harvesting in bulk heterojunction solar cells. J Mat Chem 14:1077–1086

    Article  Google Scholar 

  124. Campos L, Tontcheva A, Günes S et al (2005) Extended photocurrent spectrum of a low band gap polymer in a bulk heterojunction solar cell. Chem Mater 17:4031–4033

    Article  Google Scholar 

  125. Perzon E, Wang X, Admassic S et al (2006) An alternating low band-gap polyfluorene for optoelectronic devices. Polymer 47:4261–4268

    Article  Google Scholar 

  126. Cravino A, Loi M, Scharber M et al (2003) Spectroscopic properties of PEDOTEHIITNa novel soluble low band-gap conjugated polymer. Synth Met 137:1435–1436

    Article  Google Scholar 

  127. Wienk M, Struijk M, Janssen R (2006) Low band gap polymer bulk heterojunction solar cells. Chem Phys Lett 422:488–491

    Article  Google Scholar 

  128. Bundgaard E, Krebs F (2006) Low-band-gap conjugated polymers based on thiophene, benzothiadiazole, and benzobis(thiadiazole). Macromolecules 39:2823–2831

    Article  Google Scholar 

  129. Bundgaard E, Krebs F (2007) Large-area photovoltaics based on low band gap copolymers of thiophene and benzothiadiazole or benzo-bis(thiadiazole). Sol Energy Mater Sol Cells 91:1019–1025

    Article  Google Scholar 

  130. Winder C, Matt G, Hummelen JC et al (2002) Sensitization of low bandgap polymer bulk heterojunction solar cells. Thin Solid Films 403–404:373–379

    Article  Google Scholar 

  131. Bundgaard E, Krebs F (2007) Low band gap polymers for organic photovoltaics. Sol Energy Mater Sol Cells 91:954–985

    Article  Google Scholar 

  132. Moule AJ, Bonekamp BJ, Meerholtz K (2006) The effect of active layer thickness and composition on the performance of bulk heterojunction solar cells. J Appl Phys 100:094503–094510

    Article  Google Scholar 

  133. Hoppe H, Sariciftci NS, Meissner D (2003) Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells. Sol Energy Mater Sol Cells 80:105–113

    Article  Google Scholar 

  134. Peumans P, Bulovic V, Forrest SR (2000) Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Appl Phys Lett 76:2650–2653

    Article  Google Scholar 

  135. Roman LS, Inganaes O, Nyberg T et al (2000) Trapping light in polymer photodiodes with soft embodded gratings. Adv Mat 12:189–195

    Article  Google Scholar 

  136. Delley B, Kiess H (1994) 2-dimensional simulation of high efficiency silicon solar cells. Sol Energy Mater Sol Cells 33:1–10

    Article  Google Scholar 

  137. Niggemann M, Glatthaar M, Gombert A et al (2004) Diffraction gratings and buried nano-electrodes-architectures for organic solar cells. Thin Solid Films 451–452:619–623

    Article  Google Scholar 

  138. Gupta D, Mukhopadhyay S, Narayan K S (2010) Fill factors in organic solar cells. solar energy materials and solar cells (in press)

    Google Scholar 

  139. M-Su Kim, B-Gi Kim, Kim J (2009) Effective variables to control the fill factor of organic photovoltaic cells. Appl Mater Interf 1:1264–1269

    Article  Google Scholar 

  140. Barrau S, Andersson V, Zhang F et al (2009) Nanomorphology of bulk heterojunction organic solar cells in 2D and 3D correlated to photovoltaic performance. Macromolecules 42:4646–4650

    Article  Google Scholar 

  141. Maturova K, Van Bavel SS, Wienk MM et al (2009) Morphological device model for organic bulk heterojunction solar cells. Nano Lett 9:3032–3037

    Article  Google Scholar 

  142. Markov DE, Hummelen JC, Blom PWM et al (2005) Dynamics of exciton diffusion in poly(p-phenylene vinylene)/fullerene heterostructures. Phys Rev B 72:045216–045221

    Article  Google Scholar 

  143. Van Bavel SS, Sourty E, De With G et al (2009) Three dimensional nanoscale organization of bulk heterojunction polymer solar cells. Nano Lett 9:507–513

    Article  Google Scholar 

  144. Ahn T, Sein HHHL (2002) Effect of annealing of polythiophene derivative for polymer light-emitting diodes. Appl Phys Lett 80:392–395

    Article  Google Scholar 

  145. Brown PJ, Thomas DS, Köhler A et al (2003) Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys Rev B 67:064203–064219

    Article  Google Scholar 

  146. Nakazono M, Kawai T, Yoshino K et al (1994) Effects of heat treatment on properties of poly(3-alkyl)thiophene. Chem Mater 6:864–870

    Article  Google Scholar 

  147. Zhang F, Svensson M, Andersson M et al (2001) Soluble polythiophenes with pendant fullerene groups as double cable materials for photodiodes. Adv Mat 13:1871–1874

    Article  Google Scholar 

  148. Mattis B A, Chang P C, Subramarian V (2003) Effect of thermal cycling on the performance of poly(3-hexyl)thiophene transistors. Mater Res Soc Symp Proc 771 L.10.35.1

    Google Scholar 

  149. Li G, Shrotriya V, Yang Y (2005) Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly (3-hexylthiophene). J Appl Phys 98:043704–043709

    Article  Google Scholar 

  150. Al-Ibrahim M, Ambacher O, Sensfuss S (2005) Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexyl)thiophene. Fullerene 86:201120–201123

    Google Scholar 

  151. Erb T, Zhokhavets U, Gobsh G et al (2005) Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv Func Mat 15:1193–1196

    Article  Google Scholar 

  152. Savenije TJ, Kroeze JE, Yang X et al (2005) The effect of thermal treatment on the morphology and charge carrier dynamics in a polythiophene-fullerene bulk heterojunction. Adv Func Mat 15:1260–1266

    Article  Google Scholar 

  153. Yang X, Loos J, Veenstra SC et al (2005) Nanoscale morphology of high-performance polymer solar cells. Nanoletters 5:579–583

    Google Scholar 

  154. Andersson V, Herland A, Masich S et al (2009) Imaging of the 3D nanostructure of a polymer solar cell by electron tomography. Nano Lett 9:853–855

    Article  Google Scholar 

  155. Marsh RA, Hodgkiss JM, Seifried SA et al (2010) Effect of annealing on P3HT:PCBM charge transfer and nanoscale morphology probed by ultrafast spectroscopy. Nano Lett 10:923–930

    Article  Google Scholar 

  156. Keawprajak A, Piyakulawat P, Klamchuen A et al (2010) Influence of crystallizable solvent on the morphology and performance of P3HT:PCBM bulk heterojunction solar cells. Sol Energy Mater Sol Cells 94:531–536

    Article  Google Scholar 

  157. Huang JH, Ho ZY, Kekuda D et al (2009) Effects of nanomorphological changes on the performance of solar cells with blends of poly[9, 9’-dioctyl-fluorene-co-bithiophene] and a soluble fullerene. Nanotechnology 20:025202–025211

    Article  Google Scholar 

  158. Ortmann F, Bechstedt F, Karsten H (2010) Charge transport in organic crystals: interplay of band transport, hopping and electron-phonon scattering. New J Phys 12:023011. doi:10.1088/1367-2630/12/2/023011

    Article  Google Scholar 

  159. Tessler N, Preezant Y, Rappaport N et al (2009) Charge tranpsort in disordered organic materials and its relevance to thin film devices. Adv Mater 21:2741–2761

    Article  Google Scholar 

  160. Coropceanu V, Cornil J, Filho DAS et al (2007) Charge tranport in organic semiconductors. Chem Rev 107:926–952

    Article  Google Scholar 

  161. Nelson J, Kwiatkowski JJ, Kirkpatrick J et al (2009) Modeling charge transport in organic photovoltaic materials. Acc Chem Res 42:1768–1778

    Article  Google Scholar 

  162. Karl N (2003) Charge carrier transport in organic semiconductors. Synth Met 133–134:649–657

    Article  Google Scholar 

  163. Blom PWM, Mihailetchi VD, Koster LJA et al (2007) Device physics of polymer:fullerene bulk heterojunction solar cells. Adv Mater 19:1551–1566

    Article  Google Scholar 

  164. Mihailetchi VD, van Duren JKJ, Blom PWM et al (2003) Electron transport in a methanofullerene. Adv Func Mat 13:43–46

    Article  Google Scholar 

  165. Blom PWM, de Jong MJM, van Munster MG (1997) Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene). Phys Rev B 55:R656–R659

    Article  Google Scholar 

  166. Lutsen L, Adriaensens, Becker H et al (1999) New synthesis of a soluble high molecular weight poly(arylene vinylene): poly[2-methoxy-5-(3, 7-dimethyloctyloxy)-p-phenylene vinylene] polymerization and device properties. Macromolecules 32:6517–6525

    Article  Google Scholar 

  167. Mozer AJ, Denk P, Scharber MC et al (2004) Novel regiospecific MDMO−PPV copolymer with improved charge transport for bulk heterojunction solar cells. J Phys Chem B 108:5235–5242

    Article  Google Scholar 

  168. Mozer A, Sariciftci NS (2004) Negative electric field dependence of charge carrier drift mobility in conjugated, semiconducting polymers. Chem Phys Lett 389:438–442

    Article  Google Scholar 

  169. Melzer C, Koop E, Mihailetchi VD et al (2004) Hole transport in poly(phenylene vinylene)/methanofullerene bulk-heterojunction solar cells. Adv Func Mater 14:865–870

    Article  Google Scholar 

  170. Mihailetchi VD, Koster LJA, Blom PWM et al (2005) Compositional dependence of the performance of poly(p-phenylene vinylene): methanofullerene bulk-heterojunction solar cells. Adv Func Mater 15:795–801

    Article  Google Scholar 

  171. Mihailetchi VD, Wildeman J, Blom PWM (2005) Space-charge limited photocurrent. Phys Rev Lett 94:126602–126606

    Article  Google Scholar 

  172. Frost JM, Cheynis F, Tuladhar SM et al (2006) Influence of polymer-blend morphology on charge transport and photocurrent generation in donor-acceptor polymer blends. Nano Lett 6:1674–1681

    Article  Google Scholar 

  173. Pivrikas A, Sariciftci NS, Juska G et al (2007) A review of charge transport and recombination in polymer/fullerene organic solar cells. Prog Photovolt Res Appl 15:677–696

    Article  Google Scholar 

  174. Shah M, Pryamitsyn V, Ganesan V (2009) Effect of anisotropic charge transport on device characteristics of polymer solar cells. Appl Phys Lett 95:194101–194104

    Article  Google Scholar 

  175. Ballantyne AM, Chen L, Dane J et al (2008) The effect of poly(3-hexyl)thiophene (P3HT) molecular weight on charge transport and the performance of polymer:fullerene solar cells. Adv Func Mater 18:2373–2380

    Article  Google Scholar 

  176. Mandoc MM, Koster LJA, Blom PWM (2007) Optimum charge carrier mobility in organic solar cells. Appl Phys Lett 90:133504–133507

    Article  Google Scholar 

  177. Mihailetchi VD, Xie H, Boer de B et al (2006) Charge transport and photocurrent generation in poly(3-hexylthiophene):methanofullerene bulk-heterojunction solar cells. Adv Func Mater 16:699–708

    Article  Google Scholar 

  178. Kline RJ, McGehee MD, Kadnikova EN et al (2003) Adv Mater 15:1519

    Article  Google Scholar 

  179. Goh C, Kline RJ, McGehee MD et al (2005) Appl Phys Lett 86:122110

    Article  Google Scholar 

  180. Chamberlain GA (1983) Organic solar cells: a review. Solar Cells 8:47–83

    Article  Google Scholar 

  181. Hoth CN, Choulis SA, Schilinsky P et al (2007) High photovoltaic performance of inkjet printed polymer:fullerene blends. Adv Mater 19:3973–3978

    Article  Google Scholar 

  182. Arbogast JW, Foote CS (1991) Photophysical properties of C70. J Am Chem Soc 113:8886–8889

    Article  Google Scholar 

  183. Chen H-Y, Hou J, Zhang S et al (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photonics 3:649–653

    Article  Google Scholar 

  184. Jorgensen M, Norrman K, Krebs FC (2008) Stability and degradation of polymer solar cells. Sol Energy Mater Sol Cells 92:686–714

    Article  Google Scholar 

  185. Brabec CJ, Hauch JA, Schilinsky P et al (2005) Production aspects of organic photovoltaics and their impact on the commercialization of devices. MRS Bull 30:50–52

    Article  Google Scholar 

  186. Krebs FC (2005) Alternative PV: large scale organic photovoltaics. Refocus 6:38–39

    Article  Google Scholar 

  187. Schuller S, Schilinsky P, Hauch J et al (2004) Determination of the degradation constant of bulk heterojunction solar cells by accelerated lifetime measurements. Appl Phys A 79:37–40

    Article  Google Scholar 

  188. Jenekhe S, Chen XL (1998) Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes. Science 279:1903

    Article  Google Scholar 

  189. Rispens MT, Sanchez L, Beckers EHA et al (2003) Supramolecular fullerene architectures by quadruple hydrogen bonding. Synth Met 135:801–803

    Article  Google Scholar 

  190. Tracz A, Jeszka JK, Watson MD et al (2003) Uniaxial alignment of the columnar super-structure of a hexa (Alkyl) hexa-peri-hexabenzocoronene on untreated glass by simple solution processing. J Am Chem Soc 125:1682–1683

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serap Günes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Günes, S. (2011). Organic Solar Cells and Their Nanostructural Improvement. In: Zang, L. (eds) Energy Efficiency and Renewable Energy Through Nanotechnology. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-0-85729-638-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-638-2_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-637-5

  • Online ISBN: 978-0-85729-638-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics