Organic Solar Cells with Inverted and Tandem Structures

  • De Wei Zhao
  • Aung Ko Ko Kyaw
  • Xiao Wei Sun
Part of the Green Energy and Technology book series (GREEN)


During the past decade, organic solar cells have attracted great attention due to their wide applicability and potentially low-cost fabrication from printing at low temperature on flexible substrates. Although the technologies of small molecule and polymer solar cells have advanced significantly, the efficiency and stability still need to be improved to fulfill the commercial requirements. In principle, the primary way to improve device performance is to introduce new materials with the properties of broad absorption range, high charge-carrier mobility, and long-term stability. On the other hand, the device performance can be also enhanced by optimizing device structures. In this chapter, we will discuss the recent progress in organic solar cells with inverted and tandem structures, two effective approaches to improve device performance. We will review various interfacial and intermediate layers employed in solar cells based on these concepts. The stability of the devices with these structures in ambient environment will also be discussed.


Active Layer Fill Factor Intermediate Layer Power Conversion Efficiency External Quantum Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ma WL, Yang CY, Gong X et al (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15:1617–1622CrossRefGoogle Scholar
  2. 2.
    Reyes-Reyes M, Kim K, Carroll DL (2005) High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6)C-61 blends. Appl Phys Lett 87:083506CrossRefGoogle Scholar
  3. 3.
    Bundgaard E, Krebs FC (2007) Low band gap polymers for organic photovoltaics. Sol Energy Mater Sol Cells 91:954–985CrossRefGoogle Scholar
  4. 4.
    Park SH, Roy A, Beaupre S et al (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3:297–303CrossRefGoogle Scholar
  5. 5.
    Hou JH, Chen HY, Zhang SQ et al (2008) Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2, 1, 3-benzothiadiazole. J Am Chem Soc 130:16144–16145CrossRefGoogle Scholar
  6. 6.
    Brabec CJ, Zerza G, Cerullo G et al (2001) Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem Phys Lett 340:232–236CrossRefGoogle Scholar
  7. 7.
    Chirvase D, Parisi J, Hummelen JC et al (2004) Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites. Nanotechnology 15:1317–1323CrossRefGoogle Scholar
  8. 8.
    Hoppe H, Niggemann M, Winder C et al (2004) Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. Adv Funct Mater 14:1005–1011CrossRefGoogle Scholar
  9. 9.
    Hoppe H, Sariciftci NS (2006) Morphology of polymer/fullerene bulk heterojunction solar cells. J Mater Chem 16:45–61CrossRefGoogle Scholar
  10. 10.
    Zhang FL, Jespersen KG, Bjorstrom C et al (2006) Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends. Adv Funct Mater 16:667–674CrossRefGoogle Scholar
  11. 11.
    Chen FC, Tseng HC, Ko CJ (2008) Solvent mixtures for improving device efficiency of polymer photovoltaic devices. Appl Phys Lett 92:103316CrossRefGoogle Scholar
  12. 12.
    Rispens MT, Meetsma A, Rittberger R, et al. (2003) Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV: PCBM ‘plastic’ solar cells. Chem Commun 2116–2118Google Scholar
  13. 13.
    Moule AJ, Meerholz K (2008) Controlling morphology in polymer–fullerene mixtures. Adv Mater 20:240–245CrossRefGoogle Scholar
  14. 14.
    Jin SH, Naidu BVK, Jeon HS et al (2007) Optimization of process parameters for high-efficiency polymer photovoltaic devices based on P3HT: PCBM system. Sol Energy Mater Sol Cells 91:1187–1193CrossRefGoogle Scholar
  15. 15.
    Yang XN, Loos J, Veenstra SC et al (2005) Nanoscale morphology of high-performance polymer solar cells. Nano Lett 5:579–583CrossRefGoogle Scholar
  16. 16.
    Kim K, Liu J, Namboothiry MAG et al (2007) Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics. Appl Phys Lett 90:163511CrossRefGoogle Scholar
  17. 17.
    Irwin MD, Buchholz B, Hains AW et al (2008) p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc Natl Acad Sci USA 105:2783–2787CrossRefGoogle Scholar
  18. 18.
    Shrotriya V, Li G, Yao Y et al (2006) Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl Phys Lett 88:073508CrossRefGoogle Scholar
  19. 19.
    Zhao DW, Sun XW, Jiang CY et al (2008) Efficient tandem organic solar cells with an Al/MoO3 intermediate layer. Appl Phys Lett 93:083305CrossRefGoogle Scholar
  20. 20.
    Zhao DW, Sun XW, Jiang CY et al (2009) An efficient triple-tandem polymer solar cell. IEEE Electron Device Lett 30:490–492CrossRefGoogle Scholar
  21. 21.
    Chan MY, Lee CS, Lai SL et al (2006) Efficient organic photovoltaic devices using a combination of exciton blocking layer and anodic buffer layer. J Appl Phys 100:094506CrossRefGoogle Scholar
  22. 22.
    Jorgensen M, Norrman K, Krebs FC (2008) Stability/degradation of polymer solar cells. Sol Energy Mater Sol Cells 92:686–714CrossRefGoogle Scholar
  23. 23.
    Brabec CJ, Shaheen SE, Winder C et al (2002) Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl Phys Lett 80:1288–1290CrossRefGoogle Scholar
  24. 24.
    Roy A, Park SH, Cowan S et al (2009) Titanium suboxide as an optical spacer in polymer solar cells. Appl Phys Lett 95:013302CrossRefGoogle Scholar
  25. 25.
    Kim JY, Kim SH, Lee HH et al (2006) New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv Mater 18:572–576CrossRefGoogle Scholar
  26. 26.
    Gilot J, Barbu I, Wienk MM et al (2007) The use of ZnO as optical spacer in polymer solar cells: theoretical and experimental study. Appl Phys Lett 91:113520CrossRefGoogle Scholar
  27. 27.
    Yip HL, Hau SK, Baek NS et al (2008) Self-assembled monolayer modified ZnO/metal bilayer cathodes for polymer/fullerene bulk-heterojunction solar cells. Appl Phys Lett 92:193313CrossRefGoogle Scholar
  28. 28.
    Chen FC, Wu JL, Hsieh KH et al (2008) Polymer photovoltaic devices with highly transparent cathodes. Org Electron 9:1132–1135CrossRefGoogle Scholar
  29. 29.
    Chen FC, Wu JL, Yang SS et al (2008) Cesium carbonate as a functional interlayer for polymer photovoltaic devices. J Appl Phys 103:103721CrossRefGoogle Scholar
  30. 30.
    Kim JY, Lee K, Coates NE et al (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317:222–225CrossRefGoogle Scholar
  31. 31.
    Parker ID (1994) Carrier tunneling and device characteristics in polymer light-emitting-diodes. J Appl Phys 75:1656–1666CrossRefGoogle Scholar
  32. 32.
    Brabec CJ, Cravino A, Meissner D et al (2001) Origin of the open circuit voltage of plastic solar cells. Adv Funct Mater 11:374–380CrossRefGoogle Scholar
  33. 33.
    Malliaras GG, Salem JR, Brock PJ et al (1998) Photovoltaic measurement of the built-in potential in organic light emitting diodes and photodiodes. J Appl Phys 84:1583–1587CrossRefGoogle Scholar
  34. 34.
    Pettersson LAA, Roman LS, Inganas O (1999) Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J Appl Phys 86:487–496CrossRefGoogle Scholar
  35. 35.
    Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693–3723CrossRefGoogle Scholar
  36. 36.
    Moliton A, Nunzi JM (2006) How to model the behaviour of organic photovoltaic cells. Polym Int 55:583–600CrossRefGoogle Scholar
  37. 37.
    Hagemann O, Bjerring M, Nielsen NC et al (2008) All solution processed tandem polymer solar cells based on thermocleavable materials. Sol Energy Mater Sol Cells 92:1327–1335CrossRefGoogle Scholar
  38. 38.
    Kroon R, Lenes M, Hummelen JC et al (2008) Small bandgap polymers for organic solar cells (polymer material development in the last 5 years). Polym Rev 48:531–582CrossRefGoogle Scholar
  39. 39.
    Zhang FL, Bijleveld J, Perzon E et al (2008) High photovoltage achieved in low band gap polymer solar cells by adjusting energy levels of a polymer with the LUMOs of fullerene derivatives. J Mater Chem 18:5468–5474CrossRefGoogle Scholar
  40. 40.
    Neugebauer H, Brabec C, Hummelen JC et al (2000) Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells. Sol Energy Mater Sol Cells 61:35–42CrossRefGoogle Scholar
  41. 41.
    Schuller S, Schilinsky P, Hauch J et al (2004) Determination of the degradation constant of bulk heterojunction solar cells by accelerated lifetime measurements. Appl Phys A Mater Sci Process 79:37–40CrossRefGoogle Scholar
  42. 42.
    Sahin Y, Alem S, de Bettignies R et al (2005) Development of air stable polymer solar cells using an inverted gold on top anode structure. Thin Solid Films 476:340–343CrossRefGoogle Scholar
  43. 43.
    Krebs FC, Norrman K (2007) Analysis of the failure mechanism for a stable organic photovoltaic during 10000 h of testing. Prog Photovolt Res Appl 15:697–712CrossRefGoogle Scholar
  44. 44.
    de Jong MP, van Ijzendoorn LJ, de Voigt MJA (2000) Stability of the interface between indium-tin-oxide and poly(3, 4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl Phys Lett 77:2255–2257CrossRefGoogle Scholar
  45. 45.
    Wong KW, Yip HL, Luo Y et al (2002) Blocking reactions between indium-tin oxide and poly (3, 4-ethylene dioxythiophene): poly(styrene sulphonate) with a self-assembly monolayer. Appl Phys Lett 80:2788–2790CrossRefGoogle Scholar
  46. 46.
    Lee K, Kim JY, Park SH et al (2007) Air-stable polymer electronic devices. Adv Mater 19:2445–2449CrossRefGoogle Scholar
  47. 47.
    Gaynor W, Lee JY, Peumans P (2010) Fully solution-processed inverted polymer solar cells with laminated nanowire electrodes. ACS Nano 4:30–34CrossRefGoogle Scholar
  48. 48.
    Bernards DA, Biegala T, Samuels ZA et al (2004) Organic light-emitting devices with laminated top contacts. Appl Phys Lett 84:3675–3677CrossRefGoogle Scholar
  49. 49.
    Chen LM, Hong ZR, Li G et al (2009) Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells. Adv Mater 21:1434–1449CrossRefGoogle Scholar
  50. 50.
    Mor GK, Shankar K, Paulose M et al (2007) High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays. Appl Phys Lett 91:152111CrossRefGoogle Scholar
  51. 51.
    Glatthaar M, Niggemann M, Zimmermann B et al (2005) Organic solar cells using inverted layer sequence. Thin Solid Films 491:298–300CrossRefGoogle Scholar
  52. 52.
    Liao HH, Chen LM, Xu Z et al (2008) Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer. Appl Phys Lett 92:173303CrossRefGoogle Scholar
  53. 53.
    Zhao DW, Liu P, Sun XW et al (2009) An inverted organic solar cell with an ultrathin Ca electron-transporting layer and MoO3 hole-transporting layer. Appl Phys Lett 95:153304CrossRefGoogle Scholar
  54. 54.
    Kim SY, Baik JM, Yu HK et al (2005) Highly efficient organic light-emitting diodes with hole injection layer of transition metal oxides. J Appl Phys 98:093707CrossRefGoogle Scholar
  55. 55.
    Waldauf C, Morana M, Denk P et al (2006) Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact. Appl Phys Lett 89:233517CrossRefGoogle Scholar
  56. 56.
    White MS, Olson DC, Shaheen SE et al (2006) Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl Phys Lett 89:143517CrossRefGoogle Scholar
  57. 57.
    Chu CW, Li SH, Chen CW et al (2005) High-performance organic thin-film transistors with metal oxide/metal bilayer electrode. Appl Phys Lett 87:193508CrossRefGoogle Scholar
  58. 58.
    Beek WJE, Wienk MM, Janssen RAJ (2005) Hybrid polymer solar cells based on zinc oxide. J Mater Chem 15:2985–2988CrossRefGoogle Scholar
  59. 59.
    Li G, Chu CW, Shrotriya V et al (2006) Efficient inverted polymer solar cells. Appl Phys Lett 88:253503CrossRefGoogle Scholar
  60. 60.
    Kyaw AKK, Sun XW, Jiang CY (2009) Efficient charge collection with sol–gel derived colloidal ZnO thin film in photovoltaic devices. J Sol–Gel Sci Technol 52:348–355CrossRefGoogle Scholar
  61. 61.
    Znaidi L, Illia G, Benyahia S et al (2003) Oriented ZnO thin films synthesis by sol–gel process for laser application. Thin Solid Films 428:257–262CrossRefGoogle Scholar
  62. 62.
    Liu XZ, Luo YH, Li H, et al. (2007) Room temperature fabrication of porous ZnO photoelectrodes for flexible dye-sensitized solar cells. Chem Commun 2847–2849Google Scholar
  63. 63.
    Kyaw AKK, Sun XW, Jiang CY et al (2008) An inverted organic solar cell employing a sol–gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer. Appl Phys Lett 93:221107CrossRefGoogle Scholar
  64. 64.
    Hau SK, Yip HL, Baek NS et al (2008) Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl Phys Lett 92:253301CrossRefGoogle Scholar
  65. 65.
    Wang JC, Weng WT, Tsai MY et al (2010) Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer. J Mater Chem 20:862–866CrossRefGoogle Scholar
  66. 66.
    Liu JP, Wang SS, Bian ZQ et al (2009) Inverted photovoltaic device based on ZnO and organic small molecule heterojunction. Chem Phys Lett 470:103–106CrossRefGoogle Scholar
  67. 67.
    Scharber MC, Wuhlbacher D, Koppe M et al (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18:789–794CrossRefGoogle Scholar
  68. 68.
    Huang JS, Chou CY, Liu MY et al (2009) Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods. Org Electron 10:1060–1065CrossRefGoogle Scholar
  69. 69.
    Olson DC, Piris J, Collins RT et al (2006) Hybrid photovoltaic devices of polymer and ZnO nanofiber composites. Thin Solid Films 496:26–29CrossRefGoogle Scholar
  70. 70.
    Yu BY, Tsai A, Tsai SP et al (2008) Efficient inverted solar cells using TiO2 nanotube arrays. Nanotechnology 19:255202CrossRefGoogle Scholar
  71. 71.
    Tokito S, Noda K, Taga Y (1996) Metal oxides as a hole-injecting layer for an organic electroluminescent device. J Phys D Appl Phys 29:2750–2753CrossRefGoogle Scholar
  72. 72.
    You H, Dai YF, Zhang ZQ et al (2007) Improved performances of organic light-emitting diodes with metal oxide as anode buffer. J Appl Phys 101:026105CrossRefGoogle Scholar
  73. 73.
    Hau SK, Yip HL, Leong K et al (2009) Spraycoating of silver nanoparticle electrodes for inverted polymer solar cells. Org Electron 10:719–723CrossRefGoogle Scholar
  74. 74.
    Kuwabara T, Nakayama T, Uozumi K et al (2008) Highly durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer. Sol Energy Mater Sol Cells 92:1476–1482CrossRefGoogle Scholar
  75. 75.
    Toshinori H, Seishi M, Takashi M et al (2004) Novel Electron-Injection Layers for Top-Emission OLEDs. SID Symposium Digest of Technical Papers 35:154–157CrossRefGoogle Scholar
  76. 76.
    Tao C, Ruan SP, Zhang XD et al (2008) Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer. Appl Phys Lett 93:193307CrossRefGoogle Scholar
  77. 77.
    Schmidt H, Flugge H, Winkler T et al (2009) Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode. Appl Phys Lett 94:243302CrossRefGoogle Scholar
  78. 78.
    Tao C, Ruan SP, Xie GH et al (2009) Role of tungsten oxide in inverted polymer solar cells. Appl Phys Lett 94:043311CrossRefGoogle Scholar
  79. 79.
    Ganzorig C, Suga K, Fujihira M (2001) Alkali metal acetates as effective electron injection layers for organic electroluminescent devices. Mater Sci Eng B Solid State Mater Adv Technol 85:140–143Google Scholar
  80. 80.
    Chu CW, Sung CF, Lee YZ et al (2008) Improved performance in n-channel organic thin film transistors by nanoscale interface modification. Org Electron 9:262–266CrossRefGoogle Scholar
  81. 81.
    Huang JS, Li G, Yang Y (2008) A semi-transparent plastic solar cell fabricated by a lamination process. Adv Mater 20:415–419CrossRefGoogle Scholar
  82. 82.
    Na SI, Oh SH, Kim SS et al (2009) Efficient organic solar cells with polyfluorene derivatives as a cathode interfacial layer. Org Electron 10:496–500CrossRefGoogle Scholar
  83. 83.
    Blom PWM, De Jong MJM, Vleggaar JJM (1996) Electron and hole transport in poly(p-phenylene vinylene) devices. Appl Phys Lett 68:3308–3310CrossRefGoogle Scholar
  84. 84.
    Chen FC, Wu JL, Lee CL et al (2009) Flexible polymer photovoltaic devices prepared with inverted structures on metal foils. IEEE Electron Device Lett 30:727–729MATHCrossRefGoogle Scholar
  85. 85.
    Hsiao YS, Chen CP, Chao CH et al (2009) All-solution-processed inverted polymer solar cells on granular surface-nickelized polyimide. Org Electron 10:551–561CrossRefGoogle Scholar
  86. 86.
    Tan ZA, Yang CH, Zhou EJ et al (2007) Performance improvement of polymer solar cells by using a solution processible titanium chelate as cathode buffer layer. Appl Phys Lett 91:023509CrossRefGoogle Scholar
  87. 87.
    Skriver HL, Rosengaard NM (1992) Surface-energy and work function of elemental metals. Phys Rev B 46:7157–7168CrossRefGoogle Scholar
  88. 88.
    Monestier F, Simon JJ, Torchio P et al (2008) Optical modeling of organic solar cells based on CuPc and C-60. Appl Opt 47:C251–C256CrossRefGoogle Scholar
  89. 89.
    Pettersson LAA, Ghosh S, Inganas O (2002) Optical anisotropy in thin films of poly(3, 4-ethylenedioxythiophene)-poly(4-styrenesulfonate). Org Electron 3:143–148CrossRefGoogle Scholar
  90. 90.
    Tong XR, Bailey-Salzman RF, Wei GD et al (2008) Inverted small molecule organic photovoltaic cells on reflective substrates. Appl Phys Lett 93:173304CrossRefGoogle Scholar
  91. 91.
    Meiss J, Riede MK, Leo K (2009) Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes. Appl Phys Lett 94:013303CrossRefGoogle Scholar
  92. 92.
    Sennett RS, Scott GD (1950) The structure of evaporated metal films and their optical properties. J Opt Soc Am 40:203–211CrossRefGoogle Scholar
  93. 93.
    Coakley KM, McGehee MD (2004) Conjugated polymer photovoltaic cells. Chem. Mater. 16:4533–4542CrossRefGoogle Scholar
  94. 94.
    Coakley KM, Srinivasan BS, Ziebarth JM et al (2005) Enhanced hole mobility in regioregular polythiophene infiltrated in straight nanopores. Adv Funct Mater 15:1927–1932CrossRefGoogle Scholar
  95. 95.
    Cadby AJ, Tolbert SH (2005) Controlling optical properties and interchain interactions in semiconducting polymers by encapsulation in periodic nanoporous silicas with different pore sizes. J Phys Chem B 109:17879–17886CrossRefGoogle Scholar
  96. 96.
    Takanezawa K, Hirota K, Wei QS et al (2007) Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices. J Phys Chem C 111:7218–7223CrossRefGoogle Scholar
  97. 97.
    O’Brien S, Koh LHK, Crean GM (2008) ZnO thin films prepared by a single step sol–gel process. Thin Solid Films 516:1391–1395CrossRefGoogle Scholar
  98. 98.
    Steim R, Choulis SA, Schilinsky P et al (2008) Interface modification for highly efficient organic photovoltaics. Appl Phys Lett 92:093303CrossRefGoogle Scholar
  99. 99.
    Muller B, Riedel M, Michel R et al (2001) Impact of nanometer-scale roughness on contact-angle hysteresis and globulin adsorption. J Vac Sci Technol B 19:1715–1720CrossRefGoogle Scholar
  100. 100.
    Hau SK, Yip HL, Acton O et al (2008) Interfacial modification to improve inverted polymer solar cells. J Mater Chem 18:5113–5119CrossRefGoogle Scholar
  101. 101.
    Kyaw AKK, Sun XW, Zhao DW, et al. Improved inverted organic solar cells with a sol–gel derived indium-doped zinc oxide buffer layer. IEEE J Sel Top Quantum Electron. doi:  10.1109/JSTQE.2009.2039200
  102. 102.
    Appleyard SFJ, Day SR, Pickford RD et al (2000) Organic electroluminescent devices: enhanced carrier injection using SAM derivatized ITO electrodes. J Mater Chem 10:169–173CrossRefGoogle Scholar
  103. 103.
    Khodabakhsh S, Sanderson BM, Nelson J et al (2006) Using self-assembling dipole molecules to improve charge collection in molecular solar cells. Adv Funct Mater 16:95–100CrossRefGoogle Scholar
  104. 104.
    Kim JS, Park JH, Lee JH et al (2007) Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics. Appl Phys Lett 91:112111CrossRefGoogle Scholar
  105. 105.
    Krishnan RS, Mackay ME, Duxbury PM et al (2007) Self-assembled multilayers of nanocomponents. Nano Lett 7:484–489CrossRefGoogle Scholar
  106. 106.
    Goffri S, Muller C, Stingelin-Stutzmann N et al (2006) Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold. Nat Mater 5:950–956CrossRefGoogle Scholar
  107. 107.
    Wei QS, Nishizawa T, Tajima K et al (2008) Self-organized buffer layers in organic solar cells. Adv Mater 20:2211–2216CrossRefGoogle Scholar
  108. 108.
    Wienk MM, Turbiez MGR, Struijk MP et al (2006) Low-band gap poly(di-2-thienylthienopyrazine): fullerene solar cells. Appl Phys Lett 88:153511CrossRefGoogle Scholar
  109. 109.
    Zhang FL, Mammo W, Andersson LM et al (2006) Low-bandgap alternating fluorene copolymer/methanofullerene heterojunctions in efficient near-infrared polymer solar cells. Adv Mater 18:2169–2173CrossRefGoogle Scholar
  110. 110.
    Hadipour A, de Boer B, Blom PWM (2008) Organic tandem and multi-junction solar cells. Adv Funct Mater 18:169–181CrossRefGoogle Scholar
  111. 111.
    Dennler G, Scharber MC, Ameri T et al (2008) Design rules for donors in bulk-heterojunction tandem solar cells-towards 15% energy-conversion efficiency. Adv Mater 20:579–583CrossRefGoogle Scholar
  112. 112.
    Dennler G, Forberich K, Ameri T et al (2007) Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence. J Appl Phys 102:123109CrossRefGoogle Scholar
  113. 113.
    Persson NK, Inganas O (2006) Organic tandem solar cells—modelling and predictions. Sol Energy Mater Sol Cells 90:3491–3507CrossRefGoogle Scholar
  114. 114.
    Ameri T, Dennler G, Lungenschmied C et al (2009) Organic tandem solar cells: a review. Energy Environ Sci 2:347–363CrossRefGoogle Scholar
  115. 115.
    Hadipour A, de Boer B, Blom PWM (2008) Device operation of organic tandem solar cells. Org Electron 9:617–624CrossRefGoogle Scholar
  116. 116.
    Hiramoto M, Suezaki M, Yokoyama M (1990) Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar-cell. Chem Lett 327–330Google Scholar
  117. 117.
    Yakimov A, Forrest SR (2002) High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. Appl Phys Lett 80:1667–1669CrossRefGoogle Scholar
  118. 118.
    Triyana K, Yasuda T, Fujita K et al (2005) Tandem-type organic solar cells by stacking different heterojunction materials. Thin Solid Films 477:198–202CrossRefGoogle Scholar
  119. 119.
    Cheyns D, Gommans H, Odijk M et al (2007) Stacked organic solar cells based on pentacene and C-60. Sol Energy Mater Sol Cells 91:399–404CrossRefGoogle Scholar
  120. 120.
    Xue JG, Uchida S, Rand BP et al (2004) Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Appl Phys Lett 85:5757–5759CrossRefGoogle Scholar
  121. 121.
    Xue JG, Rand BP, Uchida S et al (2005) A hybrid planar-mixed molecular heterojunction photovoltaic cell. Adv Mater 17:66–71CrossRefGoogle Scholar
  122. 122.
    Yu B, Zhu F, Wang HB et al (2008) All-organic tunnel junctions as connecting units in tandem organic solar cell. J Appl Phys 104:114503CrossRefGoogle Scholar
  123. 123.
    Dennler G, Prall HJ, Koeppe R et al (2006) Enhanced spectral coverage in tandem organic solar cells. Appl Phys Lett 89:073502CrossRefGoogle Scholar
  124. 124.
    Colsmann A, Junge J, Kayser C et al (2006) Organic tandem solar cells comprising polymer and small-molecule subcells. Appl Phys Lett 89:203506CrossRefGoogle Scholar
  125. 125.
    Janssen AGF, Riedl T, Hamwi S et al (2007) Highly efficient organic tandem solar cells using an improved connecting architecture. Appl Phys Lett 91:073519CrossRefGoogle Scholar
  126. 126.
    You H, Dai YF, Zhang ZQ et al (2007) Improved performances of organic light-emitting diodes with metal oxide as anode buffer. J Appl Phys 101:3Google Scholar
  127. 127.
    Kawano K, Ito N, Nishimori T et al (2006) Open circuit voltage of stacked bulk heterojunction organic solar cells. Appl Phys Lett 88:073514CrossRefGoogle Scholar
  128. 128.
    Hadipour A, de Boer B, Wildeman J et al (2006) Solution-processed organic tandem solar cells. Adv Funct Mater 16:1897–1903CrossRefGoogle Scholar
  129. 129.
    Gilot J, Wienk MM, Janssen RAJ (2007) Double and triple junction polymer solar cells processed from solution. Appl Phys Lett 90:143512CrossRefGoogle Scholar
  130. 130.
    Sista S, Park MH, Hong ZR et al (2010) Highly efficient tandem polymer photovoltaic cells. Adv Mater 22:380–383CrossRefGoogle Scholar
  131. 131.
    Sakai J, Kawano K, Yamanari T et al (2010) Efficient organic photovoltaic tandem cells with novel transparent conductive oxide interlayer and poly (3-hexylthiophene): fullerene active layers. Sol Energy Mater Sol Cells 94:376–380CrossRefGoogle Scholar
  132. 132.
    Franke R, Maennig B, Petrich A et al (2008) Long-term stability of tandem solar cells containing small organic molecules. Sol Energy Mater Sol Cells 92:732–735CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • De Wei Zhao
    • 3
  • Aung Ko Ko Kyaw
    • 3
  • Xiao Wei Sun
    • 1
    • 2
  1. 1.Department of Applied PhysicsCollege of Science, Tianjin UniversityTianjinChina
  2. 2.Tianjin Key Laboratory of Low-Dimensional Functional Material Physics and Fabrication TechnologyTianjin UniversityTianjinChina
  3. 3.School of Electrical and Electronic EngineeringNanyang Technological University SingaporeSingapore

Personalised recommendations