Advertisement

Window Glass Coatings

  • Jitka Mohelníková
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Thin film coatings modulate optical and thermal and other properties of window glass. Coated window glasses influence indoor climate and energy efficiency in buildings. They can be classified into groups of spectrally selective glazings, chromogenic glazed systems for switchable smart window technologies and light-enhancing transparent materials. Low-emissivity glazings are typical of spectrally selective window glasses. Chromogenics have applications in light control and switching technologies that are optically, thermally, chemically or electrically activated. Transparent materials with micro-structured or holographic films and antireflective coatings serve to direct light and control light functions. An overview of several types of window glazings and coatings will be presented.

Keywords

Polymer Disperse Liquid Crystal Glass Pane Transparent State Visible Transmittance Solar Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The window glazings and coatings overview was elaborated within the frame of research projects MŠMT MEB 080804 and GAČR 101/09/H050. The author acknowledges Dr. Pavel Pokorný, ISI AS CR, Brno for consultations on the thin film design and computer simulations.

References

  1. 1.
    IEA SH&C: Task 10 solar materials, Task 18 advanced glazing materials, Task 27 energy performance of switchable glazing. http://www.iea-shc.org
  2. 2.
    Hutchins MG (1998) Advanced glazing materials. Sol Energy 62:145–147Google Scholar
  3. 3.
    Lampert CM (1992) Advanced glazing technology. Fenestration 2000, phase III-glazing materials. LBL-31616, BerkeleyGoogle Scholar
  4. 4.
    Robinson PD, Hutchins MG (1994) Advanced glazing technology for the low energy buildings in the UK. Renew Energy 5:298–309CrossRefGoogle Scholar
  5. 5.
    Bauchot M (2001) Energy, environmental and economic benefits from advanced double glazing in EU dwellings. Glass performance days, Tampere 2001Google Scholar
  6. 6.
    O’Shaughnessy D (2009) TH18-global megatrends and next-generation architectural glass. Proc Construct 2009, IndianopolisGoogle Scholar
  7. 7.
    Granqvist CG et al (2010) Advances in chromogenic materials and devices. Thin Solid Films 518:3046–3053CrossRefGoogle Scholar
  8. 8.
    Lee ES, Selkowitz SE et al (2006) Active load management with advanced window wall systems: research and industry perspectives. Final project report CEC-500-2006-052-AT1. LBNL, CaliforniaGoogle Scholar
  9. 9.
    Johnson ET (1991) Low-e glazing design guide. Butterworth Architecture, BostonGoogle Scholar
  10. 10.
    Pulker HK (1998) Coatings on glass. Elsevier, AmsterdamGoogle Scholar
  11. 11.
    Lampert CM (1981) Heat mirror coatings for energy conserving windows. Sol Energy Mater 6:1–41CrossRefGoogle Scholar
  12. 12.
    Fan JC (1981) Sputtered films for wavelength-selective applications. Thin Solid Films 80:125–136CrossRefGoogle Scholar
  13. 13.
    Berning PH (1983) Principles of design of architectural coatings. Appl Opt 22:4127–4141CrossRefGoogle Scholar
  14. 14.
    Terry Hollands KG et al (2001) Glazings and coatings. In: Gordon J (ed) Solar energy: the state of the art, ISES position papers. James & James, LondonGoogle Scholar
  15. 15.
    Karlsson B (1981) Materials for solar transmitting heat reflecting coatings. Thin Solid Films 86:91–98CrossRefGoogle Scholar
  16. 16.
    Stjerna B et al (1994) Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo. J Appl Phys 76:3797–3817CrossRefGoogle Scholar
  17. 17.
    Hamberg I, Granqvist CG (1986) Evaporated Sn-doped In2O3 film: basic optical properties and applications to energy efficient windows. J Appl Phys 60:R123–R160CrossRefGoogle Scholar
  18. 18.
    Jin ZC et al (1988) Optical properties of sputter-deposited ZnO:Al film. J Appl Phys 64:5117–5131CrossRefGoogle Scholar
  19. 19.
    Terry Hollands KG et al (2001) Glazings and coatings. High transmittance in the visible region and reflectance in the IR. In: Gordon J (ed) Solar energy: the state of the art, ISES position papers. James & James, London, pp 56–70Google Scholar
  20. 20.
    Valkonen E et al (1984) Solar optical properties of thin films of Cu, Ag, Au. Sol Energy 32:211CrossRefGoogle Scholar
  21. 21.
    Palik (ed) (1991) Handbook of optical constants of solids. Academic Press, New YorkGoogle Scholar
  22. 22.
    Computer program FILM*CALC 3.03—advanced optical thin film technology, FTG software associates, PrincetonGoogle Scholar
  23. 23.
    Bräuer G (1999) Large area glass coating. Surf Coat Technol 112:358–365CrossRefGoogle Scholar
  24. 24.
    Schaefer C et al (1997) Low emissivity coatings on architectural glass. Surf Coat Technik 93:37–45CrossRefGoogle Scholar
  25. 25.
    Smith GB et al (2004) Energy-efficient coatings in nanohouseTM initiative. Curr Appl Phys 4:381–384CrossRefGoogle Scholar
  26. 26.
    Granqvist CG (1990) Window coatings for the future. Thin Solid Films 193:730–741CrossRefGoogle Scholar
  27. 27.
    Gläser HJ The European history of coatings on architectural glazing. http://www.glassfiles.com
  28. 28.
    Fan et al (1985) Transparent heat-mirror. US Patent 4556277Google Scholar
  29. 29.
    Kim D (2010) Low temperature deposition of transparent conducting ITO/Au/ITO films by reactive magnetron sputtering. Appl Surf Sci 256:1774–1777CrossRefGoogle Scholar
  30. 30.
    Martin-Palma RJ et al (1998) Silver-based low-emissivity coatings for architectural windows: optical and structural properties. Sol Energy Mater Sol Cells 53:55–66CrossRefGoogle Scholar
  31. 31.
    Miyazaki M, Ando E (1994) Durability improvement of Ag-based low-emissivity coatings. J Non-Cryst Solids 178:245–249CrossRefGoogle Scholar
  32. 32.
    Andersson KE et al (1994) Zirconium nitride based transparent heat mirror coatings preparation and characterisation. Sol Energy Mater Sol Cells 32:199–212CrossRefGoogle Scholar
  33. 33.
    Kusano E et al (1986) Thermal stability of heat-reflective films consisting of oxide-Ag-oxide deposited by dc magnetron sputtering. J Vac Sci Technik A: Vacuum, Surfaces, and Films 4:2907–2910CrossRefGoogle Scholar
  34. 34.
    Lampert CM (1981) Heat Mirror Coatings for Energy Conserving Windows. Solar Energy Mater 6:1–41CrossRefGoogle Scholar
  35. 35.
    Szczyrbowski J et al (1999) New low emissivity coating based on TwinMag® sputtered TiO2 and Si3N4 layers. Thin Solid Films 351:254–259CrossRefGoogle Scholar
  36. 36.
    Beister G et al (1995) Progress in large-area glass coatings by high-rate sputtering. Surf Coat Technol 76–77:776–785Google Scholar
  37. 37.
    Schaefer C et al (1997) Low emissivity coatings on architectural glass. Surf Coat Technik 9:37–45CrossRefGoogle Scholar
  38. 38.
    Lu Y et al (2009) Method of making low-e coating using ceramic zinc inclusive target and target used in same. USPTO Patent Application 20090205956Google Scholar
  39. 39.
    Boor WP (2008) Studying low-e glass performance. Constr Specif, http://www.ppg.com/corporate/ideascapes/SiteCollectionDocuments/274404_final.pdf
  40. 40.
    Steven J et al (2007) Durable low-e coated glass for use in warm temperate climates. Glass performance days 2007, TampereGoogle Scholar
  41. 41.
    Glenn D et al (2009) Double silver low emissivity and solar control coating. US Patent 7632572 B2Google Scholar
  42. 42.
    Glenn D et al (2003) Double silver low emissivity and solar control coating. US Patent Application Publication 2003/0049464 A1Google Scholar
  43. 43.
    Hartig KW et al (1996) Dual silver low-e glass coating system and insulating glass made thereform. US Patent 5557462Google Scholar
  44. 44.
    Neuman G et al (2008) Coated article with low-e coating including IR reflecting layer(s) and corresponding method. US Patent 7419725Google Scholar
  45. 45.
    Manfrè G (2005) The need of innovation for solar control technologies, Glass performance days 2005, TamperGoogle Scholar
  46. 46.
    Ochs D et al (2007) Progressive power supplies for architectural glass coating. Glass performance days 2007, TampereGoogle Scholar
  47. 47.
    Nair PK et al (1991) Optimisation of chemically deposited CuxS solar control coatings. J Appl Phys 24:441–449Google Scholar
  48. 48.
    Russo D et al (2003) Solar control coated glass. US Patent 6596398Google Scholar
  49. 49.
    McKown C et al (2001) Solar control coated glass. US Patent 6218018Google Scholar
  50. 50.
    Ujiie T, Katono H (2005) High performance solar control material. Glass performance days 2005, TampereGoogle Scholar
  51. 51.
    Smith GB (1990) Theory of angular selective transmittance in oblique columnar thin films containing metal and voids. Appl Opt 29:3685–3693CrossRefGoogle Scholar
  52. 52.
    Elkadi H (2006) Cultures of glass architecture. Ashgate, HampshireGoogle Scholar
  53. 53.
    Reppel J, Edmonds IR (1998) Angle-selective glazing for radiant heat control in buildings: Theory. Sol Energy 62:245–253CrossRefGoogle Scholar
  54. 54.
    Smith GB et al (1998) Thin film angular selective glazing. Sol Energy 62:229–244CrossRefGoogle Scholar
  55. 55.
    Dligatch S (1998) An analysis of Ag/Al2O3 angular selective films by X-ray reflectivity. Thin Solid Films 312:4–6CrossRefGoogle Scholar
  56. 56.
    Smith GB et al (1998) Angular selective thin film glazing. Renew Energy 15:183–188CrossRefGoogle Scholar
  57. 57.
    Bellac DL et al (1995) Angular selective optical transmittance through Cr-based films made by oblique angle sputtering experiment and theory. J Phys D Appl Phys 28:600CrossRefGoogle Scholar
  58. 58.
    Ishizuka S (1992) Optical properties of angle dependent light control film. Proc SPIE 1727:241CrossRefGoogle Scholar
  59. 59.
    Gombert A (2006) Optically functional surfaces for solar applications. ISES, Eurosun 2006, GlasgowGoogle Scholar
  60. 60.
    Lampert CM (2004) Chromogenic smart materials. Mater Today 7:28–35CrossRefGoogle Scholar
  61. 61.
    Lampert CM (1995) Chromogenic switchable glazing: towards the development of the smart window. In: Proceedings of window innovations ’95, TorontoGoogle Scholar
  62. 62.
    Hoffmann HJ (1990) Photochromic glass. In: Lampert CM, Granqvist CG (eds) Large-area chromogenics: materials and devices for transmittance control, vol IS4. SPIE, Bellingham, pp 86–101Google Scholar
  63. 63.
    Wiggington M (1996) Glass in architecture. Phaidon Press, LondonGoogle Scholar
  64. 64.
    Fanderlík I (1996) Vlastnosti skel. Informatorium, PragueGoogle Scholar
  65. 65.
    Araujo RJ (1980) Photochromism in glasses containing silver halides. Contemp Phys 21:77CrossRefGoogle Scholar
  66. 66.
    Chu N (1990) Photochromic plastics. In: Lampert CM, Granqvist CG (eds) Large-area chromogenics: materials and devices for transmittance control, vol IS4. SPIE Bellingham, pp 102–121Google Scholar
  67. 67.
    Chu N (1986) Photochromic performance of spiroindolinonaphthoxazines in plastics. Sol Energy Mater 14:215CrossRefGoogle Scholar
  68. 68.
    Richardson TJ et al (2001) Switchable mirrors based on nickel–magnesium films. Appl Phys Lett 78:3047CrossRefGoogle Scholar
  69. 69.
    Yoshimura K, Okada M (2007) Reflective light control element with diffusible reflecting surface. US Patent 7259902Google Scholar
  70. 70.
    Teowee G et al (2001) Photochromic devices. US Patent 6246505Google Scholar
  71. 71.
    Day J, Willet R (1990) Science and technology of thermochromic materials. In: Lampert CM, Granqvist CG (eds) Large-area chromogenics: materials and devices for transmittance control, vol IS4. SPIE, Bellingham, pp 122–147Google Scholar
  72. 72.
    Jorgenson GV, Lee JC (1990) Thermochromic materials and devices: inorganic systems. In: Lampert CM, Granqvist CG (ed) Large-area chromogenics: materials and devices for transmittance control, vol IS4. SPIE, Bellingham, pp 142–159Google Scholar
  73. 73.
    Sone K, Fukuda Y (1987) Inorganic thermochromism. Springer, BerlinGoogle Scholar
  74. 74.
    Babulanam SM et al (1987) Thermochromic VO2 films for energy efficient windows. Sol Energy Mat 16:347CrossRefGoogle Scholar
  75. 75.
    Jorgenson GV, Lee JC (1986) Doped vanadium oxide for optical switching films. Sol Energy Mat 14:205CrossRefGoogle Scholar
  76. 76.
    Parkin I, Manning T (2007) Thermochromic coatings. US Patent 0048438Google Scholar
  77. 77.
    Blackman Ch et al (2009) Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use. Thin Solid Films 517:4565–4570CrossRefGoogle Scholar
  78. 78.
    Mlyuka NR et al (2009) Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature. Appl Phys Lett 95:171909CrossRefGoogle Scholar
  79. 79.
    Haldimann M et al (2008) Structural use of glass. International Association for Bridge and Structural Engineering, ZürichGoogle Scholar
  80. 80.
    Wilson HR (1994) Optical properties of thermotropic layers. Proc SPIE 2255:473CrossRefGoogle Scholar
  81. 81.
    Seeboth A et al (2004) Chromogenic polymer gels for reversible transparency and color control. In: Samson A et al (ed) Chromogenic phenomena in polymers, vol 888, chapter 80. ACS Symposium Series, Washington DC, pp 110–121Google Scholar
  82. 82.
    Nitz P, Hartwig H (2005) Solar control with thermotropic layers. Sol Energy 79:573–582CrossRefGoogle Scholar
  83. 83.
    Georg A et al (1998) Switchable glazing with a large dynamic range in total solar energy transmittance (TSET). Sol Energy 62:215–228CrossRefGoogle Scholar
  84. 84.
    Wilson HR et al (2002) The optical properties of gasochromic glazing. In: Proceedings of the 4th international conference on coating on glass, BraunschweigGoogle Scholar
  85. 85.
    Schwarz M (2008) Smart materials. CRC Press, Taylor & Francis, Boca RatonCrossRefGoogle Scholar
  86. 86.
    Wittwer V et al (2004) Gasochromic windows. Sol Energy Mater Sol Cells 84:305–314CrossRefGoogle Scholar
  87. 87.
    Wittwer V, Graf W (2001) Gaschromic glazings with a large dynamic range in total solar energy transmittance. Glass performance days 2001, TampereGoogle Scholar
  88. 88.
    Lampert CM (2002) Electrochromics-history, technology, and the future, 6.1 gas-chromics. In: Chowdari B et al (ed) Solid state ionics: trends in the new millenium. Proceedings of the 8th Asian conference on world scientific, LondonGoogle Scholar
  89. 89.
    Se-hee L et al (2004) Pd/Ni-WO3 anodic double layer gasochromic device. US Patent 6723566Google Scholar
  90. 90.
    Lampert CM, Granqvist CG (1990) Large-area chromogenics: materials and devices for transmittance control, vol IS 4. SPIE Institutes for Advanced Optical technologies, BellinghamGoogle Scholar
  91. 91.
    Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier, AmsterdamGoogle Scholar
  92. 92.
    Monk P et al (2007) Electrochromism and electrochromic devices. Cambridge University Press, LondonCrossRefGoogle Scholar
  93. 93.
    Deb SK et al (1978) Electrochromic cell with protective overcoat layer. US Patent 4120568Google Scholar
  94. 94.
    Granqvist CG (2005) Electrochromic device. J Eur Ceram Soc 25:2907–2912CrossRefGoogle Scholar
  95. 95.
    Granqvist CG (1992) Electrochromism and smart window design. Solid State Ionics 53–56:479–489CrossRefGoogle Scholar
  96. 96.
    Granqvist CG (2008) Oxide electrochromics: why, how, and whither. Sol Energy Mater Sol Cells 92:203–208CrossRefGoogle Scholar
  97. 97.
    Granqvist CG et al (2007) Nanomaterials for benign indoor environments: electrochromics for “smart windows”, sensors for air quality, and photo-catalysts for air cleaning. Sol Energy Mater Sol Cells 91:355–365CrossRefGoogle Scholar
  98. 98.
    Granqvist CG et al (2003) Electrochromic coating devices: survey of some recent advances. Thin Solid Films 442:201–211CrossRefGoogle Scholar
  99. 99.
    Granqvist CG (2000) Electrochromic tungsten oxide films: review of progress 1993–1998. Sol Energy Mater Sol Cells 60:201–262CrossRefGoogle Scholar
  100. 100.
    Granqvist CG et al (1997) Towards the smart window: progress in electrochromics. J Non-Cryst Solids 218:273–279CrossRefGoogle Scholar
  101. 101.
    Granqvist CG (1990) Window coatings for the future. Thin Solid Films 193–194:730–741CrossRefGoogle Scholar
  102. 102.
    Lampert CM (2002) Electrochromism-history, technology and the future. In: Chowdari, B et al (ed) Solid state ionics: trends in the new millenium. Proceedings of the 8th Asian conference on world scientific, LondonGoogle Scholar
  103. 103.
    Lampert CM (1998) Smart switchable glazing for solar energy and daylight control. Sol Energy Mater Sol Cells 52:207–221CrossRefGoogle Scholar
  104. 104.
    Lampert CM (1993) Optical switching technology for glazing. Thin Solid Films 236:6–13CrossRefGoogle Scholar
  105. 105.
    Lampert CM (1984) Electrochromic materials and devices for energy efficient windows. Sol Energy Mat 11:1–27CrossRefGoogle Scholar
  106. 106.
    Avendaño E et al (2004) Electrochromism in nickel oxide films containing Mg, Al, Si, V, Zr, Nb, Ag, or Ta. Sol Energy Mater Sol Cells 84:337–350CrossRefGoogle Scholar
  107. 107.
    Jonson A, Roos A (2006) Influence of the performance of antireflective coatings in electrochromic windows. In: Proceedings of ISES EuroSun 2006, GlasgowGoogle Scholar
  108. 108.
    Rottmann M et al (2005) Large area electrochromic safety glass; switching behaviour and transmission control of solar radiation. Glass performance days 2005, TampereGoogle Scholar
  109. 109.
    Granqvist CG (2006) Solar energy materials of the future: electrochromic foils for energy efficiency and indoor comfort. In: Proceedings of ISES EuroSun 2006, GlasgowGoogle Scholar
  110. 110.
    Bechinger CS et al (2002) Self bleaching photoelectrochemical-electrochromic device. US Patent 6369934Google Scholar
  111. 111.
    Pichot F et al (1999) Flexible solid-state photoelectrochromic windows. J Electrochem Soc 146:4324–4326CrossRefGoogle Scholar
  112. 112.
    Georg A, Opara Krašovec U (2006) Photoelectrochromic window with Pt catalyst. Thin Solid Films 502:246–251CrossRefGoogle Scholar
  113. 113.
    Hauch A et al (2001) New photoelectrochromic device. Electrochim Acta 46:2131–2136CrossRefGoogle Scholar
  114. 114.
    Gombert A (2007) New development in glazing for a better use of solar energy in buildings. Glass performance days 2007, TampereGoogle Scholar
  115. 115.
    Lampert CM (2003) Large-area smart glass and integrated photovoltaics. Sol Energy Mater Sol Cells 76:489–499CrossRefGoogle Scholar
  116. 116.
    Gombert A (2007) New developments in glazing for better use of solar energy in buildings. Glass performance days 2007, TampereGoogle Scholar
  117. 117.
    Benson DK, Branz HM (1995) Design goals and challenges for a photovoltaic-powered electrochromic window covering. Sol Energy Mater Sol Cells 39:204–211Google Scholar
  118. 118.
    Gao W et al (2000) Approaches for large-area a-SiC:H photovoltaic-powered electrochromic window coatings. J Non-Cryst Solids 266–269:1140–1144CrossRefGoogle Scholar
  119. 119.
    Gao W et al (1999) First a-SiC:H photovoltaic-powered monolithic tandem electrochromic smart window device. Sol Energy Sol Cells 59:243–254CrossRefGoogle Scholar
  120. 120.
    Lampert CM (1990) Introduction to liquid crystals. Large-area chromogenics: materials and devices for transmittance control, vol IS 4. SPIE, BellinghamGoogle Scholar
  121. 121.
    Amstock JS (1997) Liquid crystals and suspended-particle device. Handbook of glass in construction. McGraw-Hill, New YorkGoogle Scholar
  122. 122.
    Sucheol P, Hong JW (2009) Polymer dispersed liquid crystal film for variable-transparency glazing. Thin Solid Films 517:3183–3186CrossRefGoogle Scholar
  123. 123.
    Lampert CM (1999) Advances in materials and technology for switchable glazing. Glass performance days 1999Google Scholar
  124. 124.
    Lampert CM (1994) Glazing materials for solar and architectural applications, IEA SH&C Task 10 C, LBL-34436Google Scholar
  125. 125.
    Sixou P et al (2001) Switchable liquid-crystal/polymer micro-composite glazings. Glass processing days 2001Google Scholar
  126. 126.
    Baughmann et al (1990) Dual-pane thermal window with liquid crystal shade. US Patent 4964251Google Scholar
  127. 127.
    Garnier DJ et al (2009) High-efficiency multistable switchable glazing using smetic A liquid crystals. Sol Energy Mater Sol Cells 93:301–306CrossRefGoogle Scholar
  128. 128.
    Cupelli D et al (2009) Self-adjusting smart windows based on polymer-dispersed liquid crystals. Sol Energy Mater Sol Cells 93:2008–2012CrossRefGoogle Scholar
  129. 129.
    Cupelli D et al (2004) Fine adjustment of conductivity in polymer-dispersed liquid crystals. Appl Phys Lett 85:3292–3294CrossRefGoogle Scholar
  130. 130.
    Lampert CM (1995) Chromogenic switchable glazing: towards the development of the smart window. In: Conference proceedings of window innovations ‘95, TorontoGoogle Scholar
  131. 131.
    Amstock JS (1997) Liquid crystals and suspended-particle device. Handbook of glass in construction, McGraw-Hill, New YorkGoogle Scholar
  132. 132.
    Vergaz R et al (2008) Modelling and electro-optical testing of suspended particle device. Sol Energy Mater Sol Cells 92:1483–1487CrossRefGoogle Scholar
  133. 133.
    Check JA (1995) Light modulating film of improved clarity for a light valve. US Patent 5463492 Google Scholar
  134. 134.
    Saxe RL (1981) Light valve containing improved light valve suspension. US Patent 4247175Google Scholar
  135. 135.
    Thompson et al (1978) Light valve. US Patent 4078856Google Scholar
  136. 136.
    Lampert CM (1999) Advances in materials and technology for switchable glazing. Glass processing days 1999, TampereGoogle Scholar
  137. 137.
    Riccobono J, Ludman J (2002) Solar holography. In: Luxman J et al (eds) Holography for the new millenium. Springer, New YorkGoogle Scholar
  138. 138.
    Hans DT et al (1993) Design optimization and manufacturing of holographic windows for daylighting applications in buildings. In: Lampert CM (ed) Optical materials technology for energy efficiency and solar energy conversion XII. SPIE, Bellingham 2017, pp 35–45Google Scholar
  139. 139.
    Stojanoff CG (2006) Engineering applications of HOEs manufactured with enhanced performance DCG films. In: Bjelkhagen HI, Lessard RA (eds) Practical holography XX: materials and applications. SPIE Proceedings 6136 613601Google Scholar
  140. 140.
    Hoßfeld W et al (2003) Application of microstructured surfaces in architectural glazings. In: Proceedings of ISES solar world congress 2003, GöteborgGoogle Scholar
  141. 141.
    Gunther W et al (2005) Combination of microstructures and optically functional coatings for solar control glazing. Sol Energy Mater Sol Cells 89:233–248CrossRefGoogle Scholar
  142. 142.
    Wilson V et al (2002) The optical properties of gasochromic glazings. In: Proceedings of 4th international conference coating on glass, BraunschweigGoogle Scholar
  143. 143.
    Gombert A (2006) Optically functional surfaces for solar applications. In: Proceedings of ISES EuroSun 2006, GlasgowGoogle Scholar
  144. 144.
    Graf et al (2003) Device for guiding light. WO Patent WO/2003/071079Google Scholar
  145. 145.
    Shavit D (2007) LED-and SMD-polyester film embedded in glass: history, current and future developments. Glass performance days 2007, TampereGoogle Scholar
  146. 146.
    Lefèvre H (2009) Laminated glass with embedded LEDs: the use of specific power supplies able to provide continuous high voltage allows new lighting applications and colour changes in decorative applications. Glass performance days 2009, TampereGoogle Scholar
  147. 147.
  148. 148.
    Lamontagne B et al (2006) Microblinds and methods of fabrication thereof. US Patent 0196613Google Scholar
  149. 149.
    Lamontagne B et al (2009) The next generation of switchable glass: the micro-blinds. Glass performance days 2009, TampereGoogle Scholar
  150. 150.
    Ochs D, Rettich T (2007) Progressive power supplies for architectural glass coating. Glass performance days 2007, TampereGoogle Scholar
  151. 151.
    Boire P et al (2000) Glazing pane having an anti-reflection Coating. US Patent 6086914Google Scholar
  152. 152.
    Gombert A et al (1998) Glazing with very high solar transmittance. Sol Energy 62:177–178CrossRefGoogle Scholar
  153. 153.
    Hofmann T, Kursawe M (2003) Antireflective coating on glass for solar applications glass. Glass performance days 2003, TampereGoogle Scholar
  154. 154.
    Olsson G (2003) Low cost industrial manufacturing of a thin single layer antireflective surface on sheet glass. Glass performance days 2003, TampereGoogle Scholar
  155. 155.
    Southwell WH (1991) Pyramid-array surface relief structures producing anti-reflection index matching on optical surfaces. J Opt Soc Am A 8:549–553CrossRefGoogle Scholar
  156. 156.
    Hammarberg E, Roos A (2003) Antireflection treatment of low-emitting glazings for energy efficient windows with high visible transmittance. Thin Solid Films 442:222–226CrossRefGoogle Scholar
  157. 157.
    Jonsson A, Roos A (2006) Antireflective coatings on different window surfaces. In: Proceedings of the 6th international conference on coatings on glass and plastics, DresdenGoogle Scholar
  158. 158.
    Roos A et al (2009) Applications of coated glass in high performance energy efficient windows. Glass performance days 2009, TampereGoogle Scholar
  159. 159.
    Armand P (2003) Self-cleaning coatings for architectural application. Glass performance days 2003, TampereGoogle Scholar
  160. 160.
    Hüber M (2003) TiO2-coatings from inorganic soles: a new approach to hydrophilic and photocatalytically active glasses. Glass performance days 2003, TampereGoogle Scholar
  161. 161.
    Gläser HJ The effects of weather onto glazing and their influence, Part II. http://www.glassfiles.com
  162. 162.
    Hohenstein H (2003) Coatings with nano-particles for windows and façades. Glass performance days 2003, TampereGoogle Scholar
  163. 163.
    Nakamura M et al (2004) Hydrophilic property of SiO2/TiO2 double layer films. In: Plütz J et al (ed) Proceedings of ICCG5, 2004, SaarbrückenGoogle Scholar
  164. 164.
    Overs M (2005) Coatings for decorative glass surfaces based on chemical nanotechnology. Glass performance days 2005, TampereGoogle Scholar
  165. 165.
    Lahann J et al (2006) Switchable surfaces. US Patent 7020355Google Scholar
  166. 166.
    Shen L et al (2009) Mechanism of sliding friction on a film-terminated fibrillar interface. Langmuir 25:2772–2780CrossRefGoogle Scholar
  167. 167.
    Autumn K et al (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685CrossRefGoogle Scholar
  168. 168.
    Provder T, Baghdachi J (2007) Smart Coatings. ACS Symposium Series 957, American Chemical Society, Oxford University Press, WashingtonCrossRefGoogle Scholar
  169. 169.
    Provder T, Baghdachi J (2009) Smart Coatings II. ACS Symposium Series 1002, American Chemical Society, Oxford University Press, WashingtonCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Faculty of Civil EngineeringBrno University of TechnologyBrnoCzech Republic

Personalised recommendations