Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Thin film coatings modulate optical and thermal and other properties of window glass. Coated window glasses influence indoor climate and energy efficiency in buildings. They can be classified into groups of spectrally selective glazings, chromogenic glazed systems for switchable smart window technologies and light-enhancing transparent materials. Low-emissivity glazings are typical of spectrally selective window glasses. Chromogenics have applications in light control and switching technologies that are optically, thermally, chemically or electrically activated. Transparent materials with micro-structured or holographic films and antireflective coatings serve to direct light and control light functions. An overview of several types of window glazings and coatings will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEA SH&C: Task 10 solar materials, Task 18 advanced glazing materials, Task 27 energy performance of switchable glazing. http://www.iea-shc.org

  2. Hutchins MG (1998) Advanced glazing materials. Sol Energy 62:145–147

    Google Scholar 

  3. Lampert CM (1992) Advanced glazing technology. Fenestration 2000, phase III-glazing materials. LBL-31616, Berkeley

    Google Scholar 

  4. Robinson PD, Hutchins MG (1994) Advanced glazing technology for the low energy buildings in the UK. Renew Energy 5:298–309

    Article  Google Scholar 

  5. Bauchot M (2001) Energy, environmental and economic benefits from advanced double glazing in EU dwellings. Glass performance days, Tampere 2001

    Google Scholar 

  6. O’Shaughnessy D (2009) TH18-global megatrends and next-generation architectural glass. Proc Construct 2009, Indianopolis

    Google Scholar 

  7. Granqvist CG et al (2010) Advances in chromogenic materials and devices. Thin Solid Films 518:3046–3053

    Article  Google Scholar 

  8. Lee ES, Selkowitz SE et al (2006) Active load management with advanced window wall systems: research and industry perspectives. Final project report CEC-500-2006-052-AT1. LBNL, California

    Google Scholar 

  9. Johnson ET (1991) Low-e glazing design guide. Butterworth Architecture, Boston

    Google Scholar 

  10. Pulker HK (1998) Coatings on glass. Elsevier, Amsterdam

    Google Scholar 

  11. Lampert CM (1981) Heat mirror coatings for energy conserving windows. Sol Energy Mater 6:1–41

    Article  Google Scholar 

  12. Fan JC (1981) Sputtered films for wavelength-selective applications. Thin Solid Films 80:125–136

    Article  Google Scholar 

  13. Berning PH (1983) Principles of design of architectural coatings. Appl Opt 22:4127–4141

    Article  Google Scholar 

  14. Terry Hollands KG et al (2001) Glazings and coatings. In: Gordon J (ed) Solar energy: the state of the art, ISES position papers. James & James, London

    Google Scholar 

  15. Karlsson B (1981) Materials for solar transmitting heat reflecting coatings. Thin Solid Films 86:91–98

    Article  Google Scholar 

  16. Stjerna B et al (1994) Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo. J Appl Phys 76:3797–3817

    Article  Google Scholar 

  17. Hamberg I, Granqvist CG (1986) Evaporated Sn-doped In2O3 film: basic optical properties and applications to energy efficient windows. J Appl Phys 60:R123–R160

    Article  Google Scholar 

  18. Jin ZC et al (1988) Optical properties of sputter-deposited ZnO:Al film. J Appl Phys 64:5117–5131

    Article  Google Scholar 

  19. Terry Hollands KG et al (2001) Glazings and coatings. High transmittance in the visible region and reflectance in the IR. In: Gordon J (ed) Solar energy: the state of the art, ISES position papers. James & James, London, pp 56–70

    Google Scholar 

  20. Valkonen E et al (1984) Solar optical properties of thin films of Cu, Ag, Au. Sol Energy 32:211

    Article  Google Scholar 

  21. Palik (ed) (1991) Handbook of optical constants of solids. Academic Press, New York

    Google Scholar 

  22. Computer program FILM*CALC 3.03—advanced optical thin film technology, FTG software associates, Princeton

    Google Scholar 

  23. Bräuer G (1999) Large area glass coating. Surf Coat Technol 112:358–365

    Article  Google Scholar 

  24. Schaefer C et al (1997) Low emissivity coatings on architectural glass. Surf Coat Technik 93:37–45

    Article  Google Scholar 

  25. Smith GB et al (2004) Energy-efficient coatings in nanohouseTM initiative. Curr Appl Phys 4:381–384

    Article  Google Scholar 

  26. Granqvist CG (1990) Window coatings for the future. Thin Solid Films 193:730–741

    Article  Google Scholar 

  27. Gläser HJ The European history of coatings on architectural glazing. http://www.glassfiles.com

  28. Fan et al (1985) Transparent heat-mirror. US Patent 4556277

    Google Scholar 

  29. Kim D (2010) Low temperature deposition of transparent conducting ITO/Au/ITO films by reactive magnetron sputtering. Appl Surf Sci 256:1774–1777

    Article  Google Scholar 

  30. Martin-Palma RJ et al (1998) Silver-based low-emissivity coatings for architectural windows: optical and structural properties. Sol Energy Mater Sol Cells 53:55–66

    Article  Google Scholar 

  31. Miyazaki M, Ando E (1994) Durability improvement of Ag-based low-emissivity coatings. J Non-Cryst Solids 178:245–249

    Article  Google Scholar 

  32. Andersson KE et al (1994) Zirconium nitride based transparent heat mirror coatings preparation and characterisation. Sol Energy Mater Sol Cells 32:199–212

    Article  Google Scholar 

  33. Kusano E et al (1986) Thermal stability of heat-reflective films consisting of oxide-Ag-oxide deposited by dc magnetron sputtering. J Vac Sci Technik A: Vacuum, Surfaces, and Films 4:2907–2910

    Article  Google Scholar 

  34. Lampert CM (1981) Heat Mirror Coatings for Energy Conserving Windows. Solar Energy Mater 6:1–41

    Article  Google Scholar 

  35. Szczyrbowski J et al (1999) New low emissivity coating based on TwinMag® sputtered TiO2 and Si3N4 layers. Thin Solid Films 351:254–259

    Article  Google Scholar 

  36. Beister G et al (1995) Progress in large-area glass coatings by high-rate sputtering. Surf Coat Technol 76–77:776–785

    Google Scholar 

  37. Schaefer C et al (1997) Low emissivity coatings on architectural glass. Surf Coat Technik 9:37–45

    Article  Google Scholar 

  38. Lu Y et al (2009) Method of making low-e coating using ceramic zinc inclusive target and target used in same. USPTO Patent Application 20090205956

    Google Scholar 

  39. Boor WP (2008) Studying low-e glass performance. Constr Specif, http://www.ppg.com/corporate/ideascapes/SiteCollectionDocuments/274404_final.pdf

  40. Steven J et al (2007) Durable low-e coated glass for use in warm temperate climates. Glass performance days 2007, Tampere

    Google Scholar 

  41. Glenn D et al (2009) Double silver low emissivity and solar control coating. US Patent 7632572 B2

    Google Scholar 

  42. Glenn D et al (2003) Double silver low emissivity and solar control coating. US Patent Application Publication 2003/0049464 A1

    Google Scholar 

  43. Hartig KW et al (1996) Dual silver low-e glass coating system and insulating glass made thereform. US Patent 5557462

    Google Scholar 

  44. Neuman G et al (2008) Coated article with low-e coating including IR reflecting layer(s) and corresponding method. US Patent 7419725

    Google Scholar 

  45. Manfrè G (2005) The need of innovation for solar control technologies, Glass performance days 2005, Tamper

    Google Scholar 

  46. Ochs D et al (2007) Progressive power supplies for architectural glass coating. Glass performance days 2007, Tampere

    Google Scholar 

  47. Nair PK et al (1991) Optimisation of chemically deposited CuxS solar control coatings. J Appl Phys 24:441–449

    Google Scholar 

  48. Russo D et al (2003) Solar control coated glass. US Patent 6596398

    Google Scholar 

  49. McKown C et al (2001) Solar control coated glass. US Patent 6218018

    Google Scholar 

  50. Ujiie T, Katono H (2005) High performance solar control material. Glass performance days 2005, Tampere

    Google Scholar 

  51. Smith GB (1990) Theory of angular selective transmittance in oblique columnar thin films containing metal and voids. Appl Opt 29:3685–3693

    Article  Google Scholar 

  52. Elkadi H (2006) Cultures of glass architecture. Ashgate, Hampshire

    Google Scholar 

  53. Reppel J, Edmonds IR (1998) Angle-selective glazing for radiant heat control in buildings: Theory. Sol Energy 62:245–253

    Article  Google Scholar 

  54. Smith GB et al (1998) Thin film angular selective glazing. Sol Energy 62:229–244

    Article  Google Scholar 

  55. Dligatch S (1998) An analysis of Ag/Al2O3 angular selective films by X-ray reflectivity. Thin Solid Films 312:4–6

    Article  Google Scholar 

  56. Smith GB et al (1998) Angular selective thin film glazing. Renew Energy 15:183–188

    Article  Google Scholar 

  57. Bellac DL et al (1995) Angular selective optical transmittance through Cr-based films made by oblique angle sputtering experiment and theory. J Phys D Appl Phys 28:600

    Article  Google Scholar 

  58. Ishizuka S (1992) Optical properties of angle dependent light control film. Proc SPIE 1727:241

    Article  Google Scholar 

  59. Gombert A (2006) Optically functional surfaces for solar applications. ISES, Eurosun 2006, Glasgow

    Google Scholar 

  60. Lampert CM (2004) Chromogenic smart materials. Mater Today 7:28–35

    Article  Google Scholar 

  61. Lampert CM (1995) Chromogenic switchable glazing: towards the development of the smart window. In: Proceedings of window innovations ’95, Toronto

    Google Scholar 

  62. Hoffmann HJ (1990) Photochromic glass. In: Lampert CM, Granqvist CG (eds) Large-area chromogenics: materials and devices for transmittance control, vol IS4. SPIE, Bellingham, pp 86–101

    Google Scholar 

  63. Wiggington M (1996) Glass in architecture. Phaidon Press, London

    Google Scholar 

  64. Fanderlík I (1996) Vlastnosti skel. Informatorium, Prague

    Google Scholar 

  65. Araujo RJ (1980) Photochromism in glasses containing silver halides. Contemp Phys 21:77

    Article  Google Scholar 

  66. Chu N (1990) Photochromic plastics. In: Lampert CM, Granqvist CG (eds) Large-area chromogenics: materials and devices for transmittance control, vol IS4. SPIE Bellingham, pp 102–121

    Google Scholar 

  67. Chu N (1986) Photochromic performance of spiroindolinonaphthoxazines in plastics. Sol Energy Mater 14:215

    Article  Google Scholar 

  68. Richardson TJ et al (2001) Switchable mirrors based on nickel–magnesium films. Appl Phys Lett 78:3047

    Article  Google Scholar 

  69. Yoshimura K, Okada M (2007) Reflective light control element with diffusible reflecting surface. US Patent 7259902

    Google Scholar 

  70. Teowee G et al (2001) Photochromic devices. US Patent 6246505

    Google Scholar 

  71. Day J, Willet R (1990) Science and technology of thermochromic materials. In: Lampert CM, Granqvist CG (eds) Large-area chromogenics: materials and devices for transmittance control, vol IS4. SPIE, Bellingham, pp 122–147

    Google Scholar 

  72. Jorgenson GV, Lee JC (1990) Thermochromic materials and devices: inorganic systems. In: Lampert CM, Granqvist CG (ed) Large-area chromogenics: materials and devices for transmittance control, vol IS4. SPIE, Bellingham, pp 142–159

    Google Scholar 

  73. Sone K, Fukuda Y (1987) Inorganic thermochromism. Springer, Berlin

    Google Scholar 

  74. Babulanam SM et al (1987) Thermochromic VO2 films for energy efficient windows. Sol Energy Mat 16:347

    Article  Google Scholar 

  75. Jorgenson GV, Lee JC (1986) Doped vanadium oxide for optical switching films. Sol Energy Mat 14:205

    Article  Google Scholar 

  76. Parkin I, Manning T (2007) Thermochromic coatings. US Patent 0048438

    Google Scholar 

  77. Blackman Ch et al (2009) Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use. Thin Solid Films 517:4565–4570

    Article  Google Scholar 

  78. Mlyuka NR et al (2009) Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature. Appl Phys Lett 95:171909

    Article  Google Scholar 

  79. Haldimann M et al (2008) Structural use of glass. International Association for Bridge and Structural Engineering, Zürich

    Google Scholar 

  80. Wilson HR (1994) Optical properties of thermotropic layers. Proc SPIE 2255:473

    Article  Google Scholar 

  81. Seeboth A et al (2004) Chromogenic polymer gels for reversible transparency and color control. In: Samson A et al (ed) Chromogenic phenomena in polymers, vol 888, chapter 80. ACS Symposium Series, Washington DC, pp 110–121

    Google Scholar 

  82. Nitz P, Hartwig H (2005) Solar control with thermotropic layers. Sol Energy 79:573–582

    Article  Google Scholar 

  83. Georg A et al (1998) Switchable glazing with a large dynamic range in total solar energy transmittance (TSET). Sol Energy 62:215–228

    Article  Google Scholar 

  84. Wilson HR et al (2002) The optical properties of gasochromic glazing. In: Proceedings of the 4th international conference on coating on glass, Braunschweig

    Google Scholar 

  85. Schwarz M (2008) Smart materials. CRC Press, Taylor & Francis, Boca Raton

    Book  Google Scholar 

  86. Wittwer V et al (2004) Gasochromic windows. Sol Energy Mater Sol Cells 84:305–314

    Article  Google Scholar 

  87. Wittwer V, Graf W (2001) Gaschromic glazings with a large dynamic range in total solar energy transmittance. Glass performance days 2001, Tampere

    Google Scholar 

  88. Lampert CM (2002) Electrochromics-history, technology, and the future, 6.1 gas-chromics. In: Chowdari B et al (ed) Solid state ionics: trends in the new millenium. Proceedings of the 8th Asian conference on world scientific, London

    Google Scholar 

  89. Se-hee L et al (2004) Pd/Ni-WO3 anodic double layer gasochromic device. US Patent 6723566

    Google Scholar 

  90. Lampert CM, Granqvist CG (1990) Large-area chromogenics: materials and devices for transmittance control, vol IS 4. SPIE Institutes for Advanced Optical technologies, Bellingham

    Google Scholar 

  91. Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier, Amsterdam

    Google Scholar 

  92. Monk P et al (2007) Electrochromism and electrochromic devices. Cambridge University Press, London

    Book  Google Scholar 

  93. Deb SK et al (1978) Electrochromic cell with protective overcoat layer. US Patent 4120568

    Google Scholar 

  94. Granqvist CG (2005) Electrochromic device. J Eur Ceram Soc 25:2907–2912

    Article  Google Scholar 

  95. Granqvist CG (1992) Electrochromism and smart window design. Solid State Ionics 53–56:479–489

    Article  Google Scholar 

  96. Granqvist CG (2008) Oxide electrochromics: why, how, and whither. Sol Energy Mater Sol Cells 92:203–208

    Article  Google Scholar 

  97. Granqvist CG et al (2007) Nanomaterials for benign indoor environments: electrochromics for “smart windows”, sensors for air quality, and photo-catalysts for air cleaning. Sol Energy Mater Sol Cells 91:355–365

    Article  Google Scholar 

  98. Granqvist CG et al (2003) Electrochromic coating devices: survey of some recent advances. Thin Solid Films 442:201–211

    Article  Google Scholar 

  99. Granqvist CG (2000) Electrochromic tungsten oxide films: review of progress 1993–1998. Sol Energy Mater Sol Cells 60:201–262

    Article  Google Scholar 

  100. Granqvist CG et al (1997) Towards the smart window: progress in electrochromics. J Non-Cryst Solids 218:273–279

    Article  Google Scholar 

  101. Granqvist CG (1990) Window coatings for the future. Thin Solid Films 193–194:730–741

    Article  Google Scholar 

  102. Lampert CM (2002) Electrochromism-history, technology and the future. In: Chowdari, B et al (ed) Solid state ionics: trends in the new millenium. Proceedings of the 8th Asian conference on world scientific, London

    Google Scholar 

  103. Lampert CM (1998) Smart switchable glazing for solar energy and daylight control. Sol Energy Mater Sol Cells 52:207–221

    Article  Google Scholar 

  104. Lampert CM (1993) Optical switching technology for glazing. Thin Solid Films 236:6–13

    Article  Google Scholar 

  105. Lampert CM (1984) Electrochromic materials and devices for energy efficient windows. Sol Energy Mat 11:1–27

    Article  Google Scholar 

  106. Avendaño E et al (2004) Electrochromism in nickel oxide films containing Mg, Al, Si, V, Zr, Nb, Ag, or Ta. Sol Energy Mater Sol Cells 84:337–350

    Article  Google Scholar 

  107. Jonson A, Roos A (2006) Influence of the performance of antireflective coatings in electrochromic windows. In: Proceedings of ISES EuroSun 2006, Glasgow

    Google Scholar 

  108. Rottmann M et al (2005) Large area electrochromic safety glass; switching behaviour and transmission control of solar radiation. Glass performance days 2005, Tampere

    Google Scholar 

  109. Granqvist CG (2006) Solar energy materials of the future: electrochromic foils for energy efficiency and indoor comfort. In: Proceedings of ISES EuroSun 2006, Glasgow

    Google Scholar 

  110. Bechinger CS et al (2002) Self bleaching photoelectrochemical-electrochromic device. US Patent 6369934

    Google Scholar 

  111. Pichot F et al (1999) Flexible solid-state photoelectrochromic windows. J Electrochem Soc 146:4324–4326

    Article  Google Scholar 

  112. Georg A, Opara Krašovec U (2006) Photoelectrochromic window with Pt catalyst. Thin Solid Films 502:246–251

    Article  Google Scholar 

  113. Hauch A et al (2001) New photoelectrochromic device. Electrochim Acta 46:2131–2136

    Article  Google Scholar 

  114. Gombert A (2007) New development in glazing for a better use of solar energy in buildings. Glass performance days 2007, Tampere

    Google Scholar 

  115. Lampert CM (2003) Large-area smart glass and integrated photovoltaics. Sol Energy Mater Sol Cells 76:489–499

    Article  Google Scholar 

  116. Gombert A (2007) New developments in glazing for better use of solar energy in buildings. Glass performance days 2007, Tampere

    Google Scholar 

  117. Benson DK, Branz HM (1995) Design goals and challenges for a photovoltaic-powered electrochromic window covering. Sol Energy Mater Sol Cells 39:204–211

    Google Scholar 

  118. Gao W et al (2000) Approaches for large-area a-SiC:H photovoltaic-powered electrochromic window coatings. J Non-Cryst Solids 266–269:1140–1144

    Article  Google Scholar 

  119. Gao W et al (1999) First a-SiC:H photovoltaic-powered monolithic tandem electrochromic smart window device. Sol Energy Sol Cells 59:243–254

    Article  Google Scholar 

  120. Lampert CM (1990) Introduction to liquid crystals. Large-area chromogenics: materials and devices for transmittance control, vol IS 4. SPIE, Bellingham

    Google Scholar 

  121. Amstock JS (1997) Liquid crystals and suspended-particle device. Handbook of glass in construction. McGraw-Hill, New York

    Google Scholar 

  122. Sucheol P, Hong JW (2009) Polymer dispersed liquid crystal film for variable-transparency glazing. Thin Solid Films 517:3183–3186

    Article  Google Scholar 

  123. Lampert CM (1999) Advances in materials and technology for switchable glazing. Glass performance days 1999

    Google Scholar 

  124. Lampert CM (1994) Glazing materials for solar and architectural applications, IEA SH&C Task 10 C, LBL-34436

    Google Scholar 

  125. Sixou P et al (2001) Switchable liquid-crystal/polymer micro-composite glazings. Glass processing days 2001

    Google Scholar 

  126. Baughmann et al (1990) Dual-pane thermal window with liquid crystal shade. US Patent 4964251

    Google Scholar 

  127. Garnier DJ et al (2009) High-efficiency multistable switchable glazing using smetic A liquid crystals. Sol Energy Mater Sol Cells 93:301–306

    Article  Google Scholar 

  128. Cupelli D et al (2009) Self-adjusting smart windows based on polymer-dispersed liquid crystals. Sol Energy Mater Sol Cells 93:2008–2012

    Article  Google Scholar 

  129. Cupelli D et al (2004) Fine adjustment of conductivity in polymer-dispersed liquid crystals. Appl Phys Lett 85:3292–3294

    Article  Google Scholar 

  130. Lampert CM (1995) Chromogenic switchable glazing: towards the development of the smart window. In: Conference proceedings of window innovations ‘95, Toronto

    Google Scholar 

  131. Amstock JS (1997) Liquid crystals and suspended-particle device. Handbook of glass in construction, McGraw-Hill, New York

    Google Scholar 

  132. Vergaz R et al (2008) Modelling and electro-optical testing of suspended particle device. Sol Energy Mater Sol Cells 92:1483–1487

    Article  Google Scholar 

  133. Check JA (1995) Light modulating film of improved clarity for a light valve. US Patent 5463492

    Google Scholar 

  134. Saxe RL (1981) Light valve containing improved light valve suspension. US Patent 4247175

    Google Scholar 

  135. Thompson et al (1978) Light valve. US Patent 4078856

    Google Scholar 

  136. Lampert CM (1999) Advances in materials and technology for switchable glazing. Glass processing days 1999, Tampere

    Google Scholar 

  137. Riccobono J, Ludman J (2002) Solar holography. In: Luxman J et al (eds) Holography for the new millenium. Springer, New York

    Google Scholar 

  138. Hans DT et al (1993) Design optimization and manufacturing of holographic windows for daylighting applications in buildings. In: Lampert CM (ed) Optical materials technology for energy efficiency and solar energy conversion XII. SPIE, Bellingham 2017, pp 35–45

    Google Scholar 

  139. Stojanoff CG (2006) Engineering applications of HOEs manufactured with enhanced performance DCG films. In: Bjelkhagen HI, Lessard RA (eds) Practical holography XX: materials and applications. SPIE Proceedings 6136 613601

    Google Scholar 

  140. Hoßfeld W et al (2003) Application of microstructured surfaces in architectural glazings. In: Proceedings of ISES solar world congress 2003, Göteborg

    Google Scholar 

  141. Gunther W et al (2005) Combination of microstructures and optically functional coatings for solar control glazing. Sol Energy Mater Sol Cells 89:233–248

    Article  Google Scholar 

  142. Wilson V et al (2002) The optical properties of gasochromic glazings. In: Proceedings of 4th international conference coating on glass, Braunschweig

    Google Scholar 

  143. Gombert A (2006) Optically functional surfaces for solar applications. In: Proceedings of ISES EuroSun 2006, Glasgow

    Google Scholar 

  144. Graf et al (2003) Device for guiding light. WO Patent WO/2003/071079

    Google Scholar 

  145. Shavit D (2007) LED-and SMD-polyester film embedded in glass: history, current and future developments. Glass performance days 2007, Tampere

    Google Scholar 

  146. Lefèvre H (2009) Laminated glass with embedded LEDs: the use of specific power supplies able to provide continuous high voltage allows new lighting applications and colour changes in decorative applications. Glass performance days 2009, Tampere

    Google Scholar 

  147. http://www.glassonweb.com

  148. Lamontagne B et al (2006) Microblinds and methods of fabrication thereof. US Patent 0196613

    Google Scholar 

  149. Lamontagne B et al (2009) The next generation of switchable glass: the micro-blinds. Glass performance days 2009, Tampere

    Google Scholar 

  150. Ochs D, Rettich T (2007) Progressive power supplies for architectural glass coating. Glass performance days 2007, Tampere

    Google Scholar 

  151. Boire P et al (2000) Glazing pane having an anti-reflection Coating. US Patent 6086914

    Google Scholar 

  152. Gombert A et al (1998) Glazing with very high solar transmittance. Sol Energy 62:177–178

    Article  Google Scholar 

  153. Hofmann T, Kursawe M (2003) Antireflective coating on glass for solar applications glass. Glass performance days 2003, Tampere

    Google Scholar 

  154. Olsson G (2003) Low cost industrial manufacturing of a thin single layer antireflective surface on sheet glass. Glass performance days 2003, Tampere

    Google Scholar 

  155. Southwell WH (1991) Pyramid-array surface relief structures producing anti-reflection index matching on optical surfaces. J Opt Soc Am A 8:549–553

    Article  Google Scholar 

  156. Hammarberg E, Roos A (2003) Antireflection treatment of low-emitting glazings for energy efficient windows with high visible transmittance. Thin Solid Films 442:222–226

    Article  Google Scholar 

  157. Jonsson A, Roos A (2006) Antireflective coatings on different window surfaces. In: Proceedings of the 6th international conference on coatings on glass and plastics, Dresden

    Google Scholar 

  158. Roos A et al (2009) Applications of coated glass in high performance energy efficient windows. Glass performance days 2009, Tampere

    Google Scholar 

  159. Armand P (2003) Self-cleaning coatings for architectural application. Glass performance days 2003, Tampere

    Google Scholar 

  160. Hüber M (2003) TiO2-coatings from inorganic soles: a new approach to hydrophilic and photocatalytically active glasses. Glass performance days 2003, Tampere

    Google Scholar 

  161. Gläser HJ The effects of weather onto glazing and their influence, Part II. http://www.glassfiles.com

  162. Hohenstein H (2003) Coatings with nano-particles for windows and façades. Glass performance days 2003, Tampere

    Google Scholar 

  163. Nakamura M et al (2004) Hydrophilic property of SiO2/TiO2 double layer films. In: Plütz J et al (ed) Proceedings of ICCG5, 2004, Saarbrücken

    Google Scholar 

  164. Overs M (2005) Coatings for decorative glass surfaces based on chemical nanotechnology. Glass performance days 2005, Tampere

    Google Scholar 

  165. Lahann J et al (2006) Switchable surfaces. US Patent 7020355

    Google Scholar 

  166. Shen L et al (2009) Mechanism of sliding friction on a film-terminated fibrillar interface. Langmuir 25:2772–2780

    Article  Google Scholar 

  167. Autumn K et al (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685

    Article  Google Scholar 

  168. Provder T, Baghdachi J (2007) Smart Coatings. ACS Symposium Series 957, American Chemical Society, Oxford University Press, Washington

    Book  Google Scholar 

  169. Provder T, Baghdachi J (2009) Smart Coatings II. ACS Symposium Series 1002, American Chemical Society, Oxford University Press, Washington

    Book  Google Scholar 

Download references

Acknowledgments

The window glazings and coatings overview was elaborated within the frame of research projects MŠMT MEB 080804 and GAČR 101/09/H050. The author acknowledges Dr. Pavel Pokorný, ISI AS CR, Brno for consultations on the thin film design and computer simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitka Mohelníková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Mohelníková, J. (2011). Window Glass Coatings. In: Zang, L. (eds) Energy Efficiency and Renewable Energy Through Nanotechnology. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-0-85729-638-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-638-2_26

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-637-5

  • Online ISBN: 978-0-85729-638-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics