Dielectric Physics Approach for Improvement of Organic-Field Effect Transistors Performance

  • Martin Weis
  • Mitsumasa Iwamoto
Part of the Green Energy and Technology book series (GREEN)


We present a brief review on charge transport in organic field-effect transistors (OFETs), which is necessary to further design nanostructured devices. Dielectric physics is used to explain charge transport of these organic devices in the steady and transient states. We clearly show the influence of internal fields on charge accumulation and transport, and propose models for potential distributions across the OFET channel. Potential drop on the electrodes (the contact resistance) is also discussed and its control is described. Improvement of OFET performance is explained in terms of the design of device dimensions, materials and operation regime.


Contact Resistance Organic Semiconductor Gate Insulator Gate Electrode Drain Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Katz HE (1997) Organic molecular solids as thin film transistor semiconductors. J Mater Chem 7:369–376CrossRefGoogle Scholar
  2. 2.
    Sirringhaus H (2005) Device physics of solution-processed organic field-effect transistors. Adv Mater 17:2411–2425CrossRefGoogle Scholar
  3. 3.
    Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913–915CrossRefGoogle Scholar
  4. 4.
    Kim C, Facchetti A, Marks TJ (2007) Polymer gate dielectric surface viscoelasticity modulates pentacene transistor performance. Science 318:76–80CrossRefGoogle Scholar
  5. 5.
    Knipp D, Street RA, Völkel A, et al (2003) Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport. J Appl Phys 93:347/1–347/9Google Scholar
  6. 6.
    Tecklenburg R, Paasch G, Scheinert S (1998) Organic FET Current characteristics: extraction of unusual field dependences of hopping mobilities. Adv Mater Opt Electron 8:285–294CrossRefGoogle Scholar
  7. 7.
    Zaumseil J, Baldwin KW, Rogers JA (2003) Contact resistance in organic transistors that use source and drain electrodes formed by soft contact lamination. J Appl Phys 93:6117/1–6117/8Google Scholar
  8. 8.
    Horowitz G (1998) Organic field-effect transistors. Adv Mater 10:365–377CrossRefGoogle Scholar
  9. 9.
    Uno M, Tominari Y, Takeya J (2008) Three-dimensional organic field-effect transistors: charge accumulation in the vertical semiconductor channels. Appl Phys Lett 93:173301/1–173301/3Google Scholar
  10. 10.
    Kudo K, Wang DX, Iizuka M et al (1998) Schottky gate static induction transistor using copper phthalocyanine films. Thin Solid Films 331:51–54CrossRefGoogle Scholar
  11. 11.
    Watanabe Y, Kudo K (2005) Flexible organic static induction transistors using pentacene thin films. Appl Phys Lett 87:223505/1–223505/3Google Scholar
  12. 12.
    Xue Y-B, Wang D-X (2006) Experimental analysis of operating characteristics of organic semiconductor static induction transistor. J Shanghai Univ 10:352–356CrossRefGoogle Scholar
  13. 13.
    Fukagawa H, Watanabe Y, Kudo K, et al (2009) Ext Absr (70th Autumn Meet), Japan Society of Applied Physics, 8p-K-8 (in Japanese)Google Scholar
  14. 14.
    Lampert MA, Mark P (1970) Current injection in solids. Academic Press, New YorkGoogle Scholar
  15. 15.
    Kao KC (2004) Dielectric phenomenon in solids. Elsevier, AmsterdamGoogle Scholar
  16. 16.
    Weis M, Manaka T, Iwamoto M (2009) Origin of electric field distribution in organic field-effect transistor: experiment and analysis. J Appl Phys 105:24505/1–24505/7Google Scholar
  17. 17.
    Weis M, Manaka T, Iwamoto M, Effect of traps on carrier injection and transport in organic field-effect transistor, IEEJ Trans Elect Electronic Eng (in press)Google Scholar
  18. 18.
    Tamura R, Lim E, Manaka T, et al (2006) Analysis of pentacene field effect transistor as a Maxwell–Wagner effect element. J Appl Phys 100:114515/1–114515/7Google Scholar
  19. 19.
    Dimitrakopoulos CD, Purushothaman S, Kymissis J et al (1999) Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators. Science 283:822–824CrossRefGoogle Scholar
  20. 20.
    Shockley W (1952) A unipolar “field-effect” transistor. Proceedings of the IRE 40:1365–1376CrossRefGoogle Scholar
  21. 21.
    Silveira WR, Marohn JA (2004) Microscopic view of charge injection in an organic semiconductor. Phys Rev Lett 93:116104/1–116104/4Google Scholar
  22. 22.
    Bulucea C, Rusu A (1987) A first-order theory of the static induction transistor. Solid-State Electron 30:1227–1242CrossRefGoogle Scholar
  23. 23.
    Wang DX, Tanaka Y, Iizuka M et al (1999) Device characteristics of organic static induction transistor using copper phthalocyanine films and al gate electrode. Jpn J Appl Phys 38:256–259CrossRefGoogle Scholar
  24. 24.
    Dunn L, Basu D, Wang L, Dodabalapur A (2006), Organic field effect transistor mobility from transient response analysis. Appl Phys Lett 88:063507/1–063507/3Google Scholar
  25. 25.
    Basu D, Wang L, Dunn L, et al (2006) Direct measurement of carrier drift velocity and mobility in a polymer field-effect transistor. Appl Phys Lett 89:242104/1–242104/3Google Scholar
  26. 26.
    Manaka T, Lim E, Tamura R et al (2007) Direct imaging of carrier motion in organic transistors by optical second-harmonic generation. Nat Photonics 1:581–584CrossRefGoogle Scholar
  27. 27.
    Kepler RG (1960) Charge carrier production and mobility in anthracene crystals. Phys Rev 119:1226–1229CrossRefGoogle Scholar
  28. 28.
    Spear WE, Mort J (1963) Electron and hole transport in CdS crystals. Proc Phys Soc 81:130–140CrossRefGoogle Scholar
  29. 29.
    Scher H, Montroll W (1975) Anomalous transit-time dispersion in amorphous solids. Phys Rev B 12:2455–2477CrossRefGoogle Scholar
  30. 30.
    Horowitz G (2006) Organic electronics. Klauk H (ed) Wiley-WCH, Weinheim, p 10Google Scholar
  31. 31.
    Manaka T, Liu F, Weis M, et al (2009) Mobility measurement based on visualized electric field migration in organic field-effect transistors. Appl Phys Express 2:061501/1–061501/3Google Scholar
  32. 32.
    Manaka T, Liu F, Weis M, et al (2010) Influence of traps on transient electric field and mobility evaluation in organic field-effect transistors. J Appl Phys 107:043712/1–043712/7Google Scholar
  33. 33.
    Lin J, Weis M, Taguchi D et al (2009) Carrier injection and transport in organic field-effect transistor investigated by impedance spectroscopy. Thin Solid Films 518:448–551CrossRefGoogle Scholar
  34. 34.
    Lim E, Manaka T, Iwamoto M (2008) Analysis of pentacene field-effect transistor with contact resistance as an element of a Maxwell–Wagner effect system. J Appl Phys 104:054511/1–054511/5Google Scholar
  35. 35.
    Aswal DK, Lenfant S, Guerin D et al (2006) Self assembled monolayers on silicon for molecular electronics. Anal Chim Acta 568:84–108CrossRefGoogle Scholar
  36. 36.
    Possanner SK, Zojer K, Pacher P et al (2009) Threshold voltage shifts in organic thin-film transistors due to self-assembled monolayers at the dielectric surface. Adv Funct Mater 19:958–967CrossRefGoogle Scholar
  37. 37.
    Yoshita S, Tamura R, Taguchi D, et al (2009) Displacement current analysis of carrier behavior in pentacene field effect transistor with poly(vinylidene fluoride and tetrafluoroethylene) gate insulator. J Appl Phys 106:024505/1–024505/4Google Scholar
  38. 38.
    Wang SD, Minari T, Miyadera T, et al (2007) Contact-metal dependent current injection in pentacene thin-film transistors. Appl Phys Lett 91:203508/1–203508/3Google Scholar
  39. 39.
    Miyadera T, Nakayama M, Ikeda S et al (2007) Investigation of complex channel capacitance in C60 field effect transistor and evaluation of the effect of grain boundaries. Curr Appl Phys 7:87–91CrossRefGoogle Scholar
  40. 40.
    Minari Y, Nemoto T, Isoda S (2004) Fabrication and characterization of single-grain organic field-effect transistor of pentacene. J Appl Phys 96:769–772CrossRefGoogle Scholar
  41. 41.
    Diao L, Frisbie CD, Schroepfer DD, et al (2007) Electrical characterization of metal/pentacene contacts. J Appl Phys 101:14510/1–14510/8Google Scholar
  42. 42.
    Vig JR (1985) UV/ozone cleaning of surfaces. J Vac Sci Technol. A 3:1027–1034Google Scholar
  43. 43.
    Suzue Y, Manaka T, Iwamoto M (2005) Current–voltage characteristics of pentacene films: effect of UV/ozone treatment on Au electrodes. Jpn J Appl Phys 44:561–565CrossRefGoogle Scholar
  44. 44.
    Wan A, Hwang J, Amy F et al (2005) Impact of electrode contamination on the α-NPD/Au hole injection barrier. Org Electron 6:47–54CrossRefGoogle Scholar
  45. 45.
    Campbell IH, Rubin S, Zawodzinski TA et al (1996) Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Phys Rev B 54:R14321–R14324CrossRefGoogle Scholar
  46. 46.
    Jang Y Cho JH, Kim DH et al (2007) Effects of the permanent dipoles of self-assembled monolayer-treated insulator surfaces on the field-effect mobility of a pentacene thin-film transistor. Appl Phys Lett 90:132104/1–132104/3Google Scholar
  47. 47.
    Kelley TW, Frisbie CD (2001) Gate voltage dependent resistance of a single organic semiconductor grain boundary. J Phys Chem B 105:4538–4540CrossRefGoogle Scholar
  48. 48.
    Wang SD, Minari T, Miyadera T, et al (2008) Bias stress instability in pentacene thin film transistors: contact resistance change and channel threshold voltage shift. Appl Phys Lett 92: 63305/1–63305/3Google Scholar
  49. 49.
    Necliudov PV, Shur MS, Gundlach DJ et al (2003) Contact resistance extraction in pentacene thin film transistors. Solid-State Electron 47:259–262CrossRefGoogle Scholar
  50. 50.
    Weis M, Nakao M, Lin J et al (2009) Thermionic emission model for contact resistance in organic field-effect transistor. Thin Solid Films 518:795–798CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Department of Physical ElectronicsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations