Use of Nanostructures for High Brightness Light-Emitting Diodes

  • G. B. Stringfellow
Part of the Green Energy and Technology book series (GREEN)


Light-emitting diodes or LEDs are expected to play a major role in efforts to utilize less energy for lighting applications due to their high efficiency, long operating life, and other “green” characteristics. The history of LEDs began in the 1960s. Since that time, the performance has increased exponentially while the cost has decreased dramatically. LEDs dominate the market for monochromatic displays and indicators, and are slated to provide an increasing share of the white light market. During the last decade, advances in efficiency have been obtained partly as a result of the use of nanotechnology. LEDs and lasers provided some of the first applications for quantum-well structures with nm dimensions. Future advances will almost certainly be linked to advances in the use of quantum wire and quantum dot structures. They appear to offer attractive new alternatives for single-junction white light generation. The use of self-assembled structures also offers the promise of allowing the fabrication of high efficiency devices in highly defected materials, such as those grown on less expensive substrates. This chapter reviews the basic aspects of LED devices and materials, with a focus on the AlGaInP system for red and yellow emitters and AlGaInN for blue, green, and white emitters, all grown by the organometallic vapor phase epitaxial technique. The focus is on the present and future use of nanotechnology for lighting applications.


Molecular Beam Epitaxy Epitaxial Layer Misfit Dislocation Spinodal Decomposition Quantum Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abell J, Moustakis TD (2008) The role of dislocations as nonradiative recombination centers in InGaN quantum wells. Appl Phys Lett 92:091901CrossRefGoogle Scholar
  2. 2.
    Adams AR, O’Reilly EP (1996) Semiconductor band structure and related properties. In: Quillec M (ed) Materials for optoelectronics. Kluwer Academic, Boston, p 61Google Scholar
  3. 3.
    Agarwal R, Lieber CM (2006) Semiconductor nanowires: optics and optoelectronics. Appl Phys A 85:209CrossRefGoogle Scholar
  4. 4.
    Akasaki I, Amano H (1997) OMVPE of GaN for high-brightness blue LEDs. In: Stringfellow GB, Craford MG (eds) High brightness LEDs. Academic Press, New York, Ch. 7Google Scholar
  5. 5.
    Asada M, Miyamoto Y, Suematsu Y (1996) Gain and threshold of three-dimensional quantum-box lasers. IEEE J Quantum Electron QE-22:1915Google Scholar
  6. 6.
    Benchimol JL, Quillec M, Slempkes S (1983) Improved mobility in InGaAsP alloys using high temperature LPE. J Cryst Growth 64:96CrossRefGoogle Scholar
  7. 7.
    Bhusal L, Fluegel B, Steiner MA, Mascarenhas A (2009) Ordering induced direct–indirect transformation in unstrained GaInP for 0.76 < x < 0.78. J Appl Phys 106:114909CrossRefGoogle Scholar
  8. 8.
    Bjork MT et al (2002) One-dimensional heterostructures in semiconductor nanowhiskers. Appl Phys Lett 80:1058CrossRefGoogle Scholar
  9. 9.
    Brown AS, Doolittle WA (2000) The status and promise of compliant substrate technology. Appl Surf Sci 166:392CrossRefGoogle Scholar
  10. 10.
    Cai XM et al (2006) Straight and helical InGaN core-shell nanowires with a high In core content. Nanotechnology 17:2330CrossRefGoogle Scholar
  11. 11.
    Casey HC, Panish MB (1978) Heterostructure lasers. Academic Press, New YorkGoogle Scholar
  12. 12.
    Chen CH, Stockman SA, Peansky MJ, Kuo CP (1997) OMVPE growth of AlGaInP for high-efficiency visible LEDs in high-brightness LEDs. In: Stringfellow GB, Craford MG (eds) High brightness LEDs. Academic Press, New York, Chap. 4Google Scholar
  13. 13.
    Chichibu S, Azuhata T, Sota T, Nakamura S (1996) Spontaneous emission of localized excitons in InGaN single and MQW structures. Appl Phys Lett 69:4188CrossRefGoogle Scholar
  14. 14.
    Craford MG (1997) Overview of device issues in high-brightness LEDs. In: Stringfellow GB, Craford MG (eds) High brightness LEDs. Academic Press, New York, Chap. 2Google Scholar
  15. 15.
    Dingle R, Wiegmann W, Henry CH (1974) Quantum states of confined carriers in very thin AlxGa1−xAs-GaAs-AlxGa1−xAs heterostructures. Phys Rev Lett 33:827CrossRefGoogle Scholar
  16. 16.
    Doppalapudi D, Basu SN, Ludwig KF, Moustakas TD (1998) Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy. J Appl Phys 84:1389CrossRefGoogle Scholar
  17. 17.
    Eichfelder M et al (2009) Room-temperature lasing of electrically pumped red-emitting InP/AlGaInP quantum dots embedded in a vertical microcavity. Appl Phys Lett 95:131107CrossRefGoogle Scholar
  18. 18.
    Faleev N et al (2009) Correlation of crystalline defects with photoluminescence of InGaN layers. Appl Phys Lett 95:051915CrossRefGoogle Scholar
  19. 19.
    Florescu DI et al (2004) AFM and temperature-dependent photoluminescence studies of the degree of localization induced by quantum-dot like states in InGaN single quantum well light emitting diodes grown by MOCVD on (0 0 0 1) sapphire. J Cryst Growth 272:449CrossRefGoogle Scholar
  20. 20.
    Funato M et al (2006) Tailored emission color synthesis using microfacet quantum wells consisting of nitride semiconductors without phosphors. Appl Phys Lett 88:261920CrossRefGoogle Scholar
  21. 21.
    Funato M et al (2008) Emission color tunable LEDs composed of InGaN multifacet quantum wells. Appl Phys Lett 93:021126CrossRefGoogle Scholar
  22. 22.
    Gan CK, Feng YP, Srolovitz DJ (2006) First-principles calculation of the thermodynamics of InGaN alloys. Phys Rev B 73:235214CrossRefGoogle Scholar
  23. 23.
    Gerard JM, Cabrol O, Sermage B (1996) InAs quantum boxes: Highly efficient radiative traps for light emitting devices on Si. Appl Phys Lett 68:3123CrossRefGoogle Scholar
  24. 24.
    Grandjean N, Ilegems M (2007) Visible InGaN/GaN quantum-dot materials and devices. Proc IEEE 95:1854CrossRefGoogle Scholar
  25. 25.
    Hirayama H, Tanaka S, Ramvall P, Aoyagi Y (1998) Intense photoluminescence from self-assembling InGaN quantum dots artificially fabricated on AlGaN surfaces. Appl Phys Lett 72:1736CrossRefGoogle Scholar
  26. 26.
    Ho IH, Stringfellow GB (1996) Solid phase immiscibility in GaInN. Appl Phys Lett 69:2701CrossRefGoogle Scholar
  27. 27.
    Hong CC, Ahn H, Wu CY, Gwo S (2009) Strong green PL from InGaN/GaN nanorod arrays. Opt Express 17:17337Google Scholar
  28. 28.
    Huang HW et al (2006) Improvement of InGaN/GaN LED performance with a nono-roughened p-Gan surface by excimer laser-irradiation. Mater Chem Phys 99:414CrossRefGoogle Scholar
  29. 29.
    Huang C et al (2008) Enhanced efficiency and reduced spectral shift of green LED epitaxial structure with prestrained growth. J Appl Phys 104:123106CrossRefGoogle Scholar
  30. 30.
    Jung W, Jang J, Choi S, Kim J (2008) Growth behavior of InGaN/GaN quantum dots structure via MOCVD. Korean J Mater Res 18:535CrossRefGoogle Scholar
  31. 31.
    Kapon E, Hwang DM, Bhat R (1989) Stimulated emission in semiconductor quantum wire heterostructures. Phys Rev Lett 63:430CrossRefGoogle Scholar
  32. 32.
    Kar A, Alexson D, Dutta M, Stroscio MA (2008) Evidence of compositional inhomogeneity in InxGa1−xN alloys using ultraviolet and visible Raman spectroscopy. J Appl Phys 104:073502CrossRefGoogle Scholar
  33. 33.
    Karpov SYu (1998) Suppression of phase separation in InGaN due to elastic strain. MRS Internet J Nitride Semicond Res 3:16Google Scholar
  34. 34.
    Keiser G (1991) Optical fiber communications, 2nd edn. McGraw-Hill, Inc, New York, Chap. 4Google Scholar
  35. 35.
    Kish FA, Fletcher RM (1997) AlGaInP LEDs. In: Stringfellow GB, Craford MG (eds) High brightness LEDs. Academic Press, New York, Chap. 5Google Scholar
  36. 36.
    Krames M et al (1999) High-power truncated-inverted-pyramid AlGaInP/GaP LEDs exhibiting >50% external quantum efficiency. Appl Phys Lett 75:2365CrossRefGoogle Scholar
  37. 37.
    Krames MR et al (2000) High brightness AlGaInN light emitting diodes. Proc SPIE 3938:2CrossRefGoogle Scholar
  38. 38.
    Krames MR et al (2007) Status and future of high-power light-emitting diodes for solid-state lighting. J Display Technol 3:160CrossRefGoogle Scholar
  39. 39.
    Krysa AB et al (2007) Low threshold InP/AlGaInP on GaAs QD laser emitting at 740 nm. J Cryst Growth 298:663CrossRefGoogle Scholar
  40. 40.
    Kukta RV, Freund LB (1997) J Mech Phys Solids 45:1835CrossRefGoogle Scholar
  41. 41.
    Kuykendall T, Ulrich P, Aloni S, Yang P (2007) Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat Mater 6:951CrossRefGoogle Scholar
  42. 42.
    Lai Y, Liu C, Chen Z (2006) Tuning the emitting wavelength of InGaN/GaN superlattices from blue, green to yellow by controlling the size of InGaN quasi-quantum dot. Thin Solid Films 498:128CrossRefGoogle Scholar
  43. 43.
    Lauhon L, Gudiksen M, Wang D, Lieber CM (2002) Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420:57CrossRefGoogle Scholar
  44. 44.
    Ledentsov NN et al (2000) Quantum-dot heterostructure lasers. IEEE J Sel Top Quantum Electron 6:439CrossRefGoogle Scholar
  45. 45.
    Ledentsov NN, Bimberg D, Alferov ZhI (2008) Progress in epitaxial growth and performance of quantum dot and quantum wire lasers. J Lightwave Tech 26:1540CrossRefGoogle Scholar
  46. 46.
    Leonard D et al (1993) Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Appl Phys Lett 63:3203CrossRefGoogle Scholar
  47. 47.
    Lester SD, Ponce FA, Craford MG, Steigerwald DA (1995) High dislocation densities in high efficiency GaN-based LEDs. Appl Phys Lett 66:1249CrossRefGoogle Scholar
  48. 48.
    Lu C, Huang C, Chen Y, Yang CC (2008) Dependence of spectral behavior in an InGaN/GaN quantum-well light-emitting diode on the prestrained barrier thickness. J Appl Phys 104:043108CrossRefGoogle Scholar
  49. 49.
    Luo JW, Franceschetti A, Zunger A (2008) Quantum-size-induced electronic transitions in quantum dots: indirect band-gap GaAs. Phys Rev B 78:035306CrossRefGoogle Scholar
  50. 50.
    Mathews JW, Blakesley AE (1976) Defects in epitaxial multilayers: III. Preparation of almost perfect multilayers. J Cryst Growth 32:265CrossRefGoogle Scholar
  51. 51.
    Mishra U (2008) Group III nitride optoelectronics, Invited talk at electronic materials conference, Santa Barbara CaliforniaGoogle Scholar
  52. 52.
    Mohseni PK et al (2009) Structural and optical analysis of GaAsP/GaP core-shell nanowires. J Appl Phys 106:124306CrossRefGoogle Scholar
  53. 53.
    Moison JM et al (1994) Self-organized growth of regular nanometer-scale InAs dots on GaAs. Appl Phys Lett 64:196CrossRefGoogle Scholar
  54. 54.
    Moustakis TD et al (2008) Growth of III-nitride QDs and their applications to blue-green LEDs. Phys Stat Sol (a) 205:2560CrossRefGoogle Scholar
  55. 55.
    Mukai T (2002) Recent progress in group-III nitride LEDs. IEEE J Sel Top Quantum Electron 8:1077Google Scholar
  56. 56.
    Nakamura S (1997) Group III–V nitride-based ultraviolet blue–green–yellow LED and laser diodes. In: Stringfellow GB, Craford MG (eds) High brightness LEDs. Academic Press, New York, Chap. 8Google Scholar
  57. 57.
    Nakamura S (2009) Current status of GaN-based solid-state lighting. MRS Bull 34:101CrossRefGoogle Scholar
  58. 58.
    Narukawa Y et al (2006) Ultra-high efficiency white LEDs. Jpn J Appl Phys 45:L1084CrossRefGoogle Scholar
  59. 59.
    Novotny CJ, Yu ET, Yu PKL (2008) InP nanowire/polymer hybrid photodiode. Nano Lett 8:775CrossRefGoogle Scholar
  60. 60.
    Park I et al (2005) Enhancement of phase separation in the InGaN layer for self-assembled In-rich quantum dots. Appl Phys Lett 87:061906CrossRefGoogle Scholar
  61. 61.
    Park I et al (2008) Effect of InGaN quantum dot size on the recombination process in light-emitting diodes. Appl Phys Lett 92:253105CrossRefGoogle Scholar
  62. 62.
    Petroff PM, Gossard AC, Wiegmann W (1984) Structure of AlAs-GaAs interfaces grown on (100) vicinal surfaces by molecular beam epitaxy. Appl Phys Lett 45:620CrossRefGoogle Scholar
  63. 63.
    Piner EL, El-Mastry NA, Liu SX, Bedair SM (1998) Phase separation in InGaN grown by metalorganic chemical vapor deposition. Mater Res Soc Proc 482:125CrossRefGoogle Scholar
  64. 64.
    Ponce FA et al (2003) Microstructure and electronic properties of InGaN alloys. Phys Stat Sol (b) 2:273CrossRefGoogle Scholar
  65. 65.
    Potin V et al (2004) Comparison of the In distribution in InGaN/GaN quantum well structures grown by MBE and MOVPE. J Cryst Growth 262:145CrossRefGoogle Scholar
  66. 66.
    Pristovsek M, Stellmach J, Leyer M, Kneissl M (2009) Phys Stat Sol C 6:5565CrossRefGoogle Scholar
  67. 67.
    Quian F, Gradecak S, Li Y, Wen CY, Lieber CM (2005) Core/multishell nanowire heterostructures ad multicolor, high-Efficiency LEDs. Nano Lett 5:2287CrossRefGoogle Scholar
  68. 68.
    Rao M, Kim D, Mahajan S (2004) Compositional dependence of phase separation in InGaN layers. Appl Phys Lett 85:1961CrossRefGoogle Scholar
  69. 69.
    Reynard J, Kandaswarmy PK, Monroy E, Gayral B (2009) Suppression of nonradiative processes in long-lived polar GaN/AlN quantum dots. Appl Phys Lett 95:131903CrossRefGoogle Scholar
  70. 70.
    Ross FM, Tersoff J, Tromp RM (1998) Coarsening of self-assembled Ge quantum dots on Si (001). Phys Rev Lett 80:984CrossRefGoogle Scholar
  71. 71.
    Schubert EF (2006) Light-emitting diodes, 2nd edn. Cambridge Press, CambridgeCrossRefGoogle Scholar
  72. 72.
    Schultz WM et al (2009) Optical and structural properties of InP quantum dots embedded in (AlxGa1−x)0.51In0.49P. Phys Rev B 79:035329CrossRefGoogle Scholar
  73. 73.
    Siefert W et al (1997) In situ growth of nanostructures by MOVPE. J Cryst Growth 170:39CrossRefGoogle Scholar
  74. 74.
    Siefert W et al (2004) Growth of one dimensional nanostructures in MOVPE. J Cryst Growth 272:211CrossRefGoogle Scholar
  75. 75.
    Skold N et al (2005) Growth and optical properties of strained GaAs-GaInP core-shell nanowires. Nano Lett 5:1943CrossRefGoogle Scholar
  76. 76.
    Soh CB et al (2008) Cool white III-nitride LEDs based on phosphor-free indium-rich InGaN nanostructures. Appl Phys Lett 92:261909CrossRefGoogle Scholar
  77. 77.
    Stringfellow GB (1972) The importance of lattice mismatch in the growth of GaInP epitaxial crystals. J Appl Phys 43:3455CrossRefGoogle Scholar
  78. 78.
    Stringfellow GB (1974) Calculation of ternary and quaternary III–V phase diagrams. J Cryst Growth 27:21Google Scholar
  79. 79.
    Stringfellow GB (1978) VPE growth of III/V semiconductors. Annu Rev Mater Sci 8:73–98CrossRefGoogle Scholar
  80. 80.
    Stringfellow GB (1982) Spinodal decomposition and clustering in III/V alloys. J Electron Mater 11:903CrossRefGoogle Scholar
  81. 81.
    Stringfellow GB (1997) Materials issues in high-brightness LEDs. In: Stringfellow GB, Craford MG (eds) High brightness LEDs. Academic Press, New York, Chap. 1Google Scholar
  82. 82.
    Stringfellow GB (1998) Ordering in III/V semiconductor alloys. In: Santos M, Liu WK (eds) Thin films: heteroepitaxial systems. World Scientific Publishing, Hackensack, pp 64–116Google Scholar
  83. 83.
    Stringfellow GB (1999) Organometallic vapor phase epitaxy: theory and practice, 2nd edn. Academic Press, BostonGoogle Scholar
  84. 84.
    Stringfellow GB (2002) Effects of the surface on CuPt ordering during OMVPE growth. In: Mascarenhas A (ed) Spontaneous ordering in semiconductor alloys. Kluwer Academic Publishers, New York, Chap. 3Google Scholar
  85. 85.
    Stringfellow GB (2010) Microstructures produced during the epitaxial growth of InGaN alloys. J Cryst Growth 312:735CrossRefGoogle Scholar
  86. 86.
    Stringfellow GB, Greene PE (1969) Dislocations in GaAsP. J Appl Phys 40:502CrossRefGoogle Scholar
  87. 87.
    Su LC, Ho IH, Kobayashi N, Stringfellow GB (1994) Order/disorder heterostructures in GaInP with ΔE = 160 meV. J Cryst Growth 145:140CrossRefGoogle Scholar
  88. 88.
    Swalin RA (1972) Thermodynamics of solids. Wiley, New YorkGoogle Scholar
  89. 89.
    Sze SM, Ng KK (2007) Physics of semiconductor devices, 3rd edn. Wiley, New YorkGoogle Scholar
  90. 90.
    Tachibana K, Someya T, Arakawa A (1999) Nanometer-scale InGaN self-assembled quantum dots grown by metalorganic chemical vapor deposition. Appl Phys Lett 74:383CrossRefGoogle Scholar
  91. 91.
    Takagahara T, Takeda K (1992) Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys Rev B 46:15578CrossRefGoogle Scholar
  92. 92.
    Tanoto H et al (2009) Electroluminescence and structural characteristics of InAs/InGaAs QDs grown on graded SiGe/Si substrate. Appl Phys Lett 95:141905CrossRefGoogle Scholar
  93. 93.
    Tran CA et al (1998) Phase separation in InGaN/GaN MQWs and its relation to brightness of blue and green LEDs. J Cryst Growth 195:397CrossRefGoogle Scholar
  94. 94.
    Tsao JY (1993) Materials fundamentals of molecular beam epitaxy. Academic Press, BostonGoogle Scholar
  95. 95.
    Vampola KJ et al (2008) Highly efficient broad-area blue and white LEDs on bulk GaN substrates. Phys Stat Sol (a) 206:200CrossRefGoogle Scholar
  96. 96.
    Venables JA (2000) Introduction to surface and thin film processes. Cambridge University Press, Cambridge, pp 145–146CrossRefGoogle Scholar
  97. 97.
    Wang XL, Ogura M, Matsuhata H (1995) Flow rate modulation epitaxy of AlGaAs/GaAs quantum wires on nonplanar substrate. Appl Phys Lett 66:1506CrossRefGoogle Scholar
  98. 98.
    Wang XH et al (2007) White LEDs based on a single InGaN emission layer. Appl Phys Lett 91:161912CrossRefGoogle Scholar
  99. 99.
    Weisbuch C, Nagle J (1990) Science and engineering of 1D and 0D semiconductor systems, ser. NATO ASI series. Plenum, New York, p 319Google Scholar
  100. 100.
    Weisbuch C, Vinter B (1991) Quantum semiconductor structures: fundamentals and applications. Academic Press, BostonGoogle Scholar
  101. 101.
    Yamaguchi T et al (2006) Two to three dimensional transitions of InGaN and the impact of GaN overgrowth. Phys Stat Sol (c) 3:1396CrossRefGoogle Scholar
  102. 102.
    Yuan J, Wang H, van Veldhoven PJ, Notzel R (2009) Impact of base size and shape on formation control of multifaceted InP nanopyramids by selective area MOVPE. J Appl Phys 106:124304CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations