Computational Nanostructure Design for Hydrogen Storage

  • Jianjun Liu
  • James Tyrrell
  • Qingfeng Ge
Part of the Green Energy and Technology book series (GREEN)


Developing an efficient and affordable hydrogen-storage technology for on-board vehicular applications is a grand challenge to the success of a hydrogen economy. This challenge provides great opportunities for nanoscience and nanoengineering. Novel synthesis and characterization methods allow for an unprecedented degree of manipulation and tracking of the atomic structure in nanoassemblies. Furthermore, computational tools based on density functional theory, which combine fundamental predictive power with atomic resolution, provide a complementary and powerful means for the study and characterization of existing materials and prediction of new compounds and structural motifs, including those for hydrogen storage. In this chapter, we review the development of density functional theory-based computational studies of nanostructure design for hydrogen storage. Our emphasis is on complex metal hydrides. We also discuss the new developments in high surface area materials, including carbon-based materials, and metal- and covalent organic framework-based materials.


Hydrogen Storage Hydrogen Molecule Metal Hydride Hydrogen Desorption Hydrogen Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge support by U. S. Department of Energy, Basic Energy Science grant DE-FG02-05ER46231.


  1. 1.
    Baxter J, Bian ZX, Chen G, Danielson D, Dresselhaus MS, Fedorov AG, Fisher TS, Jones CW, Maginn E, Kortshagen U, Manthiram A, Nozik A, Rolison DR, Sands T, Shi L, Sholl D, Wu YY (2009) Nanoscale design to enable the revolution in renewable energy. Energy Environ Sci 2:559–588CrossRefGoogle Scholar
  2. 2.
    Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358CrossRefGoogle Scholar
  3. 3.
    Crabtree GW, Dresselhaus MS, Buchanan MV (2004) The hydrogen economy. Phys Today 57(12):39–44CrossRefGoogle Scholar
  4. 4.
    US DOE (2010) Hydrogen Storage http://hydrogenenergygov/storagehtml
  5. 5.
    von Helmolt R, Eberle U (2007) Fuel cell vehicles: status 2007. J Power Sour 165:833–843CrossRefGoogle Scholar
  6. 6.
    Zaluska A, Zaluski L, Ström-Olsen JO (2001) Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage. Appl Phys A: Mater Sci Process 72:157–165CrossRefGoogle Scholar
  7. 7.
    Li YW, Yang RT (2006) Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. J Am Chem Soc 128:726–727CrossRefGoogle Scholar
  8. 8.
    Sun Q, Jena P, Wang Q, Marquez M (2006) First-principles study of hydrogen storage on Li12C60. J Am Chem Soc 128:9741–9745CrossRefGoogle Scholar
  9. 9.
    Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129CrossRefGoogle Scholar
  10. 10.
    Han SS, Furukawa H, Yaghi OM, Goddard WA (2008) Covalent organic frameworks as exceptional hydrogen storage materials. J Am Chem Soc 130:11580CrossRefGoogle Scholar
  11. 11.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133MathSciNetCrossRefGoogle Scholar
  13. 13.
    Graetz J (2009) New approaches to hydrogen storage. Chem Soc Rev 38:73–82CrossRefGoogle Scholar
  14. 14.
    Wang LF, Yang RT (2008) New sorbents for hydrogen storage by hydrogen spillover - a review. Energy Environ Sci 1:268–279CrossRefGoogle Scholar
  15. 15.
    Orimo SI, Nakamori Y, Eliseo JR, Züttel A, Jensen CM (2007) Complex hydrides for hydrogen storage. Chem Rev 107:4111–4132CrossRefGoogle Scholar
  16. 16.
    van den Berg AWC and Arean CO (2008) Materials for hydrogen storage: current research trends and perspectives. Chem Commun. 668−681Google Scholar
  17. 17.
    Yang J, Sudik A, Wolverton C, Siegel DJ (2010) High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem Soc Rev 39:656–675CrossRefGoogle Scholar
  18. 18.
    Finholt AE, Bond AC, Schlesinger HI (1947) Lithium aluminum hydride, aluminum hydride and lithium gallium hydride, and some of their applications in organic and inorganic chemistry. J Am Chem Soc 69:1199–1203CrossRefGoogle Scholar
  19. 19.
    Bogdanović B, Schwickardi M (1997) Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J Alloys Compd 253:1–9CrossRefGoogle Scholar
  20. 20.
    Bogdanović B, Brand RA, Marjanović A, Schwickardi M, Tölle J (2000) Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. J Alloys Compd 302:36–58CrossRefGoogle Scholar
  21. 21.
    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562CrossRefGoogle Scholar
  22. 22.
    Vegge T (2006) Equilibrium structure and Ti-catalyzed H2 desorption in NaAlH4 nanoparticles from density functional theory. Phys Chem Chem Phys 8:4853–4861CrossRefGoogle Scholar
  23. 23.
    Johnson CA, Chakerian GD (1965) On the proof and uniqueness of Wulff’s construction of the shape of minimum surface free energy. J Math Phys 6:1403–1404MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Kim KC, Dai B, Johnson JK, Sholl DS (2009) Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction. Nanotechnology 20:204001CrossRefGoogle Scholar
  25. 25.
    Alapati SV, Johnson JK, Sholl DS (2007) Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage. Phys Chem Chem Phys 9:1438–1452CrossRefGoogle Scholar
  26. 26.
    Løvvik OM, Swang O, Opalka SM (2005) Modeling alkali alanates for hydrogen storage by density-functional band-structure calculations. J Mater Res 20:3199–3213CrossRefGoogle Scholar
  27. 27.
    Opalka SM, Løvvik OM, Brinks HW, Saxe PW, Hauback BC (2007) Integrated experimental-theoretical investigation of the Na-Li-Al-H system. Inorg Chem 46:1401–1409CrossRefGoogle Scholar
  28. 28.
    Huot J, Boily S, Güther V, Schulz R (1999) Synthesis of Na3AlH6 and Na2LiAlH6 by mechanical alloying. J Alloys Compd 283:304–306CrossRefGoogle Scholar
  29. 29.
    Brinks HW, Hauback BC, Jensen CM, Zidan R (2005) Synthesis and crystal structure of Na2LiAlD6. J Alloys Compd 392:27–30CrossRefGoogle Scholar
  30. 30.
    Tang X, Opalka SM, Laube BL, Wu FJ, Strickler JR, Anton DL (2007) Hydrogen storage properties of Na-Li-Mg-Al-H complex hydrides. J Alloys Compd 446:228–231CrossRefGoogle Scholar
  31. 31.
    Grove H, Brinks HW, Heyn RH, Wu FJ, Opalka SM, Tang X, Laube BL, Hauback BC (2008) The structure of LiMg(AlD4)3. J Alloys Compd 455:249–254CrossRefGoogle Scholar
  32. 32.
    Yamauchi M, Kobayashi H, Kitagawa H (2009) Hydrogen storage mediated by Pd and Pt nanoparticles. ChemPhysChem 10:2566–2576CrossRefGoogle Scholar
  33. 33.
    Pundt A (2004) Hydrogen in nano-sized metals. Adv Eng Mater 6:11–21CrossRefGoogle Scholar
  34. 34.
    Pundt A, Kirchheim R (2006) Hydrogen in metals: microstructural aspects. Ann Rev Mater Res 36:555–608CrossRefGoogle Scholar
  35. 35.
    Baldé CP, Hereijgers BPC, Bitter JH, de Jong KP (2006) Facilitated hydrogen storage in NaAlH4 supported on carbon nanoribers. Angew Chem-Int Edit 45:3501–3503CrossRefGoogle Scholar
  36. 36.
    Baldé CP, Hereijgers BPC, Bitter JH, de Jong KP (2008) Sodium alanate nanoparticles - Linking size to hydrogen storage properties. J Am Chem Soc 130:6761–6765CrossRefGoogle Scholar
  37. 37.
    Verkuijlen MHW, Gao J, Adelhelm P, van Bentum PJM, de Jongh PE, Kentgens APM (2010) Solid-state NMR studies of the local structure of NaAlH4/C nanocomposites at different stages of hydrogen desorption and rehydrogenation. J Phys Chem C 114:4683–4692CrossRefGoogle Scholar
  38. 38.
    Gao J, Adelhelm P, Verkuijlen MHW, Rongeat C, Herrich M, van Bentum PJM, Gutfleisch O, Kentgens APM, de Jong KP, de Jongh PE (2010) Confinement of NaAlH4 in nanoporous carbon: impact on H2 release, reversibility, and thermodynamics. J Phys Chem C 114:4675–4682CrossRefGoogle Scholar
  39. 39.
    Balema VP, Balema L (2005) Missing pieces of the puzzle or about some unresolved issues in solid state chemistry of alkali metal aluminohydrides. Phys Chem Chem Phys 7:1310–1314Google Scholar
  40. 40.
    Zheng SY, Fang F, Zhou GY, Chen GR, Ouyang LZ, Zhu M, Sun DL (2008) Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica. Chem Mat 20:3954–3958CrossRefGoogle Scholar
  41. 41.
    Bhakta RK, Herberg JL, Jacobs B, Highley A, Behrens R, Ockwig NW, Greathouse JA, Allendorf MD (2009) Metal-organic frameworks as templates for nanoscale NaAlH4. J Am Chem Soc 131:13198CrossRefGoogle Scholar
  42. 42.
    Züttel A, Rentsch S, Fischer P, Wenger P, Sudan P, Mauron P, Emmenegger C (2003) Hydrogen storage properties of LiBH4. J Alloys Compd 356:515–520CrossRefGoogle Scholar
  43. 43.
    Züttel A, Wenger P, Rentsch S, Sudan P, Mauron P, Emmenegger C (2003) LiBH4 a new hydrogen storage material. J Power Sour 118:1–7CrossRefGoogle Scholar
  44. 44.
    Lodziana Z, Vegge T (2004) Structural stability of complex hydrides: LiBH4 revisited. Phys Rev Lett 93:145501CrossRefGoogle Scholar
  45. 45.
    Orima S, Nakamori Y, Kitahara G, Miwa K, Ohba N, Towata S, Züttel A (2005) Dehydriding and rehydriding reactions of LiBH4. J Alloys Compd 404:427–430CrossRefGoogle Scholar
  46. 46.
    Ge Q (2004) Structure and energetics of LiBH4 and its surfaces: a first-principles study. J Phys Chem A 108:8682–8690CrossRefGoogle Scholar
  47. 47.
    Liu J, Ge Q (2009) Hydrogen interaction in Ti-doped LiBH4 for hydrogen storage: a density functional analysis. J Chem Theory Comput 5:3079–3087CrossRefGoogle Scholar
  48. 48.
    Kang XD, Wang P, Ma LP, Cheng HM (2007) Reversible hydrogen storage in LiBH4 destabilized by milling with Al. Appl Phys A 89:963–966CrossRefGoogle Scholar
  49. 49.
    Kostka J, Lohstroh W, Fichtner M, Hahn H (2007) Diborane release from LiBH4/Silica-Gel mixtures and the effect of additives. J Phys Chem C 111:14026–14029CrossRefGoogle Scholar
  50. 50.
    Nickels EA, Jones Martin O, David William IF, Johnson Simon R, Lowton Rebecca L, Sommariva M, Edwards Peter P (2008) Tuning the decomposition temperature in complex hydrides: synthesis of a mixed alkali metal Borohydride13. Angew Chem-Int Edit 47:2817–2819CrossRefGoogle Scholar
  51. 51.
    Claudy P, Bonnetot B, Letoffe JM, Turck G (1978) Determination des constantes thermodynamiques des hydrures simples et complexes de l’aluminium. IV. Enthalpie de formation de LiAIH2 et Li3AIH6. Thermochimica Acta 27:213–221CrossRefGoogle Scholar
  52. 52.
    Dymova TN, Aleksandrov DP, Konoplev VN, Silina TA, Sizareva AS (1994) Spontaneous and thermal-decomposition of Lithium Tetrahydroaluminate LiAlH4 - the promoting effect of mechanochemical action on the process. Koord Khimiya 20:279–285Google Scholar
  53. 53.
    Balema VP, Dennis KW and Pecharsky VK (2000) Rapid solid-state transformation of tetrahedral AlH4 (-) into octahedral AlH6 (3-) in lithium aluminohydride. Chem Commun. 1665–1666Google Scholar
  54. 54.
    Balema VP, Pecharsky VK, Dennis KW (2000) Solid state phase transformations in LiAlH4 during high-energy ball-milling. J Alloys Compd 313:69–74CrossRefGoogle Scholar
  55. 55.
    Balema VP, Wiench JW, Dennis KW, Pruski M, Pecharsky VK (2001) Titanium catalyzed solid-state transformations in LiAlH4 during high-energy ball-milling. J Alloys Compd 329:108–114CrossRefGoogle Scholar
  56. 56.
    Chen J, Kuriyama N, Xu Q, Takeshita HT, Sakai T (2001) Reversible hydroen storage via titanium-catalyzed LiAlH4 and Li3AlH6. J Phys Chem B 105:11214–11220CrossRefGoogle Scholar
  57. 57.
    Alapati SV, Johnson JK, Sholl DS (2006) Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. J Phys Chem B 110:8769–8776CrossRefGoogle Scholar
  58. 58.
    Alapati SV, Johnson JK, Sholl DS (2007) Predicting reaction equilibria for destabilized metal hydride decomposition reactions for reversible hydrogen storage. J Phys Chem C 111:1584–1591CrossRefGoogle Scholar
  59. 59.
    Yu XB, Grant DM and Walker GS (2006) A new dehydrogenation mechanism for reversible multicomponent borohydride systems - The role of Li-Mg alloys. Chem Commun. 3906–3908Google Scholar
  60. 60.
    Wolverton C, Siegel DJ, Akbarzadeh AR, Ozoliņš V (2008) Discovery of novel hydrogen storage materials: an atomic scale computational approach. J Phys-Condes Matter 20:14Google Scholar
  61. 61.
    Siegel DJ, Wolverton C, Ozoliņš V (2007) Thermodynamic guidelines for the prediction of hydrogen storage reactions and their application to destabilized hydride mixtures. Phys Rev B 76:134102CrossRefGoogle Scholar
  62. 62.
    Vajo JJ, Olson GL (2007) Hydrogen storage in destabilized chemical systems. Scr Mater 56:829–834CrossRefGoogle Scholar
  63. 63.
    Fang ZZ, Kang XD, Dai HB, Zhang MJ, Wang P, Cheng HM (2008) Reversible dehydrogenation of LiBH4 catalyzed by as-prepared single-walled carbon nanotubes. Scr Mater 58:922–925CrossRefGoogle Scholar
  64. 64.
    Vajo JJ, Skeith SL, Mertens F (2005) Reversible storage of hydrogen in destabilized LiBH4. J Phys Chem B 109:3719–3722CrossRefGoogle Scholar
  65. 65.
    Yu XB, Grant DM, Walker GS (2009) Dehydrogenation of LiBH4 destabilized with various oxides. J Phys Chem C 113:17945–17949CrossRefGoogle Scholar
  66. 66.
    Au M, Jurgensen A, Zeigler K (2006) Modified lithium borohydrides for reversible hydrogen storage (2). J Phys Chem B 110:26482–26487CrossRefGoogle Scholar
  67. 67.
    Zhang Y, Zhang WS, Wang AQ, Sun LX, Fan MQ, Chu HL, Sun JC, Zhang T (2007) LiBH4 nanoparticles supported by disordered mesoporous carbon: hydrogen storage performances and destabilization mechanisms. Int J Hydrogen Energy 32:3976–3980CrossRefGoogle Scholar
  68. 68.
    Au M, Jurgensen AR, Spencer WA, Anton DL, Pinkerton FE, Hwang SJ, Kim C, Bowman RC (2008) Stability and reversibility of lithium borohydrides doped by metal halides and hydrides. J Phys Chem C 112:18661–18671Google Scholar
  69. 69.
    Gross AF, Vajo JJ, Van Atta SL, Olson GL (2008) Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds. J Phys Chem C 112:5651–5657CrossRefGoogle Scholar
  70. 70.
    Walker GS, Grant DM, Price TC, Yu XB, Legrand V (2009) High capacity multicomponent hydrogen storage materials: investigation of the effect of stoichiometry and decomposition conditions on the cycling behaviour of LiBH4-MgH2. J Power Sources 194:1128–1134CrossRefGoogle Scholar
  71. 71.
    Opalka SM, Tang X, Laube BL, Vanderspurt TH (2009) Experimental and theoretical screening of nanoscale oxide reactivity with LiBH4. Nanotechnology 20:204024CrossRefGoogle Scholar
  72. 72.
    Oguchi H, Matsuo M, Hummelshoj JS, Vegge T, Norskov JK, Sato T, Miura Y, Takamura H, Maekawa H, Orimo S (2009) Experimental and computational studies on structural transitions in the LiBH4-LiI pseudobinary system. Appl Phys Lett 94:141912CrossRefGoogle Scholar
  73. 73.
    Somorjai GA, Borodko YG (2001) Research in Nanosciences–Great opportunity for Catalysis Science. Catal Lett 76:1–5CrossRefGoogle Scholar
  74. 74.
    Berseth PA, Harter AG, Zidan R, Blomqvist A, Araújo CM, Scheicher RH, Ahuja R, Jena P (2009) Carbon nanomaterials as catalysts for hydrogen uptake and release in NaAlH4. Nano Lett 9:1501–1505CrossRefGoogle Scholar
  75. 75.
    Singh S, Eijt SWH, Huot J, Kockelmann WA, Wagernaker M, Mulder FM (2007) The TiCl3 catalyst in NaAlH4 for hydrogen storage induces grain refinement and impacts on hydrogen vacancy formation. Acta Mater 55:5549–5557CrossRefGoogle Scholar
  76. 76.
    Lee GJ, Shim JH, Cho YW, Lee KS (2007) Reversible hydrogen storage in NaAlH4 catalyzed with lanthanide oxides. Int J Hydrogen Energy 32:1911–1915CrossRefGoogle Scholar
  77. 77.
    Felderhoff M, Weidenthaler C, von Helmolt R, Eberle U (2007) Hydrogen storage: the remaining scientific and technological challenges. Phys Chem Chem Phys 9:2643–2653CrossRefGoogle Scholar
  78. 78.
    Baldé CP, Stil HA, van der Eerden AMJ, de Jong KP, Bitter JH (2007) Active Ti species in TiCl3-doped NaAlH4. mechanism for catalyst deactivation. J Phys Chem C 111:2797–2802CrossRefGoogle Scholar
  79. 79.
    Léon A, Schild D, Fichtner M (2006) Chemical state of Ti in sodium alanate doped with TiCl3 using X-ray photoelectron spectroscopy (vol 404, pg 766, 2005). J Alloys Compd 407:340–340CrossRefGoogle Scholar
  80. 80.
    Léon A, Kircher O, Rösner H, Décamps B, Leroy E, Fichtner M, Percheron-Guégan A (2006) SEM and TEM characterization of sodium alanate doped with TiCl3 or small Ti clusters (Ti13 * 6THF). J Alloys Compd 414:190–203CrossRefGoogle Scholar
  81. 81.
    Léon A, Kircher O, Fichtner M, Rothe J, Schild D (2006) Evolution of the local structure around Ti atoms in NaAlH4 doped with TiCl3 or Ti13 center dot 6THF by ball milling using X-ray absorption and X-ray photoelectron spectroscopy. J Phys Chem B 110:1192–1200CrossRefGoogle Scholar
  82. 82.
    Canton P, Fichtner M, Frommen C, Léon A (2006) Synchrotron X-ray studies of Ti-doped NaAlH4. J Phys Chem B 110:3051–3054CrossRefGoogle Scholar
  83. 83.
    Brinks HW, Sulic M, Jensen CM, Hauback BC (2006) TiCl3-enhanced NaAlH4: impact of excess Al and development of the Al1-gamma Ti gamma phase during cycling. J Phys Chem B 110:2740–2745CrossRefGoogle Scholar
  84. 84.
    Bogdanović B, Felderhoff M, Pommerin A, Schüth T, Spielkamp N (2006) Advanced hydrogen-storage materials based on Sc-, Ce-, and Pr-doped NaAlH4. Adv Mater 18:1198CrossRefGoogle Scholar
  85. 85.
    Bellosta von Colbe JM, Schmidt W, Felderhoff M, Bogdanović B, Schüth F (2006) Hydrogen-isotope scrambling on doped sodium alanate. Angew Chem-Int Edit 45:3663–3665CrossRefGoogle Scholar
  86. 86.
    Wang P, Kang XD, Cheng HM (2005) Exploration of the nature of active Ti species in metallic Ti-doped NaAlH4. J Phys Chem B 109:20131–20136CrossRefGoogle Scholar
  87. 87.
    Wang J, Ebner AD, Zidan R, Ritter JA (2005) Synergistic effects of co-dopants on the dehydrogenation kinetics of sodium aluminum hydride. J Alloys Compd 391:245–255CrossRefGoogle Scholar
  88. 88.
    von Colbe JMB, Felderhoff M, Bogdanović B, Schüth F and Weidenthaler C (2005) One-step direct synthesis of a Ti-doped sodium alanate hydrogen storage material. Chem Commun. 4732–4734Google Scholar
  89. 89.
    Resan M, Hampton MD, Lomness JK, Slattery DK (2005) Effect of TixAly catalysts on hydrogen storage properties of LiAlH4 and NaAlH4. Int J Hydrogen Energy 30:1417–1421CrossRefGoogle Scholar
  90. 90.
    Majer G, Stanik E, Banuet LEV, Grinberg F, Kircher O, Fichtner M (2005) Effects of catalysts on the dehydriding of alanates monitored by proton NMR. J Alloys Compd 404:738–742CrossRefGoogle Scholar
  91. 91.
    Léon A, Schild D, Fichtner M (2005) Chemical state of Ti in sodium alanate doped with TiCl3 using X-ray photoelectron spectroscopy. J Alloys Compd 404:766–770CrossRefGoogle Scholar
  92. 92.
    Isobe S, Ichikawa T, Hanada N, Leng HY, Fichtner M, Fuhr O, Fujii H (2005) Effect of Ti catalyst with different chemical form on Li-N-H hydrogen storage properties. J Alloys Compd 404:439–442CrossRefGoogle Scholar
  93. 93.
    Gomes S, Renaudin G, Hagemann H, Yvon K, Sulic MP, Jensen CM (2005) Effects of milling, doping and cycling of NaAlH4 studied by vibrational spectroscopy and X-ray diffraction. J Alloys Compd 390:305–313CrossRefGoogle Scholar
  94. 94.
    Haiduc AG, Stil HA, Schwarz MA, Paulus P, Geerlings JJC (2005) On the fate of the Ti catalyst during hydrogen cycling of sodium alanate. J Alloys Compd 393:252–263CrossRefGoogle Scholar
  95. 95.
    Bellosta von Colbe JM, Felderhoff M, Bogdanović B, Schüth F and Weidenthaler C (2005) One-step direct synthesis of a Ti-doped sodium alanate hydrogen storage material. Chem Commun: 4732–4734Google Scholar
  96. 96.
    Wang P, Jensen CM (2004) Preparation of Ti-doped sodium aluminum hydride from mechanical milling of NaH/Al with off-the-shelf Ti powder. J Phys Chem B 108:15827–15829CrossRefGoogle Scholar
  97. 97.
    Wang P, Jensen CM (2004) Method for preparing Ti-doped NaAlH4 using Ti powder: observation of an unusual reversible dehydrogenation behavior. J Alloys Compd 379:99–102CrossRefGoogle Scholar
  98. 98.
    Srinivasan SS, Brinks HW, Hauback BC, Sun DL, Jensen CM (2004) Long term cycling behavior of titanium doped NaAlH4 prepared through solvent mediated milling of NaH and Al with titanium dopant precursors. J Alloys Compd 377:283–289CrossRefGoogle Scholar
  99. 99.
    Bogdanović B, Felderhoff M, Kaskel S, Pommerin A, Schlichte K, Schüth F (2003) Improved hydrogen storage properties of Ti-doped sodium alanate using titanium nanoparticles as doping agents. Adv Mater 15:1012CrossRefGoogle Scholar
  100. 100.
    Bogdanović B, Felderhoff M, Germann M, Hartel M, Pommerin A, Schüth F, Weidenthaler C, Zibrowius B (2003) Investigation of hydrogen discharging and recharging processes of Ti-doped NaAlH4 by X-ray diffraction analysis (XRD) and solid-state NMR spectroscopy. J Alloys Compd 350:246–255CrossRefGoogle Scholar
  101. 101.
    Thomas GJ, Gross KJ, Yang NYC, Jensen C (2002) Microstructural characterization of catalyzed NaAlH4. J Alloys Compd 330:702–707CrossRefGoogle Scholar
  102. 102.
    Sandrock G, Gross K, Thomas G (2002) Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates. J Alloys Compd 339:299–308CrossRefGoogle Scholar
  103. 103.
    Bogdanović B, Schwickardi M (2001) Ti-doped NaAlH4 as a hydrogen-storage material - preparation by Ti-catalyzed hydrogenation of aluminum powder in conjunction with sodium hydride. Appl Phys A 72:221–223CrossRefGoogle Scholar
  104. 104.
    Zaluska A, Zaluski L, Ström-Olsen JO (2000) Sodium alanates for reversible hydrogen storage. J Alloys Compd 298:125–134CrossRefGoogle Scholar
  105. 105.
    Zidan RA, Takara S, Hee AG, Jensen CM (1999) Hydrogen cycling behavior of zirconium and titanium-zirconium-doped sodium aluminum hydride. J Alloys Compd 285:119–122CrossRefGoogle Scholar
  106. 106.
    Jensen CM, Zidan R, Mariels N, Hee A, Hagen C (1999) Advanced titanium doping of sodium aluminum hydride: segue to a practical hydrogen storage material? Int J Hydrogen Energy 24:461–465CrossRefGoogle Scholar
  107. 107.
    Stephens RD, Gross AF, Van Atta SL, Vajo JJ, Pinkerton FE (2009) The kinetic enhancement of hydrogen cycling in NaAlH4 by melt infusion into nanoporous carbon aerogel. Nanotechnology 20:204018CrossRefGoogle Scholar
  108. 108.
    Adelhelm P, de Jong KP and de Jongh PE (2009) How intimate contact with nanoporous carbon benefits the reversible hydrogen desorption from NaH and NaAlH4. Chem Commun. 6261–6263Google Scholar
  109. 109.
    Shi Q, Yu X, Feidenhans’l R, Vegge T (2008) Destabilized LiBH4-NaAlH4 Mixtures Doped with Titanium Based Catalysts. J Phys Chem C 112:18244–18248CrossRefGoogle Scholar
  110. 110.
    Majzoub EH, Ozolinš V (2008) Prototype electrostatic ground state approach to predicting crystal structures of ionic compounds: application to hydrogen storage materials. Phys Rev B 77:104115CrossRefGoogle Scholar
  111. 111.
    Yin LC, Wang P, Kang XD, Sun CH, Cheng HM (2007) Functional anion concept: effect of fluorine anion on hydrogen storage of sodium alanate. Phys Chem Chem Phys 9:1499–1502CrossRefGoogle Scholar
  112. 112.
    Wang J, Ebner AD, Ritter JA (2007) Synthesis of metal complex hydrides for hydrogen storage. J Phys Chem C 111:14917–14924CrossRefGoogle Scholar
  113. 113.
    Graetz J, Reilly JJ, Johnson J, Ignatov AY, Tyson TA (2004) X-ray absorption study of Ti-activated sodium aluminum hydride. Appl Phys Lett 85:500–502CrossRefGoogle Scholar
  114. 114.
    Schüth F, Bogdanović B, Felderhoff M (2004) Light metal hydrides and complex hydrides for hydrogen storage. Chem Commun: 2249–2258Google Scholar
  115. 115.
    Felderhoff M, Klementiev K, Grunert W, Spliethoff B, Tesche B, Bellosta von Colbe JM, Bogdanović B, Hartel M, Pommerin A, Schüth F, Weidenthaler C (2004) Combined TEM-EDX and XAFS studies of Ti-doped sodium alanate. Phys Chem Chem Phys 6:4369–4374CrossRefGoogle Scholar
  116. 116.
    Kang XD, Wang P, Song XP, Yao XD, Lu GQ, Cheng HM (2006) Catalytic effect of Al3Ti on the reversible dehydrogenation of NaAlH4. J Alloys Compd 424:365–369CrossRefGoogle Scholar
  117. 117.
    Weidenthaler C, Pommerin A, Felderhoff M, Bogdanović B, Schüth F (2003) On the state of the titanium and zirconium in Ti- or Zr-doped NaAlH4 hydrogen storage material. Phys Chem Chem Phys 5:5149–5153CrossRefGoogle Scholar
  118. 118.
    Gross KJ, Majzoub EH, Spangler SW (2003) The effects of titanium precursors on hydriding properties of alanates. J Alloys Compd 356:423–428CrossRefGoogle Scholar
  119. 119.
    Gross KJ, Guthrie S, Takara S, Thomas G (2000) In situ X-ray diffraction study of the decomposition of NaAlH4. J Alloys Compd 297:270–281CrossRefGoogle Scholar
  120. 120.
    Gross KJ, Sandrock G, Thomas GJ (2002) Dynamic in situ X-ray diffraction of catalyzed alanates. J Alloys Compd 330:691–695CrossRefGoogle Scholar
  121. 121.
    Voss J, Shi Q, Jacobsen HS, Zamponi M, Lefmann K, Vegge T (2007) Hydrogen dynamics in Na3AlH6: a combined density functional theory and quasielastic neutron scattering study. J Phys Chem B 111:3886–3892CrossRefGoogle Scholar
  122. 122.
    Løvvik OM, Opalka SM (2006) Stability of Ti in NaAlH4. Appl Phys Lett 88:161917CrossRefGoogle Scholar
  123. 123.
    Løvvik OM, Opalka SA (2005) Density functional calculations of Ti-enhanced NaAlH4. Phys Rev B 71:054103CrossRefGoogle Scholar
  124. 124.
    Íñiguez J, Yildirim T, Udovic TJ, Sulic M, Jensen CM (2004) Structure and hydrogen dynamics of pure and Ti-doped sodium alanate. Phys Rev B 70:060101CrossRefGoogle Scholar
  125. 125.
    Íñiguez J, Yildirim T (2005) First-principles study of Ti-doped sodium alanate surfaces. Appl Phys Lett 86:103109CrossRefGoogle Scholar
  126. 126.
    Araújo CM, Li S, Ahuja R, Jena P (2005) Vacancy-mediated hydrogen desorption in NaAlH4. Phys Rev B 72:165101CrossRefGoogle Scholar
  127. 127.
    Du AJ, Smith SC, Lu GQ (2007) Vacancy mediated desorption of hydrogen from a sodium alanate surface: an ab initio spin-polarized study. Appl Phys Lett 90:143119CrossRefGoogle Scholar
  128. 128.
    Liu J and Ge Q (2006) A precursor state for formation of TiAl3 complex in reversible hydrogen desorption/adsorption from Ti-doped NaAlH4. Chem Commun. 1822–1824Google Scholar
  129. 129.
    Liu J, Ge Q (2006) A first-principles analysis of hydrogen interaction in Ti-doped NaAlH4 surfaces: structure and energetics. J Phys Chem B 110:25863–25868CrossRefGoogle Scholar
  130. 130.
    Liu J, Ge Q (2007) A first-principles study of Sc-doped NaAlH4 for reversible hydrogen storage. J Alloys Compd 446–447:267–270CrossRefGoogle Scholar
  131. 131.
    Liu J, Han Y, Ge Q (2009) Effect of doped transition metal on reversible hydrogen release/uptake from NaAlH4. Chem Eur J 15:1685–1695CrossRefGoogle Scholar
  132. 132.
    Kubas GJ (2009) Hydrogen activation on organometallic complexes and H2 production, utilization, and storage for future energy. J Organomet Chem 694:2648–2653CrossRefGoogle Scholar
  133. 133.
    Chaudhuri S, Rangan S, Veyan JF, Muckerman JT, Chabal YJ (2008) Formation and bonding of alane clusters on Al(111) surfaces studied by infrared absorption spectroscopy and theoretical modeling. J Am Chem Soc 130:10576–10587CrossRefGoogle Scholar
  134. 134.
    Chaudhuri S, Muckerman JT (2005) First-principles study of Ti-catalyzed hydrogen chemisorption on an Al surface: a critical first step for reversible hydrogen storage in NaAlH4. J Phys Chem B 109:6952–6957CrossRefGoogle Scholar
  135. 135.
    Ljubić I, Clary DC (2010) Towards understanding a mechanism for reversible hydrogen storage: theoretical study of transition metal catalysed dehydrogenation of sodium alanate. Phys Chem Chem Phys 12:4012–4023CrossRefGoogle Scholar
  136. 136.
    Anton DL (2003) Hydrogen desorption kinetics in transition metal modified NaAlH4. J Alloys Compd 356:400–404CrossRefGoogle Scholar
  137. 137.
    Au M, Jurgensen A (2006) Modified Lithium Borohydrides for Reversible Hydrogen Storage. J Phys Chem B 110:7062–7067CrossRefGoogle Scholar
  138. 138.
    Gunaydin H, Houk KN, Ozoliņš V (2008) Vacancy-mediated dehydrogenation of sodium alanate. Proc Natl Acad Sci 105:3673–3677CrossRefGoogle Scholar
  139. 139.
    Grochala W, Edwards PP (2004) Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem Rev 104:1283–1315CrossRefGoogle Scholar
  140. 140.
    Bogdanović B, Ritter A, Spliethoff B (1990) Active MgH2-Mg systems for reversible cehmical energy storage. Angew Chem Int Edit 29:223–234CrossRefGoogle Scholar
  141. 141.
    Du AJ, Smith SC, Yao XD, Lu GQ (2007) Hydrogen spillover mechanism on a Pd-doped Mg surface as revealed by ab initio density functional calculation. J Am Chem Soc 129:10201–10204CrossRefGoogle Scholar
  142. 142.
    Yoshimura K, Yamada Y, Okada M (2004) Hydrogenation of Pd capped Mg thin films at room temperature. Surf Sci 566:751–754CrossRefGoogle Scholar
  143. 143.
    Shalaan E, Schmitt H (2006) Mg nanoparticle switchable mirror films with improved absorption-desorption kinetics. Surf Sci 600:3650–3653CrossRefGoogle Scholar
  144. 144.
    Berlouis LEA, Honnor P, Hall PJ, Morris S, Dodd SB (2006) An investigation of the effect of Ti, Pd and Zr on the dehydriding kinetics of MgH2. J Mater Sci 41:6403–6408CrossRefGoogle Scholar
  145. 145.
    Saita I, Li LQ, Saito K, Akiyama T (2003) Hydriding combustion synthesis of Mg2NiH4. J Alloys Compd 356:490–493CrossRefGoogle Scholar
  146. 146.
    Aguey-Zinsou KF, Ares-Fernandez JR (2008) Synthesis of colloidal magnesium: a near room temperature store for hydrogen. Chem Mat 20:376–378CrossRefGoogle Scholar
  147. 147.
    de Jongh PE, Wagemans RWP, Eggenhuisen TM, Dauvillier BS, Radstake PB, Meeldijk JD, Geus JW, de Jong KP (2007) The preparation of carbon-supported magnesium nanoparticles using melt infiltration. Chem Mat 19:6052–6057CrossRefGoogle Scholar
  148. 148.
    Li WY, Li CS, Ma H, Chen J (2007) Magnesium nanowires: enhanced kinetics for hydrogen absorption and desorption. J Am Chem Soc 129:6710CrossRefGoogle Scholar
  149. 149.
    Kooi BJ, Palasantzas G, De Hosson JTM (2006) Gas-phase synthesis of magnesium nanoparticles: a high-resolution transmission electron microscopy study. Appl Phys Lett 89:161914CrossRefGoogle Scholar
  150. 150.
    Schimmel HG, Huot J, Chapon LC, Tichelaar FD, Mulder FM (2005) Hydrogen cycling of niobium and vanadium catalyzed nanostructured magnesium. J Am Chem Soc 127:14348–14354CrossRefGoogle Scholar
  151. 151.
    Bystrzycki J, Plociński T, Zieliński W, Wiśniewski Z, Polanski M, Mróz W, Bojar Z, Kurzdlowski KJ (2009) Nano-engineering of magnesium hydride for hydrogen storage. Microelectron Eng 86:889–891CrossRefGoogle Scholar
  152. 152.
    Huot J, Tremblay ML, Schulz R (2003) Synthesis of nanocrystalline hydrogen storage materials. J Alloys Compd 356:603–607CrossRefGoogle Scholar
  153. 153.
    de Castro JFR, Yavari AR, LeMoulec A, Ishikawa TT, Botta WJ (2005) Improving H-sorption in MgH2 powders by addition of nanoparticles of transition metal fluoride catalysts and mechanical alloying. J Alloys Compd 389:270–274CrossRefGoogle Scholar
  154. 154.
    Dehouche Z, Peretti HA, Hamoudi S, Yoo Y, Belkacemi K (2008) Effect of activated alloys on hydrogen discharge kinetics of MgH2 nanocrystals. J Alloys Compd 455:432–439CrossRefGoogle Scholar
  155. 155.
    Lu HB, Poh CK, Zhang LC, Guo ZP, Yu XB, Liu HK (2009) Dehydrogenation characteristics of Ti- and Ni/Ti-catalyzed Mg hydrides. J Alloys Compd 481:152–155CrossRefGoogle Scholar
  156. 156.
    Tanaka K, Miwa T, Sasaki K, Kuroda K (2009) TEM studies of nanostructure in melt-spun Mg-Ni-La alloy manifesting enhanced hydrogen desorbing kinetics. J Alloys Compd 478:308–316CrossRefGoogle Scholar
  157. 157.
    Wagemans RWP, van Lenthe JH, de Jongh PE, van Dillen AJ, de Jong KP (2005) Hydrogen storage in magnesium clusters: quantum chemical study. J Am Chem Soc 127:16675–16680CrossRefGoogle Scholar
  158. 158.
    Cheung S, Deng WQ, van Duin ACT, Goddard WA (2005) ReaxFF(MgH) reactive force field for magnesium hydride systems. J Phys Chem A 109:851–859CrossRefGoogle Scholar
  159. 159.
    Aguey-Zinsou KF, Fernandez JRA, Klassen T, Bormann R (2007) Effect of Nb2O5 on MgH2 properties during mechanical milling. Int J Hydrogen Energy 32:2400–2407CrossRefGoogle Scholar
  160. 160.
    Larsson P, Araújo CM, Larsson JA, Jena P, Ahuja R (2008) Role of catalysts in dehydrogenation of MgH2 nanoclusters. Proc Natl Acad Sci 105:8227–8231CrossRefGoogle Scholar
  161. 161.
    Hanada N, Ichikawa T, Isobe S, Nakagawa T, Tokoyoda K, Honma T, Fujii H, Kojima Y (2009) X-ray absorption spectroscopic study on valence state and local atomic structure of transition metal oxides doped in MgH2. J Phys Chem C 113:13450–13455CrossRefGoogle Scholar
  162. 162.
    Hanada N, Ichikawa T, Fujii H (2005) Catalytic effect of nanoparticle 3D-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. J Phys Chem B 109:7188–7194CrossRefGoogle Scholar
  163. 163.
    Hanada N, Ichikawa I, Fujii H (2005) Catalytic effect of Ni nano-particle and Nb oxide on H-desorption properties in MgH2 prepared by ball milling. J Alloys Compd 404:716–719CrossRefGoogle Scholar
  164. 164.
    Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379CrossRefGoogle Scholar
  165. 165.
    Cheng HS, Chen L, Cooper AC, Sha XW, Pez GP (2008) Hydrogen spillover in the context of hydrogen storage using solid-state materials. Energy Environ Sci 1:338–354CrossRefGoogle Scholar
  166. 166.
    Züttel A, Orimo S (2002) Hydrogen in nanostructured, carbon-related, and metallic materials. MRS Bull 27:705–711CrossRefGoogle Scholar
  167. 167.
    Wong-Foy AG, Matzger AJ, Yaghi OM (2006) Exceptional H2 saturation uptake in microporous metal-organic frameworks. J Am Chem Soc 128:3494–3495CrossRefGoogle Scholar
  168. 168.
    Zhao D, Yuan DQ, Zhou HC (2008) The current status of hydrogen storage in metal-organic frameworks. Energy Environ Sci 1:222–235CrossRefGoogle Scholar
  169. 169.
    Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477–1504CrossRefGoogle Scholar
  170. 170.
    Bhatia SK, Myers AL (2006) Optimum conditions for adsorptive storage. Langmuir 22:1688–1700CrossRefGoogle Scholar
  171. 171.
    Dinca M, Yu AF, Long JR (2006) Microporous metal-organic frameworks incorporating 1, 4-benzeneditetrazolate: syntheses, structures, and hydrogen storage properties. J Am Chem Soc 128:8904–8913CrossRefGoogle Scholar
  172. 172.
    Dinca M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR (2006) Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. J Am Chem Soc 128:16876–16883CrossRefGoogle Scholar
  173. 173.
    Rowsell JLC, Millward AR, Park KS, Yaghi OM (2004) Hydrogen sorption in functionalized metal-organic frameworks. J Am Chem Soc 126:5666–5667CrossRefGoogle Scholar
  174. 174.
    Rowsell JLC, Eckert J, Yaghi OM (2005) Characterization of H2 binding sites in prototypical metal-organic frameworks by inelastic neutron scattering. J Am Chem Soc 127:14904–14910CrossRefGoogle Scholar
  175. 175.
    Chatt J, Duncanson LA (1953) Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes. J Chem Soc 2939–2947Google Scholar
  176. 176.
    Zhao YF, Kim YH, Dillon AC, Heben MJ, Zhang SB (2005) Hydrogen storage in novel organometallic buckyballs. Phys Rev Lett 94:155504CrossRefGoogle Scholar
  177. 177.
    Niu J, Rao BK and Jena P (1992) Binding of hydrogen molecules by a transition-metal ion. Phys Rev Lett 68:2277–2280Google Scholar
  178. 178.
    Belof JL, Stern AC, Eddaoudi M, Space B (2007) On the mechanism of hydrogen storage in a metal-organic framework material. J Am Chem Soc 129:15202–15210CrossRefGoogle Scholar
  179. 179.
    Zhou W, Yildirim T (2008) Nature and tunability of enhanced hydrogen binding in metal-organic frameworks with exposed transition metal sites. J Phys Chem C 112:8132–8135CrossRefGoogle Scholar
  180. 180.
    Kaye SS, Dailly A, Yaghi OM, Long JR (2007) Impact of preparation and handling on the hydrogen storage properties of Zn4O(1, 4-benzenedicarboxylate)(3) (MOF-5). J Am Chem Soc 129:14176CrossRefGoogle Scholar
  181. 181.
    Chen BL, Ockwig NW, Millward AR, Contreras DS, Yaghi OM (2005) High H2 adsorption in a microporous metal-organic framework with open metal sites. Angew Chem-Int Edit 44:4745–4749CrossRefGoogle Scholar
  182. 182.
    Zhou W, Wu H, Yildirim T (2008) Enhanced H2 adsorption in isostructural metal-organic frameworks with open metal sites: strong dependence of the binding strength on metal ions. J Am Chem Soc 130:15268CrossRefGoogle Scholar
  183. 183.
    Sun YY, Kim YH, Zhang SB (2007) Effect of spin state on the dihydrogen binding strength to transition metal centers in metal-organic frameworks. J Am Chem Soc 129:12606CrossRefGoogle Scholar
  184. 184.
    Frost H, Duren T, Snurr RQ (2006) Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. J Phys Chem B 110:9565–9570CrossRefGoogle Scholar
  185. 185.
    Lochan RC, Head-Gordon M (2006) Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions. Phys Chem Chem Phys 8:1357–1370CrossRefGoogle Scholar
  186. 186.
    Han SS, Deng WQ, Goddard WA (2007) Improved designs of metal-organic frameworks for hydrogen storage. Angew Chem-Int Edit 46:6289–6292CrossRefGoogle Scholar
  187. 187.
    Frost H, Snurr RQ (2007) Design requirements for metal-organic frameworks as hydrogen storage materials. J Phys Chem C 111:18794–18803CrossRefGoogle Scholar
  188. 188.
    Han SS, Goddard WA (2007) Lithium-doped metal-organic frameworks for reversible H2 storage at ambient temperature. J Am Chem Soc 129:8422CrossRefGoogle Scholar
  189. 189.
    Mulfort KL, Hupp JT (2007) Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding. J Am Chem Soc 129:9604CrossRefGoogle Scholar
  190. 190.
    Blomqvist A, Araújo CM, Srepusharawoot P, Ahuja R (2007) Li-decorated metal-organic framework 5: a route to achieving a suitable hydrogen storage medium. Proc Natl Acad Sci 104:20173–20176CrossRefGoogle Scholar
  191. 191.
    Mavrandonakis A, Tylianakis E, Stubos AK, Froudakis GE (2008) Why Li doping in MOFs enhances H2 storage capacity? A multi-scale theoretical study. J Phys Chem C 112:7290–7294CrossRefGoogle Scholar
  192. 192.
    Klontzas E, Mavrandonakis A, Tylianakis E, Froudakis GE (2008) Improving hydrogen storage capacity of MOF bv functionalization of the organic linker with lithium atoms. Nano Lett 8:1572–1576CrossRefGoogle Scholar
  193. 193.
    Lan J, Cao D, Wang W (2010) Li-doped and nondoped covalent organic borosilicate framework for hydrogen storage. J Phys Chem C 114:3108–3114CrossRefGoogle Scholar
  194. 194.
    Cao D, Lan J, Wang W, Smit B (2009) Lithium-doped 3D covalent organic frameworks: high-capacity hydrogen storage materials. Angew Chem Int Edit 48:4730–4733CrossRefGoogle Scholar
  195. 195.
    Kesanli B, Cui Y, Smith MR, Bittner EW, Bockrath BC, Lin WB (2005) Highly interpenetrated metal-organic frameworks for hydrogen storage. Angew Chem-Int Edit 44:72–75CrossRefGoogle Scholar
  196. 196.
    Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc 128:1304–1315CrossRefGoogle Scholar
  197. 197.
    Orimo S, Züttel A, Schlapbach L, Majer G, Fukunaga T, Fujii H (2003) Hydrogen interaction with carbon nanostructures: current situation and future prospects. J Alloys Compd 356:716–719CrossRefGoogle Scholar
  198. 198.
    Wu XB, Chen P, Lin J, Tan KL (2000) Hydrogen uptake by carbon nanotubes. Int J Hydrogen Energy 25:261–265CrossRefGoogle Scholar
  199. 199.
    Chambers A, Park C, Baker RTK, Rodriguez NM (1998) Hydrogen storage in graphite nanofibers. J Phys Chem B 102:4253–4256CrossRefGoogle Scholar
  200. 200.
    Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rinzler AG, Colbert D, Smith KA, Smalley RE (1999) Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl Phys Lett 74:2307–2309CrossRefGoogle Scholar
  201. 201.
    Darkrim FL, Malbrunot P, Tartaglia GP (2002) Review of hydrogen storage by adsorption in carbon nanotubes. Int J Hydrogen Energy 27:193–202CrossRefGoogle Scholar
  202. 202.
    Shiraishi M, Takenobu T, Ata M (2003) Gas-solid interactions in the hydrogen/single-walled carbon nanotube system. Chem Phys Lett 367:633–636CrossRefGoogle Scholar
  203. 203.
    Kajiura H, Tsutsui S, Kadono K, Kakuta M, Ata M, Murakami Y (2003) Hydrogen storage capacity of commercially available carbon materials at room temperature. Appl Phys Lett 82:1105–1107CrossRefGoogle Scholar
  204. 204.
    Dag S, Ozturk Y, Ciraci S, Yildirim T (2005) Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes. Phys Rev B 72:155404CrossRefGoogle Scholar
  205. 205.
    Kim BJ, Lee YS, Park SJ (2008) A study on the hydrogen storage capacity of Ni-plated porous carbon nanofibers. Int J Hydrogen Energy 33:4112–4115CrossRefGoogle Scholar
  206. 206.
    Kim HS, Lee H, Han KS, Kim JH, Song MS, Park MS, Lee JY, Kang JK (2005) Hydrogen storage in Ni nanoparticle-dispersed multiwalled carbon nanotubes. J Phys Chem B 109:8983–8986CrossRefGoogle Scholar
  207. 207.
    Liu C, Chen Y, Wu CZ, Xu ST, Cheng HM (2010) Hydrogen storage in carbon nanotubes revisited. Carbon 48:452–455CrossRefGoogle Scholar
  208. 208.
    Jordá-Beneyto M, Suárez-García F, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A (2007) Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 45:293–303CrossRefGoogle Scholar
  209. 209.
    Yildirim T, Ciraci S (2005) Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys Rev Lett 94:175501CrossRefGoogle Scholar
  210. 210.
    Yildirim T, Íñiguez J, Ciraci S (2005) Molecular and dissociative adsorption of multiple hydrogen molecules on transition metal decorated C60. Phys Rev B 72:153403CrossRefGoogle Scholar
  211. 211.
    Sun Q, Wang Q, Jena P, Kawazoe Y (2005) Clustering of Ti on a C60 surface and its effect on hydrogen storage. J Am Chem Soc 127:14582–14583CrossRefGoogle Scholar
  212. 212.
    Wang Q, Sun Q, Jena P, Kawazoe Y (2009) Theoretical study of hydrogen storage in Ca-Coated fullerenes. J Chem Theory Comput 5:374–379CrossRefGoogle Scholar
  213. 213.
    Kiran B, Kandalam AK, Jena P (2006) Hydrogen storage and the 18-electron rule. J Chem Phys 124:224703CrossRefGoogle Scholar
  214. 214.
    Shevlin SA, Guo ZX (2006) Transition-metal-doping-enhanced hydrogen storage in boron nitride systems. Appl Phys Lett 89:153104CrossRefGoogle Scholar
  215. 215.
    Shevlin SA, Guo ZX (2008) High-capacity room-temperature hydrogen storage in carbon nanotubes via defect-modulated Titanium doping. J Phys Chem C 112:17456–17464CrossRefGoogle Scholar
  216. 216.
    Li M, Li Y, Zhou Z, Shen P, Chen Z (2009) Ca-Coated boron fullerenes and nanotubes as superior hydrogen storage materials. Nano Lett 9:1944–1948CrossRefGoogle Scholar
  217. 217.
    Gagliardi L, Pyykkö P (2004) How many hydrogen atoms can be bound to a metal? Predicted MH12 species. J Am Chem Soc 126:15014–15015CrossRefGoogle Scholar
  218. 218.
    Yoon M, Yang SY, Wang E, Zhang ZY (2007) Charged fullerenes as high-capacity hydrogen storage media. Nano Lett 7:2578–2583CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistrySouthern Illinois UniversityCarbondaleUSA

Personalised recommendations