Skip to main content

Advanced Photocatalytic Nanomaterials for Degrading Pollutants and Generating Fuels by Sunlight

  • Chapter
  • First Online:
Energy Efficiency and Renewable Energy Through Nanotechnology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter focuses on the recent development of sunlight-driven heterogeneous photocatalysts with different chemical compositions and nanostructures. Various photocatalytic nanomaterials, including metal oxides, heterojunction nanocomposites, oxynitrides, oxysulfides, and graphitic carbon nitride, are described. Their preparation methods as well as the mechanisms involved are introduced. These materials can be used to degrade pollutants and generate fuels. Photocatalytic evolution of H2 from water and conversion of CO2 to fuels are discussed in detail. The development of advanced photocatalytic technology involving novel nanomaterials may allow the construction of clean and facile systems for solving the global energy and environmental problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ravelli D, Dondi D, Fagnoni M et al (2009) Photocatalysis. A multi-faceted concept for green chemistry. Chem Soc Rev 38:1999–2011

    Article  Google Scholar 

  2. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  Google Scholar 

  3. Han F, Kambala VSR, Srinivasan M et al (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A Gen 359:25–40

    Article  Google Scholar 

  4. Hoffmann MR, Martin ST, Choi WY et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  Google Scholar 

  5. Yu HT, Quan X (2009) Nano-heterojunction photocatalytic materials in environmental pollution controlling. Prog Chem 21:406–419

    Google Scholar 

  6. Fujishima A, Zhang XT, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  Google Scholar 

  7. Hernandez-Alonso MD, Fresno F, Suarez S et al (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2:1231–1257

    Article  Google Scholar 

  8. Wu JCS (2009) Photocatalytic reduction of greenhouse gas CO2 to fuel. Catal Surv Asia 13:30–40

    Article  Google Scholar 

  9. Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20:35–54

    Article  Google Scholar 

  10. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  Google Scholar 

  11. Yu JG, Xiang QJ, Zhou MH (2009) Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Appl Catal B Environ 90:595–602

    Article  Google Scholar 

  12. Yang Y, Wang HY, Li X et al (2009) Electrospun mesoporous w6+-doped TiO2 thin films for efficient visible-light photocatalysis. Mater Lett 63:331–333

    Article  Google Scholar 

  13. Tian BZ, Li CZ, Gu F et al (2009) Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation. Chem Eng J 151:220–227

    Article  Google Scholar 

  14. Tian BZ, Li CZ, Gu F et al (2009) Visible-light photocatalytic activity of Cr-doped TiO2 nanoparticles synthesized by flame spray pyrolysis. J Inorg Mater 24:661–665

    Article  Google Scholar 

  15. Lorret O, Francova D, Waldner G et al (2009) W-doped titania nanoparticles for UV and visible-light photocatalytic reactions. Appl Catal B Environ 91:39–46

    Article  Google Scholar 

  16. Li JX, Xu JH, Dai WL et al (2009) Direct hydro-alcohol thermal synthesis of special core-shell structured Fe-doped titania microspheres with extended visible light response and enhanced photoactivity. Appl Catal B Environ 85:162–170

    Article  Google Scholar 

  17. Khan MA, Han DH, Yang OB (2009) Enhanced photoresponse towards visible light in Ru doped titania nanotube. Appl Surf Sci 255:3687–3690

    Article  Google Scholar 

  18. Xu JJ, Ao YH, Chen MD (2009) Preparation of B-doped titania hollow sphere and its photocatalytic activity under visible light. Mater Lett 63:2442–2444

    Article  Google Scholar 

  19. Park Y, Kim W, Park H et al (2009) Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl Catal B Environ 91:355–361

    Article  Google Scholar 

  20. Tafen DN, Wang J, Wu NQ et al (2009) Visible light photocatalytic activity in nitrogen-doped TiO2 nanobelts. Appl Phys Lett 94:093101.1–093101.3

    Article  Google Scholar 

  21. Lv YY, Yu LS, Huang HY et al (2009) Preparation of F-doped titania nanoparticles with a highly thermally stable anatase phase by alcoholysis of TiCl4. Appl Surf Sci 255:9548–9552

    Article  Google Scholar 

  22. Li HX, Zhang XY, Huo YN et al (2007) Supercritical preparation of a highly active S-doped TiO2 photocatalyst for methylene blue mineralization. Environ Sci Technol 41:4410–4414

    Article  Google Scholar 

  23. Tian GH, Pan K, Fu HG et al (2009) Enhanced photocatalytic activity of S-doped TiO2-ZrO2 nanoparticles under visible-light irradiation. J Hazard Mater 166:939–944

    Article  Google Scholar 

  24. Xu JJ, Ao YH, Fu DG et al (2008) Low-temperature preparation of F-doped TiO2 film and its photocatalytic activity under solar light. Appl Surf Sci 254:3033–3038

    Google Scholar 

  25. Wu GS, Chen A (2008) Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications. J Photoch Photobio A Chem 195:47–53

    Article  Google Scholar 

  26. Cui Y, Du H, Wen LS (2009) Origin of visible-light-induced photocatalytic properties of S-doped anatase TiO2 by first-principles investigation. Solid State Commun 149:634–637

    Article  Google Scholar 

  27. Liu G, Yang HG, Wang XW et al (2009) Visible light responsive nitrogen doped anatase TiO2 sheets with dominant 001 facets derived from tin. J Am Chem Soc 131:12868–12869

    Article  Google Scholar 

  28. Ho W, Yu JC, Lee S (2006) Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem Commun 1115–1117

    Google Scholar 

  29. Ho WK, Yu JC, Lee SC (2006) Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. J Solid State Chem 179:1171–1176

    Article  Google Scholar 

  30. Asahi R, Morikawa T, Ohwaki T et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  Google Scholar 

  31. Yamashita H, Harada M, Misaka J et al (2002) Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. J Photochem Photobiol A Chem 148:257–261

    Article  Google Scholar 

  32. Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed 42:4908–4911

    Article  Google Scholar 

  33. Yamashita H, Harada M, Misaka J et al (2003) Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal Today 84:191–196

    Article  Google Scholar 

  34. Hong XT, Wang ZP, Cai WM et al (2005) Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem Mater 17:1548–1552

    Article  Google Scholar 

  35. Chai SY, Kim YJ, Jung MH et al (2009) Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst. J Catal 262:144–149

    Article  Google Scholar 

  36. Lin XP, Xing JC, Wang WD et al (2007) Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: a strategy for the design of efficient combined photocatalysts. J Phys Chem C 111:18288–18293

    Article  Google Scholar 

  37. Pal B, Hata T, Goto K et al (2001) Photocatalytic degradation of o-cresol sensitized by iron-titania binary photocatalysts. J Mol Catal A Chem 169:147–155

    Article  Google Scholar 

  38. Bessekhouad Y, Robert D, Weber J (2004) Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J Photochem Photobiol A Chem 163:569–580

    Article  Google Scholar 

  39. Zhang HT, Ouyanga SX, Lia ZS et al (2006) Preparation, characterization and photocatalytic activity of polycrystalline Bi2O3/SrTiO3 composite powders. J Phys Chem Solids 67:2501–2505

    Article  Google Scholar 

  40. Zhang ML, An TC, Hu XH et al (2004) Preparation and photocatalytic properties of a nanometer ZnO-SnO2 coupled oxide. Appl Catal A Gen 260:215–222

    Article  Google Scholar 

  41. Li GS, Zhang DQ, Yu JC (2009) A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2. Environ Sci Technol 43:7079–7085

    Article  Google Scholar 

  42. Zong X, Yan HJ, Wu GP et al (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176–7177

    Article  Google Scholar 

  43. Huang HJ, Li DZ, Lin Q et al (2009) Efficient degradation of benzene over LaVO4/TiO2 nanocrystalline heterojunction photocatalyst under visible light irradiation. Environ Sci Technol 43:4164–4168

    Article  Google Scholar 

  44. Huang HJ, Li DZ, Lin Q et al (2009) Efficient photocatalytic activity of PZT/TiO2 heterojunction under visible light irradiation. J Phys Chem C 113:14264–14269

    Article  Google Scholar 

  45. Kim YJ, Gao B, Han SY et al (2009) Heterojunction of FeTiO3 nanodisc and TiO2 nanoparticle for a novel visible light photocatalyst. J Phys Chem C 113:19179–19184

    Article  Google Scholar 

  46. Rawal SB, Chakraborty AK, Lee WI (2009) Heterojunction of FeOOH and TiO2 for the formation of visible light photocatalyst. Bull Korean Chem Soc 30:2613–2616

    Article  Google Scholar 

  47. Tsunoda Y, Sugimoto W, Sugahara Y (2003) Intercalation behavior of n-alkylamines into a protonated form of a layered perovskite derived from aurivillius phase Bi2SrTa2O9. Chem Mater 15:632–635

    Article  Google Scholar 

  48. Kim JY, Chung I, Choy JH et al (2001) Macromolecular nanoplatelet of Aurivillius-type layered perovskite oxide, Bi4Ti3O12. Chem Mater 13:2759–2761

    Article  Google Scholar 

  49. Zhang C, Zhu YF (2005) Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem Mater 17:3537–3545

    Article  Google Scholar 

  50. Yu JG, Xiong JF, Cheng B et al (2005) Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders. J Solid State Chem 178:1968–1972

    Article  Google Scholar 

  51. Fu HB, Pan CS, Yao WQ et al (2005) Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J Phys Chem B 109:22432–22439

    Article  Google Scholar 

  52. Kudo A, Hijii S (1999) H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chem Lett 1103–1104

    Google Scholar 

  53. Tang JW, Zou ZG, Ye JH (2004) Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation. Catal Lett 92:53–56

    Article  Google Scholar 

  54. Zhang LH, Wang WZ, Chen ZG et al (2007) Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts. J Mater Chem 17:2526–2532

    Article  Google Scholar 

  55. Wu J, Duan F, Zheng Y et al (2007) Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity. J Phys Chem C 111:12866–12871

    Article  Google Scholar 

  56. Zhang LS, Wang WZ, Zhou L et al (2007) Bi2WO6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities. Small 3:1618–1625

    Article  Google Scholar 

  57. Zhu SB, Xu TG, Fu HB et al (2007) Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation. Environ Sci Technol 41:6234–6239

    Article  Google Scholar 

  58. Hasobe T, Imahori H, Fukuzumi S et al (2003) Light energy conversion using mixed molecular nanoclusters. Porphyrin and C60 cluster films for efficient photocurrent generation. J Phys Chem B 107:12105–12112

    Article  Google Scholar 

  59. Shi R, Huang GL, Lin J et al (2009) Photocatalytic activity enhancement for Bi2WO6 by fluorine substitution. J Phys Chem C 113:19633–19638

    Article  Google Scholar 

  60. Li JP, Zhang X, Ai ZH et al (2007) Efficient visible light degradation of rhodamine B by a photo-electrochemical process based on a Bi2WO6 nanoplate film electrode. J Phys Chem C 111:6832–6836

    Article  Google Scholar 

  61. Shang M, Wang WZ, Ren J et al (2009) A practical visible-light-driven Bi2WO6 nanofibrous mat prepared by electrospinning. J Mater Chem 19:6213–6218

    Article  Google Scholar 

  62. Kudo A, Omori K, Kato H (1999) A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc 121:11459–11467

    Article  Google Scholar 

  63. Kohtani S, Koshiko M, Kudo A et al (2003) Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator. Appl Catal B Environ 46:573–586

    Article  Google Scholar 

  64. Tokunaga S, Kato H, Kudo A (2001) Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem Mater 13:4624–4628

    Article  Google Scholar 

  65. Lim AR, Choh SH, Jang MS (1995) Prominent ferroelastic domain-walls in BiVO4 crystal. J Phys Condens Mat 7:7309–7323

    Article  Google Scholar 

  66. Liu JB, Wang H, Wang S et al (2003) Hydrothermal preparation of BiVO4 powders. Mater Sci Eng B 104:36–39

    Article  Google Scholar 

  67. Sayama K, Nomura A, Zou ZG et al (2003) Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. Chem Commun 2908–2909

    Google Scholar 

  68. Zhou L, Wang WZ, Zhang L et al (2007) Single-crystalline BiVO4 microtubes with square cross-sections: microstructure, growth mechanism, and photocatalytic property. J Phys Chem C 111:13659–13664

    Article  Google Scholar 

  69. Li GS, Zhang DQ, Yu JC (2008) Ordered mesoporous BiVO4 through nanocasting: a superior visible light-driven photocatalyst. Chem Mater 20:3983–3992

    Article  Google Scholar 

  70. Zhou L, Wang WZ, Xu HL (2008) Controllable synthesis of three-dimensional well-defined BiVO4 mesocrystals via a facile additive-free aqueous strategy. Cryst Growth Des 8:728–733

    Article  Google Scholar 

  71. Dunkle SS, Helmich RJ, Suslick KS (2009) BiVO4 as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis. J Phys Chem C 113:11980–11983

    Article  Google Scholar 

  72. Xu H, Li HM, Wu CD et al (2008) Preparation, characterization and photocatalytic properties of Cu-loaded BiVO4. J Hazard Mater 153:877–884

    Article  Google Scholar 

  73. Ge L (2008) Novel visible-light-driven Pt/BiVO4 photocatalyst for efficient degradation of methyl orange. J Mol Catal A Chem 282:62–66

    Article  Google Scholar 

  74. Wang XC, Maeda K, Thomas A et al (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  Google Scholar 

  75. Goettmann F, Fischer A, Antonietti M et al (2006) Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene. Angew Chem Int Ed 45:4467–4471

    Article  Google Scholar 

  76. Groenewolt M, Antonietti M (2005) Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv Mater 17:1789–1792

    Article  Google Scholar 

  77. Wang XC, Chen XF, Thomas A et al (2009) Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material. Adv Mater 21:1609–1612

    Article  Google Scholar 

  78. Yamamoto S, Andersson K, Bluhm H et al (2007) Hydroxyl-induced wetting of metals by water at near-ambient conditions. J Phys Chem C 111:7848–7850

    Article  Google Scholar 

  79. Chen XF, Zhang JS, Fu XZ et al (2009) Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J Am Chem Soc 131:11658–11659

    Article  Google Scholar 

  80. Goettmann F, Thomas A, Antonietti M (2007) Metal-free activation CO2 by mesoporous graphitic carbon nitride. Angew Chem Int Ed 46:2717–2720

    Article  Google Scholar 

  81. Liu ZF, Zhao ZG, Miyauchi M (2009) Efficient visible light active CaFe2O4/WO3 based composite photocatalysts: effect of interfacial modification. J Phys Chem C 113:17132–17137

    Article  Google Scholar 

  82. Zheng LR, Zheng YH, Chen CQ et al (2009) Network structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity. Inorg Chem 48:1819–1825

    Article  Google Scholar 

  83. Zheng YH, Chen CQ, Zhan YY et al (2008) Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: correlation between structure and property. J Phys Chem C 112:10773–10777

    Article  Google Scholar 

  84. Eisenberg R (2009) Rethinking water splitting. Science 324:44–45

    Article  Google Scholar 

  85. Maeda K, Teramura K, Lu DL et al (2006) Photocatalyst releasing hydrogen from water—enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440:295

    Article  Google Scholar 

  86. Kudo A, Kato H, Tsuji I (2004) Strategies for the development of visible-light-driven photocatalysts for water splitting. Chem Lett 33:1534–1539

    Article  Google Scholar 

  87. Hitoki G, Takata T, Kondo JN et al (2002) (Oxy)nitrides as new photocatalysts for water splitting under visible light irradiation. Electrochemistry 70:463–465

    Google Scholar 

  88. Yamasita D, Takata T, Hara M et al (2004) Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ionics 172:591–595

    Article  Google Scholar 

  89. Yerga RMN, Galvan MCA, del Valle F et al (2009) Water splitting on semiconductor catalysts under visible-light irradiation. ChemSusChem 2:471–485

    Article  Google Scholar 

  90. Kasahara A, Nukumizu K, Hitoki G et al (2002) Photoreactions on LaTiO2N under visible light irradiation. J Phys Chem A 106:6750–6753

    Article  Google Scholar 

  91. Hitoki G, Takata T, Kondo JN et al (2002) An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (lambda ≤ 500 nm). Chem Commun 1698–1699

    Google Scholar 

  92. Hara M, Nunoshige J, Takata T et al (2003) Unusual enhancement of H2 evolution by Ru on TaON photocatalyst under visible light irradiation. Chem Commun 3000–3001

    Google Scholar 

  93. Hara M, Takata T, Kondo JN et al (2004) Photocatalytic reduction of water by TaON under visible light irradiation. Catal Today 90:313–317

    Article  Google Scholar 

  94. Takata T, Hitoki G, Kondo JN et al (2007) Visible-light-driven photocatalytic behavior of tantalum-oxynitride and nitride. Res Chem Intermed 33:13–25

    Article  Google Scholar 

  95. Liu MY, You WS, Lei ZB et al (2004) Water reduction and oxidation on Pt-Ru/Y2Ta2O5N2 catalyst under visible light irradiation. Chem Commun 2192–2193

    Google Scholar 

  96. Nukumizu K, Nunoshige J, Takata T et al (2003) TiN x O y F z as a stable photocatalyst for water oxidation in visible light (<570 nm). Chem Lett 32:196–197

    Article  Google Scholar 

  97. Maeda K, Shimodaira Y, Lee B et al (2007) Studies on TiN x O y F z as a visible-light-responsive photocatalyst. J Phys Chem C 111:18264–18270

    Article  Google Scholar 

  98. Ishikawa A, Yamada Y, Takata T et al (2003) Novel synthesis and photocatalytic activity of oxysulfide Sm2Ti2S2O5. Chem Mater 15:4442–4446

    Article  Google Scholar 

  99. Ogisu K, Ishikawa A, Teramura K et al (2007) Lanthanum–indium oxysulfide as a visible light driven photocatalyst for water splitting. Chem Lett 36:854–855

    Article  Google Scholar 

  100. Maeda K, Teramura K, Saito N et al (2006) Overall water splitting using (oxy)nitride photocatalysts. Pure Appl Chem 78:2267–2276

    Article  Google Scholar 

  101. Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111:7851–7861

    Article  Google Scholar 

  102. Takanabe K, Uzawa T, Wang XC et al (2009) Enhancement of photocatalytic activity of zinc-germanium oxynitride solid solution for overall water splitting under visible irradiation. Dalton Trans 10055–10062

    Google Scholar 

  103. Banerjee S, Mohapatra SK, Misra M (2009) Synthesis of TaON nanotube arrays by sonoelectrochemical anodization followed by nitridation: a novel catalyst for photoelectrochemical hydrogen generation from water. Chem Commun 7137–7139

    Google Scholar 

  104. Maeda K, Hashiguchi H, Masuda H et al (2008) Photocatalytic activity of (Ga1−x Zn x )(N1−x O x ) for visible-light-driven H2 and O2 evolution in the presence of sacrificial reagents. J Phys Chem C 112:3447–3452

    Article  Google Scholar 

  105. Maeda K, Teramura K, Domen K (2007) Development of cocatalysts for photocatalytic overall water splitting on (Ga1−x Zn x )(N1−x O x ) solid solution. Catal Surv Asia 11:145–157

    Article  Google Scholar 

  106. Lee YG, Teramura K, Hara M et al (2007) Modification of (Zn1+x Ge)(N2O x ) solid solution as a visible light driven photocatalyst for overall water splitting. Chem Mater 19:2120–2127

    Article  Google Scholar 

  107. Kanade KG, Baeg JO, Kale BB et al (2007) Rose-red color oxynitride Nb2Zr6O17−x N x : a visible light photocatalyst to hydrogen production. Int J Hydrogen Energ 32:4678–4684

    Article  Google Scholar 

  108. Hisatomi T, Hasegawa K, Teramura K et al (2007) Zinc and titanium spinel oxynitride (Zn x TiO y N z ) as a d0–d10 complex photocatalyst with visible light activity. Chem Lett 36:558–559

    Article  Google Scholar 

  109. Yanagida S, Kabumoto A, Mizumoto K et al (1985) Poly(para-phenylene)-catalyzed photoreduction of water to hydrogen. J Chem Soc Chem Commun 474–475

    Google Scholar 

  110. Wang XC, Maeda K, Chen XF et al (2009) Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J Am Chem Soc 131:1680–1681

    Article  Google Scholar 

  111. Yu JC, Wang XC, Fu XZ (2004) Pore-wall chemistry and photocatalytic activity of mesoporous titania molecular sieve films. Chem Mater 16:1523–1530

    Article  Google Scholar 

  112. Jun YS, Hong WH, Antonietti M et al (2009) Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites. Adv Mater 21:4270–4274

    Article  Google Scholar 

  113. Chen XF, Jun YS, Takanabe K et al (2009) Ordered mesoporous SBA-15 type graphitic carbon nitride: a semiconductor host structure for photocatalytic hydrogen evolution with visible light. Chem Mater 21:4093–4095

    Article  Google Scholar 

  114. Kling GW, Clark MA, Compton HR et al (1987) The 1986 Lake Nyos gas disaster in Cameroon, West-Africa. Science 236:169–175

    Article  Google Scholar 

  115. Freund HJ, Roberts MW (1996) Surface chemistry of carbon dioxide. Surf Sci Rep 25:225–273

    Article  Google Scholar 

  116. Anpo M, Yamashita H, Ichihashi Y et al (1997) Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt. J Phys Chem B 101:2632–2636

    Article  Google Scholar 

  117. Ikeue K, Yamashita H, Anpo M et al (2001) Photocatalytic reduction of CO2 with H2O on Ti-beta zeolite photocatalysts: effect of the hydrophobic and hydrophilic properties. J Phys Chem B 105:8350–8355

    Article  Google Scholar 

  118. Adachi K, Ohta K, Mizuno T (1994) Photocatalytic reduction of carbon-dioxide to hydrocarbon using copper-loaded titanium-dioxide. Sol Energy 53:187–190

    Article  Google Scholar 

  119. Tan SS, Zou L, Hu E (2007) Photosynthesis of hydrogen and methane as key components for clean energy system. Sci Technol Adv Mater 8:89–92

    Article  Google Scholar 

  120. Tan SS, Zou L, Hu E (2006) Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets. Catal Today 115:269–273

    Article  Google Scholar 

  121. Lo CC, Hung CH, Yuan CS et al (2007) Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Sol Energy Mater Sol Cells 91:1765–1774

    Article  Google Scholar 

  122. Nguyen TV, Wu JCS, Chiou CH (2008) Photoreduction of CO2 over ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catal Commun 9:2073–2076

    Article  Google Scholar 

  123. Varghese OK, Paulose M, LaTempa TJ et al (2009) High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett 9:731–737

    Article  Google Scholar 

  124. Guan GQ, Kida T, Yoshida A (2003) Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst. Appl Catal B Environ 41:387–396

    Article  Google Scholar 

  125. Guan GQ, Kida T, Harada T et al (2003) Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight. Appl Catal A Gen 249:11–18

    Article  Google Scholar 

  126. Pan PW, Chen YW (2007) Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catal Commun 8:1546–1549

    Article  Google Scholar 

  127. Maeda K, Eguchi M, Youngblood WJ et al (2008) Niobium oxide nanoscrolls as building blocks for dye-sensitized hydrogen production from water under visible light irradiation. Chem Mater 20:6770–6778

    Article  Google Scholar 

  128. Ishii T, Kato H, Kudo A (2004) H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation. J Photochem Photobiol A Chem 163:181–186

    Article  Google Scholar 

  129. Kato H, Kudo A (2002) Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J Phys Chem B 106:5029–5034

    Article  Google Scholar 

  130. Niishiro R, Kato H, Kudo A (2005) Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. Phys Chem Chem Phys 7:2241–2245

    Article  Google Scholar 

  131. Konta R, Ishii T, Kato H et al (2004) Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J Phys Chem B 108:8992–8995

    Article  Google Scholar 

  132. Nishimoto S, Matsuda M, Miyake M (2006) Photocatalytic activities of Rh-doped CaTiO3 under visible light irradiation. Chem Lett 35:308–309

    Article  Google Scholar 

  133. Hwang DW, Kirn HG, Lee JS et al (2005) Photocatalytic hydrogen production from water over M-doped La2Ti2O7 (M = Cr, Fe) under visible light irradiation (lambda > 420 nm). J Phys Chem B 109:2093–2102

    Article  Google Scholar 

  134. Ishikawa A, Takata T, Kondo JN et al (2002) Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (lambda <= 650 nm). J Am Chem Soc 124:13547–13553

    Article  Google Scholar 

  135. Kim HG, Becker OS, Jang JS et al (2006) A generic method of visible light sensitization for perovskite-related layered oxides: substitution effect of lead. J Solid State Chem 179:1214–1218

    Article  Google Scholar 

  136. Zou ZG, Arakawa H (2003) Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts. J Photochem Photobiol A Chem 158:145–162

    Article  Google Scholar 

  137. Zou ZG, Ye JH, Sayama K et al (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414:625–627

    Article  Google Scholar 

  138. Kim HG, Hwang DW, Lee JS (2004) An undoped, single-phase oxide photocatalyst working under visible light. J Am Chem Soc 126:8912–8913

    Article  Google Scholar 

  139. Wang DF, Zou ZG, Ye JH (2005) Photocatalytic water splitting with the Cr-doped Ba2In2O5/In2O3 composite oxide semiconductors. Chem Mater 17:3255–3261

    Article  Google Scholar 

  140. Yoshimura J, Ebina Y, Kondo J et al (1993) Visible-light induced photocatalytic behavior of a layered perovskite type niobate, RbPb2Nb3O10. J Phys Chem 97:1970–1973

    Article  Google Scholar 

  141. Hosogi Y, Shimodaira Y, Kato H et al (2008) Role of Sn2+ in the band structure of SnM2O6 and Sn2M2O7 (M = Nb and Ta) and their photocatalytic properties. Chem Mater 20:1299–1307

    Article  Google Scholar 

  142. Hosogi Y, Tanabe K, Kato H et al (2004) Energy structure and photocatalytic activity of niobates and tantalates containing Sn(∥) with a 5s2 electron configuration. Chem Lett 33:28–29

    Article  Google Scholar 

  143. Hosogi Y, Kato H, Kudo A (2006) Synthesis of SnNb2O6 nanoplates and their photocatalytic properties. Chem Lett 35:578–579

    Article  Google Scholar 

  144. Kato H, Kobayashi H, Kudo A (2002) Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M: Ta and Nb) with the perovskite structure. J Phys Chem B 106:12441–12447

    Article  Google Scholar 

  145. Hosogi Y, Kato H, Kudo A (2008) Photocatalytic activities of layered titanates and niobates ion-exchanged with sn2+ under visible light irradiation. J Phys Chem C 112:17678–17682

    Article  Google Scholar 

  146. Ikeue K, Shiiba S, Machida M (2010) Novel visible-light-driven photocatalyst based on Mn-Cd-S for efficient H2 evolution. Chem Mater 22:743–745

    Article  Google Scholar 

  147. Zhang W, Xu R (2009) Surface engineered active photocatalysts without noble metals: CuS-Zn x Cd1−x S nanospheres by one-step synthesis. Int J Hydrogen Energ 34:8495–8503

    Article  Google Scholar 

  148. Yan HJ, Yang JH, Ma GJ et al (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J Catal 266:165–168

    Article  Google Scholar 

  149. Li YX, Ma GF, Peng SQ et al (2009) Photocatalytic H2 evolution over basic zincoxysulfide (ZnS1−x−0.5y O x (OH)( y )) under visible light irradiation. Appl Catal A Gen 363:180–187

    Article  Google Scholar 

  150. del Valle F, Ishikawa A, Domen K et al (2009) Influence of Zn concentration in the activity of Cd1−x Zn x S solid solutions for water splitting under visible light. Catal Today 143:51–56

    Article  Google Scholar 

  151. Zhang XH, Jing DW, Liu MC et al (2008) Efficient photocatalytic H2 production under visible light irradiation over Ni doped Cd1−x Zn x S microsphere photocatalysts. Catal Commun 9:1720–1724

    Article  Google Scholar 

  152. Jang JS, Borse PH, Lee JS et al (2008) Indium induced band gap tailoring in AgGa1−x In x S2 chalcopyrite structure for visible light photocatalysis. J Chem Phys 128:154717-1–154717-6

    Google Scholar 

  153. Zhang K, Jing DW, Xing CJ et al (2007) Significantly improved photocatalytic hydrogen production activity over Cd1−x Zn x S photocatalysts prepared by a novel thermal sulfuration method. Int J Hydrogen Energ 32:4685–4691

    Article  Google Scholar 

  154. Arai T, Senda SI, Sato Y et al (2008) Cu-doped ZnS hollow particle with high activity for hydrogen generation from alkaline sulfide solution under visible light. Chem Mater 20:1997–2000

    Article  Google Scholar 

  155. Bao NZ, Shen LM, Takata T et al (2008) Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible. Chem Mater 20:110–117

    Article  Google Scholar 

  156. Chen D, Ye JH (2007) Photocatalytic H2 evolution under visible light irradiation on AgIn5S8 photocatalyst. J Phys Chem Solids 68:2317–2320

    Article  Google Scholar 

  157. Bang JH, Hehnich RJ, Suslick KS (2008) Nanostructured ZnS: Ni2+ photocatalysts prepared by ultrasonic spray pyrolysis. Adv Mater 20:2599–2603

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank supports from the Research Grants Council of Hong Kong (General Research Fund CUHK404810), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the National Natural Science Foundation of China (21007040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimmy C. Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Zhang, D., Li, G., Yu, J.C. (2011). Advanced Photocatalytic Nanomaterials for Degrading Pollutants and Generating Fuels by Sunlight. In: Zang, L. (eds) Energy Efficiency and Renewable Energy Through Nanotechnology. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-0-85729-638-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-638-2_20

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-637-5

  • Online ISBN: 978-0-85729-638-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics