Advertisement

Advanced Photocatalytic Nanomaterials for Degrading Pollutants and Generating Fuels by Sunlight

  • Dieqing Zhang
  • Guisheng Li
  • Jimmy C. Yu
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

This chapter focuses on the recent development of sunlight-driven heterogeneous photocatalysts with different chemical compositions and nanostructures. Various photocatalytic nanomaterials, including metal oxides, heterojunction nanocomposites, oxynitrides, oxysulfides, and graphitic carbon nitride, are described. Their preparation methods as well as the mechanisms involved are introduced. These materials can be used to degrade pollutants and generate fuels. Photocatalytic evolution of H2 from water and conversion of CO2 to fuels are discussed in detail. The development of advanced photocatalytic technology involving novel nanomaterials may allow the construction of clean and facile systems for solving the global energy and environmental problems.

Keywords

Methylene Blue Photocatalytic Activity Methyl Orange Water Splitting TiO2 Nanorods 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank supports from the Research Grants Council of Hong Kong (General Research Fund CUHK404810), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the National Natural Science Foundation of China (21007040).

References

  1. 1.
    Ravelli D, Dondi D, Fagnoni M et al (2009) Photocatalysis. A multi-faceted concept for green chemistry. Chem Soc Rev 38:1999–2011CrossRefGoogle Scholar
  2. 2.
    Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRefGoogle Scholar
  3. 3.
    Han F, Kambala VSR, Srinivasan M et al (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A Gen 359:25–40CrossRefGoogle Scholar
  4. 4.
    Hoffmann MR, Martin ST, Choi WY et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  5. 5.
    Yu HT, Quan X (2009) Nano-heterojunction photocatalytic materials in environmental pollution controlling. Prog Chem 21:406–419Google Scholar
  6. 6.
    Fujishima A, Zhang XT, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582CrossRefGoogle Scholar
  7. 7.
    Hernandez-Alonso MD, Fresno F, Suarez S et al (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2:1231–1257CrossRefGoogle Scholar
  8. 8.
    Wu JCS (2009) Photocatalytic reduction of greenhouse gas CO2 to fuel. Catal Surv Asia 13:30–40CrossRefGoogle Scholar
  9. 9.
    Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20:35–54CrossRefGoogle Scholar
  10. 10.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRefGoogle Scholar
  11. 11.
    Yu JG, Xiang QJ, Zhou MH (2009) Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Appl Catal B Environ 90:595–602CrossRefGoogle Scholar
  12. 12.
    Yang Y, Wang HY, Li X et al (2009) Electrospun mesoporous w6+-doped TiO2 thin films for efficient visible-light photocatalysis. Mater Lett 63:331–333CrossRefGoogle Scholar
  13. 13.
    Tian BZ, Li CZ, Gu F et al (2009) Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation. Chem Eng J 151:220–227CrossRefGoogle Scholar
  14. 14.
    Tian BZ, Li CZ, Gu F et al (2009) Visible-light photocatalytic activity of Cr-doped TiO2 nanoparticles synthesized by flame spray pyrolysis. J Inorg Mater 24:661–665CrossRefGoogle Scholar
  15. 15.
    Lorret O, Francova D, Waldner G et al (2009) W-doped titania nanoparticles for UV and visible-light photocatalytic reactions. Appl Catal B Environ 91:39–46CrossRefGoogle Scholar
  16. 16.
    Li JX, Xu JH, Dai WL et al (2009) Direct hydro-alcohol thermal synthesis of special core-shell structured Fe-doped titania microspheres with extended visible light response and enhanced photoactivity. Appl Catal B Environ 85:162–170CrossRefGoogle Scholar
  17. 17.
    Khan MA, Han DH, Yang OB (2009) Enhanced photoresponse towards visible light in Ru doped titania nanotube. Appl Surf Sci 255:3687–3690CrossRefGoogle Scholar
  18. 18.
    Xu JJ, Ao YH, Chen MD (2009) Preparation of B-doped titania hollow sphere and its photocatalytic activity under visible light. Mater Lett 63:2442–2444CrossRefGoogle Scholar
  19. 19.
    Park Y, Kim W, Park H et al (2009) Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl Catal B Environ 91:355–361CrossRefGoogle Scholar
  20. 20.
    Tafen DN, Wang J, Wu NQ et al (2009) Visible light photocatalytic activity in nitrogen-doped TiO2 nanobelts. Appl Phys Lett 94:093101.1–093101.3CrossRefGoogle Scholar
  21. 21.
    Lv YY, Yu LS, Huang HY et al (2009) Preparation of F-doped titania nanoparticles with a highly thermally stable anatase phase by alcoholysis of TiCl4. Appl Surf Sci 255:9548–9552CrossRefGoogle Scholar
  22. 22.
    Li HX, Zhang XY, Huo YN et al (2007) Supercritical preparation of a highly active S-doped TiO2 photocatalyst for methylene blue mineralization. Environ Sci Technol 41:4410–4414CrossRefGoogle Scholar
  23. 23.
    Tian GH, Pan K, Fu HG et al (2009) Enhanced photocatalytic activity of S-doped TiO2-ZrO2 nanoparticles under visible-light irradiation. J Hazard Mater 166:939–944CrossRefGoogle Scholar
  24. 24.
    Xu JJ, Ao YH, Fu DG et al (2008) Low-temperature preparation of F-doped TiO2 film and its photocatalytic activity under solar light. Appl Surf Sci 254:3033–3038Google Scholar
  25. 25.
    Wu GS, Chen A (2008) Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications. J Photoch Photobio A Chem 195:47–53CrossRefGoogle Scholar
  26. 26.
    Cui Y, Du H, Wen LS (2009) Origin of visible-light-induced photocatalytic properties of S-doped anatase TiO2 by first-principles investigation. Solid State Commun 149:634–637CrossRefGoogle Scholar
  27. 27.
    Liu G, Yang HG, Wang XW et al (2009) Visible light responsive nitrogen doped anatase TiO2 sheets with dominant 001 facets derived from tin. J Am Chem Soc 131:12868–12869CrossRefGoogle Scholar
  28. 28.
    Ho W, Yu JC, Lee S (2006) Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem Commun 1115–1117Google Scholar
  29. 29.
    Ho WK, Yu JC, Lee SC (2006) Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. J Solid State Chem 179:1171–1176CrossRefGoogle Scholar
  30. 30.
    Asahi R, Morikawa T, Ohwaki T et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271CrossRefGoogle Scholar
  31. 31.
    Yamashita H, Harada M, Misaka J et al (2002) Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. J Photochem Photobiol A Chem 148:257–261CrossRefGoogle Scholar
  32. 32.
    Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed 42:4908–4911CrossRefGoogle Scholar
  33. 33.
    Yamashita H, Harada M, Misaka J et al (2003) Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal Today 84:191–196CrossRefGoogle Scholar
  34. 34.
    Hong XT, Wang ZP, Cai WM et al (2005) Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem Mater 17:1548–1552CrossRefGoogle Scholar
  35. 35.
    Chai SY, Kim YJ, Jung MH et al (2009) Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst. J Catal 262:144–149CrossRefGoogle Scholar
  36. 36.
    Lin XP, Xing JC, Wang WD et al (2007) Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: a strategy for the design of efficient combined photocatalysts. J Phys Chem C 111:18288–18293CrossRefGoogle Scholar
  37. 37.
    Pal B, Hata T, Goto K et al (2001) Photocatalytic degradation of o-cresol sensitized by iron-titania binary photocatalysts. J Mol Catal A Chem 169:147–155CrossRefGoogle Scholar
  38. 38.
    Bessekhouad Y, Robert D, Weber J (2004) Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J Photochem Photobiol A Chem 163:569–580CrossRefGoogle Scholar
  39. 39.
    Zhang HT, Ouyanga SX, Lia ZS et al (2006) Preparation, characterization and photocatalytic activity of polycrystalline Bi2O3/SrTiO3 composite powders. J Phys Chem Solids 67:2501–2505CrossRefGoogle Scholar
  40. 40.
    Zhang ML, An TC, Hu XH et al (2004) Preparation and photocatalytic properties of a nanometer ZnO-SnO2 coupled oxide. Appl Catal A Gen 260:215–222CrossRefGoogle Scholar
  41. 41.
    Li GS, Zhang DQ, Yu JC (2009) A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2. Environ Sci Technol 43:7079–7085CrossRefGoogle Scholar
  42. 42.
    Zong X, Yan HJ, Wu GP et al (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176–7177CrossRefGoogle Scholar
  43. 43.
    Huang HJ, Li DZ, Lin Q et al (2009) Efficient degradation of benzene over LaVO4/TiO2 nanocrystalline heterojunction photocatalyst under visible light irradiation. Environ Sci Technol 43:4164–4168CrossRefGoogle Scholar
  44. 44.
    Huang HJ, Li DZ, Lin Q et al (2009) Efficient photocatalytic activity of PZT/TiO2 heterojunction under visible light irradiation. J Phys Chem C 113:14264–14269CrossRefGoogle Scholar
  45. 45.
    Kim YJ, Gao B, Han SY et al (2009) Heterojunction of FeTiO3 nanodisc and TiO2 nanoparticle for a novel visible light photocatalyst. J Phys Chem C 113:19179–19184CrossRefGoogle Scholar
  46. 46.
    Rawal SB, Chakraborty AK, Lee WI (2009) Heterojunction of FeOOH and TiO2 for the formation of visible light photocatalyst. Bull Korean Chem Soc 30:2613–2616CrossRefGoogle Scholar
  47. 47.
    Tsunoda Y, Sugimoto W, Sugahara Y (2003) Intercalation behavior of n-alkylamines into a protonated form of a layered perovskite derived from aurivillius phase Bi2SrTa2O9. Chem Mater 15:632–635CrossRefGoogle Scholar
  48. 48.
    Kim JY, Chung I, Choy JH et al (2001) Macromolecular nanoplatelet of Aurivillius-type layered perovskite oxide, Bi4Ti3O12. Chem Mater 13:2759–2761CrossRefGoogle Scholar
  49. 49.
    Zhang C, Zhu YF (2005) Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem Mater 17:3537–3545CrossRefGoogle Scholar
  50. 50.
    Yu JG, Xiong JF, Cheng B et al (2005) Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders. J Solid State Chem 178:1968–1972CrossRefGoogle Scholar
  51. 51.
    Fu HB, Pan CS, Yao WQ et al (2005) Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J Phys Chem B 109:22432–22439CrossRefGoogle Scholar
  52. 52.
    Kudo A, Hijii S (1999) H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chem Lett 1103–1104Google Scholar
  53. 53.
    Tang JW, Zou ZG, Ye JH (2004) Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation. Catal Lett 92:53–56CrossRefGoogle Scholar
  54. 54.
    Zhang LH, Wang WZ, Chen ZG et al (2007) Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts. J Mater Chem 17:2526–2532CrossRefGoogle Scholar
  55. 55.
    Wu J, Duan F, Zheng Y et al (2007) Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity. J Phys Chem C 111:12866–12871CrossRefGoogle Scholar
  56. 56.
    Zhang LS, Wang WZ, Zhou L et al (2007) Bi2WO6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities. Small 3:1618–1625CrossRefGoogle Scholar
  57. 57.
    Zhu SB, Xu TG, Fu HB et al (2007) Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation. Environ Sci Technol 41:6234–6239CrossRefGoogle Scholar
  58. 58.
    Hasobe T, Imahori H, Fukuzumi S et al (2003) Light energy conversion using mixed molecular nanoclusters. Porphyrin and C60 cluster films for efficient photocurrent generation. J Phys Chem B 107:12105–12112CrossRefGoogle Scholar
  59. 59.
    Shi R, Huang GL, Lin J et al (2009) Photocatalytic activity enhancement for Bi2WO6 by fluorine substitution. J Phys Chem C 113:19633–19638CrossRefGoogle Scholar
  60. 60.
    Li JP, Zhang X, Ai ZH et al (2007) Efficient visible light degradation of rhodamine B by a photo-electrochemical process based on a Bi2WO6 nanoplate film electrode. J Phys Chem C 111:6832–6836CrossRefGoogle Scholar
  61. 61.
    Shang M, Wang WZ, Ren J et al (2009) A practical visible-light-driven Bi2WO6 nanofibrous mat prepared by electrospinning. J Mater Chem 19:6213–6218CrossRefGoogle Scholar
  62. 62.
    Kudo A, Omori K, Kato H (1999) A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc 121:11459–11467CrossRefGoogle Scholar
  63. 63.
    Kohtani S, Koshiko M, Kudo A et al (2003) Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator. Appl Catal B Environ 46:573–586CrossRefGoogle Scholar
  64. 64.
    Tokunaga S, Kato H, Kudo A (2001) Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem Mater 13:4624–4628CrossRefGoogle Scholar
  65. 65.
    Lim AR, Choh SH, Jang MS (1995) Prominent ferroelastic domain-walls in BiVO4 crystal. J Phys Condens Mat 7:7309–7323CrossRefGoogle Scholar
  66. 66.
    Liu JB, Wang H, Wang S et al (2003) Hydrothermal preparation of BiVO4 powders. Mater Sci Eng B 104:36–39CrossRefGoogle Scholar
  67. 67.
    Sayama K, Nomura A, Zou ZG et al (2003) Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. Chem Commun 2908–2909Google Scholar
  68. 68.
    Zhou L, Wang WZ, Zhang L et al (2007) Single-crystalline BiVO4 microtubes with square cross-sections: microstructure, growth mechanism, and photocatalytic property. J Phys Chem C 111:13659–13664CrossRefGoogle Scholar
  69. 69.
    Li GS, Zhang DQ, Yu JC (2008) Ordered mesoporous BiVO4 through nanocasting: a superior visible light-driven photocatalyst. Chem Mater 20:3983–3992CrossRefGoogle Scholar
  70. 70.
    Zhou L, Wang WZ, Xu HL (2008) Controllable synthesis of three-dimensional well-defined BiVO4 mesocrystals via a facile additive-free aqueous strategy. Cryst Growth Des 8:728–733CrossRefGoogle Scholar
  71. 71.
    Dunkle SS, Helmich RJ, Suslick KS (2009) BiVO4 as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis. J Phys Chem C 113:11980–11983CrossRefGoogle Scholar
  72. 72.
    Xu H, Li HM, Wu CD et al (2008) Preparation, characterization and photocatalytic properties of Cu-loaded BiVO4. J Hazard Mater 153:877–884CrossRefGoogle Scholar
  73. 73.
    Ge L (2008) Novel visible-light-driven Pt/BiVO4 photocatalyst for efficient degradation of methyl orange. J Mol Catal A Chem 282:62–66CrossRefGoogle Scholar
  74. 74.
    Wang XC, Maeda K, Thomas A et al (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80CrossRefGoogle Scholar
  75. 75.
    Goettmann F, Fischer A, Antonietti M et al (2006) Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene. Angew Chem Int Ed 45:4467–4471CrossRefGoogle Scholar
  76. 76.
    Groenewolt M, Antonietti M (2005) Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv Mater 17:1789–1792CrossRefGoogle Scholar
  77. 77.
    Wang XC, Chen XF, Thomas A et al (2009) Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material. Adv Mater 21:1609–1612CrossRefGoogle Scholar
  78. 78.
    Yamamoto S, Andersson K, Bluhm H et al (2007) Hydroxyl-induced wetting of metals by water at near-ambient conditions. J Phys Chem C 111:7848–7850CrossRefGoogle Scholar
  79. 79.
    Chen XF, Zhang JS, Fu XZ et al (2009) Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J Am Chem Soc 131:11658–11659CrossRefGoogle Scholar
  80. 80.
    Goettmann F, Thomas A, Antonietti M (2007) Metal-free activation CO2 by mesoporous graphitic carbon nitride. Angew Chem Int Ed 46:2717–2720CrossRefGoogle Scholar
  81. 81.
    Liu ZF, Zhao ZG, Miyauchi M (2009) Efficient visible light active CaFe2O4/WO3 based composite photocatalysts: effect of interfacial modification. J Phys Chem C 113:17132–17137CrossRefGoogle Scholar
  82. 82.
    Zheng LR, Zheng YH, Chen CQ et al (2009) Network structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity. Inorg Chem 48:1819–1825CrossRefGoogle Scholar
  83. 83.
    Zheng YH, Chen CQ, Zhan YY et al (2008) Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: correlation between structure and property. J Phys Chem C 112:10773–10777CrossRefGoogle Scholar
  84. 84.
    Eisenberg R (2009) Rethinking water splitting. Science 324:44–45CrossRefGoogle Scholar
  85. 85.
    Maeda K, Teramura K, Lu DL et al (2006) Photocatalyst releasing hydrogen from water—enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440:295CrossRefGoogle Scholar
  86. 86.
    Kudo A, Kato H, Tsuji I (2004) Strategies for the development of visible-light-driven photocatalysts for water splitting. Chem Lett 33:1534–1539CrossRefGoogle Scholar
  87. 87.
    Hitoki G, Takata T, Kondo JN et al (2002) (Oxy)nitrides as new photocatalysts for water splitting under visible light irradiation. Electrochemistry 70:463–465Google Scholar
  88. 88.
    Yamasita D, Takata T, Hara M et al (2004) Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ionics 172:591–595CrossRefGoogle Scholar
  89. 89.
    Yerga RMN, Galvan MCA, del Valle F et al (2009) Water splitting on semiconductor catalysts under visible-light irradiation. ChemSusChem 2:471–485CrossRefGoogle Scholar
  90. 90.
    Kasahara A, Nukumizu K, Hitoki G et al (2002) Photoreactions on LaTiO2N under visible light irradiation. J Phys Chem A 106:6750–6753CrossRefGoogle Scholar
  91. 91.
    Hitoki G, Takata T, Kondo JN et al (2002) An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (lambda ≤ 500 nm). Chem Commun 1698–1699Google Scholar
  92. 92.
    Hara M, Nunoshige J, Takata T et al (2003) Unusual enhancement of H2 evolution by Ru on TaON photocatalyst under visible light irradiation. Chem Commun 3000–3001Google Scholar
  93. 93.
    Hara M, Takata T, Kondo JN et al (2004) Photocatalytic reduction of water by TaON under visible light irradiation. Catal Today 90:313–317CrossRefGoogle Scholar
  94. 94.
    Takata T, Hitoki G, Kondo JN et al (2007) Visible-light-driven photocatalytic behavior of tantalum-oxynitride and nitride. Res Chem Intermed 33:13–25CrossRefGoogle Scholar
  95. 95.
    Liu MY, You WS, Lei ZB et al (2004) Water reduction and oxidation on Pt-Ru/Y2Ta2O5N2 catalyst under visible light irradiation. Chem Commun 2192–2193Google Scholar
  96. 96.
    Nukumizu K, Nunoshige J, Takata T et al (2003) TiNxOyFz as a stable photocatalyst for water oxidation in visible light (<570 nm). Chem Lett 32:196–197CrossRefGoogle Scholar
  97. 97.
    Maeda K, Shimodaira Y, Lee B et al (2007) Studies on TiNxOyFz as a visible-light-responsive photocatalyst. J Phys Chem C 111:18264–18270CrossRefGoogle Scholar
  98. 98.
    Ishikawa A, Yamada Y, Takata T et al (2003) Novel synthesis and photocatalytic activity of oxysulfide Sm2Ti2S2O5. Chem Mater 15:4442–4446CrossRefGoogle Scholar
  99. 99.
    Ogisu K, Ishikawa A, Teramura K et al (2007) Lanthanum–indium oxysulfide as a visible light driven photocatalyst for water splitting. Chem Lett 36:854–855CrossRefGoogle Scholar
  100. 100.
    Maeda K, Teramura K, Saito N et al (2006) Overall water splitting using (oxy)nitride photocatalysts. Pure Appl Chem 78:2267–2276CrossRefGoogle Scholar
  101. 101.
    Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111:7851–7861CrossRefGoogle Scholar
  102. 102.
    Takanabe K, Uzawa T, Wang XC et al (2009) Enhancement of photocatalytic activity of zinc-germanium oxynitride solid solution for overall water splitting under visible irradiation. Dalton Trans 10055–10062Google Scholar
  103. 103.
    Banerjee S, Mohapatra SK, Misra M (2009) Synthesis of TaON nanotube arrays by sonoelectrochemical anodization followed by nitridation: a novel catalyst for photoelectrochemical hydrogen generation from water. Chem Commun 7137–7139Google Scholar
  104. 104.
    Maeda K, Hashiguchi H, Masuda H et al (2008) Photocatalytic activity of (Ga1−xZnx)(N1−xOx) for visible-light-driven H2 and O2 evolution in the presence of sacrificial reagents. J Phys Chem C 112:3447–3452CrossRefGoogle Scholar
  105. 105.
    Maeda K, Teramura K, Domen K (2007) Development of cocatalysts for photocatalytic overall water splitting on (Ga1−xZnx)(N1−xOx) solid solution. Catal Surv Asia 11:145–157CrossRefGoogle Scholar
  106. 106.
    Lee YG, Teramura K, Hara M et al (2007) Modification of (Zn1+xGe)(N2Ox) solid solution as a visible light driven photocatalyst for overall water splitting. Chem Mater 19:2120–2127CrossRefGoogle Scholar
  107. 107.
    Kanade KG, Baeg JO, Kale BB et al (2007) Rose-red color oxynitride Nb2Zr6O17−xNx: a visible light photocatalyst to hydrogen production. Int J Hydrogen Energ 32:4678–4684CrossRefGoogle Scholar
  108. 108.
    Hisatomi T, Hasegawa K, Teramura K et al (2007) Zinc and titanium spinel oxynitride (ZnxTiOyNz) as a d0–d10 complex photocatalyst with visible light activity. Chem Lett 36:558–559CrossRefGoogle Scholar
  109. 109.
    Yanagida S, Kabumoto A, Mizumoto K et al (1985) Poly(para-phenylene)-catalyzed photoreduction of water to hydrogen. J Chem Soc Chem Commun 474–475Google Scholar
  110. 110.
    Wang XC, Maeda K, Chen XF et al (2009) Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J Am Chem Soc 131:1680–1681CrossRefGoogle Scholar
  111. 111.
    Yu JC, Wang XC, Fu XZ (2004) Pore-wall chemistry and photocatalytic activity of mesoporous titania molecular sieve films. Chem Mater 16:1523–1530CrossRefGoogle Scholar
  112. 112.
    Jun YS, Hong WH, Antonietti M et al (2009) Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites. Adv Mater 21:4270–4274CrossRefGoogle Scholar
  113. 113.
    Chen XF, Jun YS, Takanabe K et al (2009) Ordered mesoporous SBA-15 type graphitic carbon nitride: a semiconductor host structure for photocatalytic hydrogen evolution with visible light. Chem Mater 21:4093–4095CrossRefGoogle Scholar
  114. 114.
    Kling GW, Clark MA, Compton HR et al (1987) The 1986 Lake Nyos gas disaster in Cameroon, West-Africa. Science 236:169–175CrossRefGoogle Scholar
  115. 115.
    Freund HJ, Roberts MW (1996) Surface chemistry of carbon dioxide. Surf Sci Rep 25:225–273CrossRefGoogle Scholar
  116. 116.
    Anpo M, Yamashita H, Ichihashi Y et al (1997) Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt. J Phys Chem B 101:2632–2636CrossRefGoogle Scholar
  117. 117.
    Ikeue K, Yamashita H, Anpo M et al (2001) Photocatalytic reduction of CO2 with H2O on Ti-beta zeolite photocatalysts: effect of the hydrophobic and hydrophilic properties. J Phys Chem B 105:8350–8355CrossRefGoogle Scholar
  118. 118.
    Adachi K, Ohta K, Mizuno T (1994) Photocatalytic reduction of carbon-dioxide to hydrocarbon using copper-loaded titanium-dioxide. Sol Energy 53:187–190CrossRefGoogle Scholar
  119. 119.
    Tan SS, Zou L, Hu E (2007) Photosynthesis of hydrogen and methane as key components for clean energy system. Sci Technol Adv Mater 8:89–92CrossRefGoogle Scholar
  120. 120.
    Tan SS, Zou L, Hu E (2006) Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets. Catal Today 115:269–273CrossRefGoogle Scholar
  121. 121.
    Lo CC, Hung CH, Yuan CS et al (2007) Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Sol Energy Mater Sol Cells 91:1765–1774CrossRefGoogle Scholar
  122. 122.
    Nguyen TV, Wu JCS, Chiou CH (2008) Photoreduction of CO2 over ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catal Commun 9:2073–2076CrossRefGoogle Scholar
  123. 123.
    Varghese OK, Paulose M, LaTempa TJ et al (2009) High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett 9:731–737CrossRefGoogle Scholar
  124. 124.
    Guan GQ, Kida T, Yoshida A (2003) Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst. Appl Catal B Environ 41:387–396CrossRefGoogle Scholar
  125. 125.
    Guan GQ, Kida T, Harada T et al (2003) Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight. Appl Catal A Gen 249:11–18CrossRefGoogle Scholar
  126. 126.
    Pan PW, Chen YW (2007) Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catal Commun 8:1546–1549CrossRefGoogle Scholar
  127. 127.
    Maeda K, Eguchi M, Youngblood WJ et al (2008) Niobium oxide nanoscrolls as building blocks for dye-sensitized hydrogen production from water under visible light irradiation. Chem Mater 20:6770–6778CrossRefGoogle Scholar
  128. 128.
    Ishii T, Kato H, Kudo A (2004) H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation. J Photochem Photobiol A Chem 163:181–186CrossRefGoogle Scholar
  129. 129.
    Kato H, Kudo A (2002) Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J Phys Chem B 106:5029–5034CrossRefGoogle Scholar
  130. 130.
    Niishiro R, Kato H, Kudo A (2005) Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. Phys Chem Chem Phys 7:2241–2245CrossRefGoogle Scholar
  131. 131.
    Konta R, Ishii T, Kato H et al (2004) Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J Phys Chem B 108:8992–8995CrossRefGoogle Scholar
  132. 132.
    Nishimoto S, Matsuda M, Miyake M (2006) Photocatalytic activities of Rh-doped CaTiO3 under visible light irradiation. Chem Lett 35:308–309CrossRefGoogle Scholar
  133. 133.
    Hwang DW, Kirn HG, Lee JS et al (2005) Photocatalytic hydrogen production from water over M-doped La2Ti2O7 (M = Cr, Fe) under visible light irradiation (lambda > 420 nm). J Phys Chem B 109:2093–2102CrossRefGoogle Scholar
  134. 134.
    Ishikawa A, Takata T, Kondo JN et al (2002) Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (lambda <= 650 nm). J Am Chem Soc 124:13547–13553CrossRefGoogle Scholar
  135. 135.
    Kim HG, Becker OS, Jang JS et al (2006) A generic method of visible light sensitization for perovskite-related layered oxides: substitution effect of lead. J Solid State Chem 179:1214–1218CrossRefGoogle Scholar
  136. 136.
    Zou ZG, Arakawa H (2003) Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts. J Photochem Photobiol A Chem 158:145–162CrossRefGoogle Scholar
  137. 137.
    Zou ZG, Ye JH, Sayama K et al (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414:625–627CrossRefGoogle Scholar
  138. 138.
    Kim HG, Hwang DW, Lee JS (2004) An undoped, single-phase oxide photocatalyst working under visible light. J Am Chem Soc 126:8912–8913CrossRefGoogle Scholar
  139. 139.
    Wang DF, Zou ZG, Ye JH (2005) Photocatalytic water splitting with the Cr-doped Ba2In2O5/In2O3 composite oxide semiconductors. Chem Mater 17:3255–3261CrossRefGoogle Scholar
  140. 140.
    Yoshimura J, Ebina Y, Kondo J et al (1993) Visible-light induced photocatalytic behavior of a layered perovskite type niobate, RbPb2Nb3O10. J Phys Chem 97:1970–1973CrossRefGoogle Scholar
  141. 141.
    Hosogi Y, Shimodaira Y, Kato H et al (2008) Role of Sn2+ in the band structure of SnM2O6 and Sn2M2O7 (M = Nb and Ta) and their photocatalytic properties. Chem Mater 20:1299–1307CrossRefGoogle Scholar
  142. 142.
    Hosogi Y, Tanabe K, Kato H et al (2004) Energy structure and photocatalytic activity of niobates and tantalates containing Sn(∥) with a 5s2 electron configuration. Chem Lett 33:28–29CrossRefGoogle Scholar
  143. 143.
    Hosogi Y, Kato H, Kudo A (2006) Synthesis of SnNb2O6 nanoplates and their photocatalytic properties. Chem Lett 35:578–579CrossRefGoogle Scholar
  144. 144.
    Kato H, Kobayashi H, Kudo A (2002) Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M: Ta and Nb) with the perovskite structure. J Phys Chem B 106:12441–12447CrossRefGoogle Scholar
  145. 145.
    Hosogi Y, Kato H, Kudo A (2008) Photocatalytic activities of layered titanates and niobates ion-exchanged with sn2+ under visible light irradiation. J Phys Chem C 112:17678–17682CrossRefGoogle Scholar
  146. 146.
    Ikeue K, Shiiba S, Machida M (2010) Novel visible-light-driven photocatalyst based on Mn-Cd-S for efficient H2 evolution. Chem Mater 22:743–745CrossRefGoogle Scholar
  147. 147.
    Zhang W, Xu R (2009) Surface engineered active photocatalysts without noble metals: CuS-ZnxCd1−xS nanospheres by one-step synthesis. Int J Hydrogen Energ 34:8495–8503CrossRefGoogle Scholar
  148. 148.
    Yan HJ, Yang JH, Ma GJ et al (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J Catal 266:165–168CrossRefGoogle Scholar
  149. 149.
    Li YX, Ma GF, Peng SQ et al (2009) Photocatalytic H2 evolution over basic zincoxysulfide (ZnS1−x−0.5yOx(OH)(y)) under visible light irradiation. Appl Catal A Gen 363:180–187CrossRefGoogle Scholar
  150. 150.
    del Valle F, Ishikawa A, Domen K et al (2009) Influence of Zn concentration in the activity of Cd1−xZnxS solid solutions for water splitting under visible light. Catal Today 143:51–56CrossRefGoogle Scholar
  151. 151.
    Zhang XH, Jing DW, Liu MC et al (2008) Efficient photocatalytic H2 production under visible light irradiation over Ni doped Cd1−xZnxS microsphere photocatalysts. Catal Commun 9:1720–1724CrossRefGoogle Scholar
  152. 152.
    Jang JS, Borse PH, Lee JS et al (2008) Indium induced band gap tailoring in AgGa1−xInxS2 chalcopyrite structure for visible light photocatalysis. J Chem Phys 128:154717-1–154717-6Google Scholar
  153. 153.
    Zhang K, Jing DW, Xing CJ et al (2007) Significantly improved photocatalytic hydrogen production activity over Cd1−xZnxS photocatalysts prepared by a novel thermal sulfuration method. Int J Hydrogen Energ 32:4685–4691CrossRefGoogle Scholar
  154. 154.
    Arai T, Senda SI, Sato Y et al (2008) Cu-doped ZnS hollow particle with high activity for hydrogen generation from alkaline sulfide solution under visible light. Chem Mater 20:1997–2000CrossRefGoogle Scholar
  155. 155.
    Bao NZ, Shen LM, Takata T et al (2008) Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible. Chem Mater 20:110–117CrossRefGoogle Scholar
  156. 156.
    Chen D, Ye JH (2007) Photocatalytic H2 evolution under visible light irradiation on AgIn5S8 photocatalyst. J Phys Chem Solids 68:2317–2320CrossRefGoogle Scholar
  157. 157.
    Bang JH, Hehnich RJ, Suslick KS (2008) Nanostructured ZnS: Ni2+ photocatalysts prepared by ultrasonic spray pyrolysis. Adv Mater 20:2599–2603CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Chemistry, Environmental Science Programme, and Institute of Environment, Energy and SustainabilityThe Chinese University of Hong KongShatinHong Kong, China
  2. 2.Department of ChemistryShanghai Normal UniversityShanghaiChina

Personalised recommendations