Organic and Hybrid Solar Cells Based on Small Molecules

  • Luiz C. P. Almeida
  • Jilian N. de Freitas
  • Flavio S. Freitas
  • Ana F. Nogueira
Part of the Green Energy and Technology book series (GREEN)


In this chapter, the recent literature involving small molecule-based organic solar cells (OSCs) will be reviewed. The number of papers published in the fields of organic semiconductor and OSCs has grown exponentially in the past decade. Such growth is stimulated by the exciting properties of these materials, combined with the possibility to produce colored, flexible, transparent and cheap solar cells. The main focus of this review is to give an overview and a perspective of the recent advances in this area, highlighting the most interesting results, novel materials as well as their limitations and challenges. This chapter will explore the properties and applications of several classes of small organic molecules, as electron donors and acceptors, dyes, and hole transport materials. Different architectures and techniques will be also discussed in the assembly of double, heterojunction, and multilayer films.


Solar Cell High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Hybrid Solar Cell High Occupied Molecular Orbital Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank CNPq, Fapesp (2009/15428-0, 2008/53059-4) and INEO (National Institute for Organic Electronics) for financial support and scholarships. The authors also acknowledge Jason Guy Taylor and Prof. Roy Bruns for English revision.


  1. 1.
    Nelson J (2004) The physics of solar cells. Imperial College Press, LondonGoogle Scholar
  2. 2.
    Brabec CJ, Dyakonov V, Parisi J, Sariciftci NS (2003) Organic photovoltaics: concepts and realization. Springer, BerlinGoogle Scholar
  3. 3.
    Sun S-S, Sariciftci NS (2005) Organic photovoltaics. Taylor & Francis Group, Boca RatonGoogle Scholar
  4. 4.
    Würfel P (2009) Physics of solar cells. Wiley–VCH, WeinheimGoogle Scholar
  5. 5.
    Archer MD, Hill R (2005) Clean electricity from photovoltaics. Imperial College Press, LondonGoogle Scholar
  6. 6.
    Archer MD, Nozik AJ (2008) Nanostructured and photoelectrochemical systems for solar photon conversion. Imperial College Press, LondonCrossRefGoogle Scholar
  7. 7.
    Brabec C, Dyakonov V, Scherf U (2009) Organic photovoltaics. Wiley–VCH, WeinheimGoogle Scholar
  8. 8.
    Li JL, Dierschke F, Wu JS, Grimsdale AC, Mullen K (2006) Poly(2, 7-carbazole) and perylene tetracarboxydiimide: a promising donor/acceptor pair for polymer solar cells. J Mater Chem 16:96–100CrossRefGoogle Scholar
  9. 9.
    Sharma GD, Suresh P, Mikroyannidis JA, Stylianakis MM (2010) Efficient bulk heterojunction devices based on phenylenevinylene small molecule and perylene–pyrene bisimide. J Mater Chem 20:561–567CrossRefGoogle Scholar
  10. 10.
    Silvestri F, Irwin MD, Beverina L, Facchetti A, Pagani GA, Marks TJ (2008) Efficient squaraine-based solution processable bulk-heterojunction solar cells. J Am Chem Soc 130:17640–17641CrossRefGoogle Scholar
  11. 11.
    Balakrishnan K, Datar A, Baddo T, Huang J, Otiker R, Yen M, Zhao J, Zang L (2006) Effect of side-chain substituents on self-assembly of perylene diimide molecules: morphology control. J Am Chem Soc 128:7390–7398CrossRefGoogle Scholar
  12. 12.
    Winzenberg KN, Kemppinem P, Fanchini G, Bown M, Collins GE, Forsyth GM, Hegedus K, Singh TB, Wattkins SE (2009) Dibenzo[b, def]chrysene derivatives: solution-processable small molecules that deliver high power-conversion efficiencies in bulk heterojunction solar cells. Chem Mater 21:5701–5703CrossRefGoogle Scholar
  13. 13.
    Lloyd MT, Mayer AC, Subramanian S, Mourney DA, Herman DJ, Bapat AV, Anthony JE, Malliaras GGJ (2007) Efficient solution-processed photovoltaic cells based on an anthradithiophene/fullerene blend. J Am Chem Soc 129:9144–9149CrossRefGoogle Scholar
  14. 14.
    Kronenberg NM, Deppisch M, Würthner F, Lademann HWA, Deing K, Meerholz K (2008) Bulk heterojunction organic solar cells based on merocyanine colorants. Chem Commun 6489–6491Google Scholar
  15. 15.
    Ma C-Q, Fonrodona M, Schikora MC, Wienk MM, Janssen RAJ, Bauerle P (2008) Solution-processed bulk-heterojunction solar cells based on monodisperse dendritic oligothiophenes. Adv Funct Mater 18:3323–3331CrossRefGoogle Scholar
  16. 16.
    Velusamy M, Huang J-H, Hsu Y-C, Chou H-H, Ho K-C, Wu P-L, Chang W-H, Lin JT, Chu C-W (2009) Dibenzo[f, h]thieno[3, 4-b] quinoxaline-based small molecules for efficient bulk-heterojunction solar cells. Org Lett 11:4898–4901CrossRefGoogle Scholar
  17. 17.
    Shirota Y (2000) Organic materials for electronic and optoelectronic devices. J Mater Chem 10:1–25CrossRefGoogle Scholar
  18. 18.
    Shirota Y, Kageyama H (2007) Charge carrier transporting molecular materials and their applications in devices. Chem Rev 107:953–1010CrossRefGoogle Scholar
  19. 19.
    Roncali J (1997) Synthetic principles for bandgap control in linear pi-conjugated systems. Chem Rev 97:173–205CrossRefGoogle Scholar
  20. 20.
    Roncali J (2005) Linear-conjugated systems derivatized with C60-fullerene as molecular heterojunctions for organic photovoltaics. Chem Soc Rev 34:483–495CrossRefGoogle Scholar
  21. 21.
    He C, He Q, Yi Y, Wu G, Bai F, Shuai Z, Li Y (2008) Improving the efficiency of processable organic photovoltaic devices by a star-shaped molecular geometry. J Mater Chem 18:4085–4090CrossRefGoogle Scholar
  22. 22.
    Zhang J, Yang Y, He C, He Y, Zhao G, Li Y (2009) Solution-processable star-shaped photovoltaic organic molecule with triphenylamine core and benzothiadiazole-thiophene arms. Macromolecules 42:7619–7622CrossRefGoogle Scholar
  23. 23.
    Wu G, Zhao G, He C, Zhang J, He Q, Chen X, Li Y (2009) Synthesis and photovoltaic properties of a star-shaped molecule with triphenylamine as core and benzo[1, 2, 5]thiadiazol vinylene as arms. Sol Energy Mater Sol Cells 93:108–113CrossRefGoogle Scholar
  24. 24.
    Li W, Du C, Li F, Zhou Y, Fahlman M, Bo Z, Zhang F (2009) Benzothiadiazole-based linear and star molecules: design, synthesis, and their application in bulk heterojunction organic solar cells. Chem Mater 21:5327–5334CrossRefGoogle Scholar
  25. 25.
    Li K, Qu J, Xu B, Zhou Y, Liu L, Peng P, Tian W (2009) Synthesis and photovoltaic properties of a novel solution-processable triphenylamine-based dendrimers with sulfonyldibenzene cores. New J Chem 33:2120–2127CrossRefGoogle Scholar
  26. 26.
    He C, He Q, Yang X, Wu G, Yang C, Bai F, Shuai Z, Wang L, Li Y (2007) Synthesis and photovoltaic properties of a solution-processable organic molecule containing triphenylamine and DCM moieties. J Phys Chem C 111:8661–8666CrossRefGoogle Scholar
  27. 27.
    Xue L, He J, Gu X, Yang Z, Xu B, Tian W (2009) Efficient bulk-heterojunction solar cells based on a symmetrical D–A–D organic dye molecule. J Phys Chem C 113:12911–12917CrossRefGoogle Scholar
  28. 28.
    Zhao G, Wu G, He C, Bai F-Q, Xi H, Zhang H-X, Li Y (2009) Solution-processable multiarmed organic molecules containing triphenylamine and DCM moieties: synthesis and photovoltaic properties. J Phys Chem C 113:2636–2642CrossRefGoogle Scholar
  29. 29.
    Tang CW (1986) Two layer organic photovoltaic cell. Appl Phys Lett 48:183–185CrossRefGoogle Scholar
  30. 30.
    Takahashi K, Asano M, Imoto K, Yamaguchi T, Komura T, Nakamura J, Murata K (2003) Sensitization effect of porphyrin dye on the photocurrent of Al/polythiophene schottky-barrier cells. J Phys Chem B 107:1646–1652CrossRefGoogle Scholar
  31. 31.
    Takahashi K, Nakajima I, Imoto K, Yamaguchi T, Komura T, Murata K (2003) Sensitization effect by porphyrin in polythiophene/perylene dye two-layer solar cells. Sol Energy Mater Sol Cells 76:115–124CrossRefGoogle Scholar
  32. 32.
    Peumans P, Forrest SR (2001) Very-high-efficiency double-heterostructure copper phthalocyanine/C-60 photovoltaic cells. Appl Phys Lett 79:126–128CrossRefGoogle Scholar
  33. 33.
    Stübinger T, Brütting W (2001) Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells. J Appl Phys 90:3632–3641CrossRefGoogle Scholar
  34. 34.
    Ma B, Woo CH, Miyamoto Y, Frechet JMJ (2009) Solution processing of a small molecule, subnaphthalocyanine, for efficient organic photovoltaic cells. Chem Mater 21:1413–1417CrossRefGoogle Scholar
  35. 35.
    Matsuo Y, Sato Y, Niinomi T, Soga I, Tanaka H, Nakamura E (2009) Columnar structure in bulk heterojunction in solution-processable three-layered p–i–n organic photovoltaic devices using tetrabenzoporphyrin precursor and silylmethyl[60]fullerene. J Am Chem Soc 131:16048–16050CrossRefGoogle Scholar
  36. 36.
    Huang X, Zhu C, Zhang S, Li W, Guo Y, Zhan X, Liu Y, Bo Z (2008) Porphyrin-dithienothiophene-conjugate copolymers: synthesis and their applications in field-effect transistors and solar cells. Macromolecules 41:6895–6902CrossRefGoogle Scholar
  37. 37.
    Tamayo AB, Walker B, Nguyen TQ (2008) A low band gap, solution processable oligothiophene with a diketopyrrolopyrrole core for use in organic solar cells. J Phys Chem C 112:11545–11551CrossRefGoogle Scholar
  38. 38.
    Tamayo AB, Dang XD, Walker B, Seo J, Kent T, Nguyen TQ (2009) A low band gap, solution processable oligothiophene with a dialkylated diketopyrrolopyrrole chrmophore for use in bulk heterojunction solar cells. Appl Phys Lett 94:103301-1–103301-3CrossRefGoogle Scholar
  39. 39.
    Walker B, Tamayo AB, Dang X-D et al (2009) Nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells. Adv Funct Mater 19:3063–3069CrossRefGoogle Scholar
  40. 40.
    Tamayo A, Kent T, Tantitiwat M, Dante MA, Rogers J, Nguyen T-Q (2009) Influence of alkyl substituents and thermal annealing on the film morphology and performance of solution processed, diketopyrrolopyrrole-based bulk heterojunction solar cells. Energy Environ Sci 2:1180–1186CrossRefGoogle Scholar
  41. 41.
    Rand BP, Li J, Xue J, Holmes RJ, Thompson ME, Forrest SR (2005) Organic double-heterostructure photovoltaic cells employing thick tris(acetylacetonato)ruthenium(III) exciton-blocking layers. Adv Mater 17:2714–2718CrossRefGoogle Scholar
  42. 42.
    Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868CrossRefGoogle Scholar
  43. 43.
    Peet J, Kim JY, Coates NE, Moses D, Heeger AJ, Bazan GC (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6:497–500CrossRefGoogle Scholar
  44. 44.
    Goh C, Scully SR, McGehee MD (2007) Effects of molecular interface modification in hybrid organic–inorganic photovoltaic cells. J Appl Phys 101:114503-1–114503-12CrossRefGoogle Scholar
  45. 45.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427CrossRefGoogle Scholar
  46. 46.
    Kietzke T, Egbe DAM, Horhold HH, Neher D (2006) Comparative study of M3EH-PPV-based bilayer photovoltaic devices. Macromolecules 39:4018–4022CrossRefGoogle Scholar
  47. 47.
    Koetse M, Sweelssen J, Hoekerd K, Schoo H (2006) Efficient polymer: polymer bulk heterojunction solar cells. Appl Phys Lett 88:083504-1–083504-3CrossRefGoogle Scholar
  48. 48.
    McNeill CR, Abrusci A, Zaumseil J, Wilson R, McKiernan MJ, Burroughes JH, Halls JJM, Greenham NC, Friend RH (2007) Dual electron donor/electron acceptor character of a conjugated polymer in efficient photovoltaic diodes. Appl Phys Lett 90:193506-1–193506-3CrossRefGoogle Scholar
  49. 49.
    Ooi ZE, Tam TL, Shin RYC, Chen ZK, Kietzke T, Sellinger A, Baumgarten M, Mullen K, de Mello JC (2008) Solution processable bulk-heterojunction solar cells using a small molecule acceptor. J Mater Chem 18:4619–4622CrossRefGoogle Scholar
  50. 50.
    Schubert M, Yin C, Castellani M, Bange S, Tam TL, Sellinger A, Hörhold H-H, Kietzke T, Neher D (2009) Heteojunction topology versus fill factor correlations in novel hybrid small-molecular/polymeric solar cells. J Chem Phys 130:094703-1–094703-9CrossRefGoogle Scholar
  51. 51.
    Inal S, Castellani M, Sellinger A, Neher D (2009) Relationship of photophysical properties and the device performance of novel hybrid small-molecular/polymeric dolar cells. Macromol Rapid Commun 30:1263–1268CrossRefGoogle Scholar
  52. 52.
    Kietzke T, Shin RYC, Egbe DAM, Chen ZK, Sellinger A (2007) Effect of annealing on the characteristics of organic solar cells: polymer blends with a 2-vinyl-4, 5-dicyanoimidazole derivative. Macromolecules 40:4424–4428CrossRefGoogle Scholar
  53. 53.
    Schin RYC, Kietzke T, Sudhakar S, Dodabalapur A, Chen Z-K, Sellinger A (2007) N-type conjugated materials based on 2-vinyl-4, 5-dicyanoimidazoles and their use in solar cells. Chem Mater 19:1892–1894CrossRefGoogle Scholar
  54. 54.
    Martinson ABF, Massari AM, Lee SJ, Gurney RW, Splan KE, Hupp JT, Nguyen ST (2006) Organic photovoltaics interdigitated on the molecular scale. J Electrochem Soc 153:A527–A535CrossRefGoogle Scholar
  55. 55.
    Smith ARG, Ruggles JL, Yu A, Gentle IR (2009) Multilayer nanostructured porphyrin arrays constructed by layer-by-layer self-assembly. Langmuir 25:9873–9878CrossRefGoogle Scholar
  56. 56.
    Yui T, Kameyama T, Sasaki T, Torimoto T, Takagi K (2007) Pyrene-to-porphyrin excited singlet energy transfer in LBL-deposited LDH nanosheets. J Porphyr Phthalocyanines 11:428–433CrossRefGoogle Scholar
  57. 57.
    Li LS, Jia QX, Li ADQ (2002) Effects of organic self-assembled polymer and metal phthalocyanine multilayers on the surface photovoltaic properties of indium tin oxide and titanium oxide. Chem Mater 14:1159–1165CrossRefGoogle Scholar
  58. 58.
    Alencar WS, Crespilho FN, Santos MRMC, Zucolotto V, Oliveira ON Jr, Silva WC (2007) Influence of film architecture on the charge-transfer reactions of metallophthalocyanine layer-by-layer films. J Phys Chem C 111:12817–12821CrossRefGoogle Scholar
  59. 59.
    Arakawa T, Munaoka T, Akiyama T, Yamada SW (2009) Effects of silver nanoparticles on photoelectrochemical responses of organic dyes. J Phys Chem C 113:11830–11835CrossRefGoogle Scholar
  60. 60.
    Nishiyama F, Yokoyama T, Kamikado T, Yokoyama S, Mashiko S (2006) Layer-by-layer growth of porphyrin supramolecular thin films. Appl Phys Lett 88:253113-1–253113-3Google Scholar
  61. 61.
    Zhang B, Mu J, Li XQ (2006) Linear assemblies of aged CdS particles and cationic porphyrin in multilayer films. Appl Surf Sci 252:4990–4994CrossRefGoogle Scholar
  62. 62.
    Alencar WS, Crespilho FN, Martins MVA, Zucolotto V, Oliveira ON, Silva WC (2009) Synergistic interaction between gold nanoparticles and nickel phthalocyanine in layer-by-layer (LbL) films: evidence of constitutional dynamic chemistry (CDC). Phys Chem Chem Phys 11:5086–5091CrossRefGoogle Scholar
  63. 63.
    Pradhan B, Bandyopadhyay A, Pal AJ (2004) Molecular level control of donor/acceptor heterostructures in organic photovoltaic devices. Appl Phys Lett 85:663–665CrossRefGoogle Scholar
  64. 64.
    Benten H, Kudo N, Ohkita H, Ito S (2009) Layer-by-layer deposition films of copper phthalocyanine derivative; their photoelectrochemical properties and application to solution-processed thin-film organic solar cells. Thin Solid Films 517:2016–2022CrossRefGoogle Scholar
  65. 65.
    Forrest SR (1997) Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem Rev 97:1793–1896CrossRefGoogle Scholar
  66. 66.
    Shtein M, Gossenberger HF, Benziger JB, Forrest SR (2001) Material transport regimes and mechanisms for growth of molecular organic thin films using low-pressure organic vapor phase deposition. J Appl Phys 89:1470–1476CrossRefGoogle Scholar
  67. 67.
    Ling MM, Bao ZN (2004) Thin film deposition, patterning, and printing in organic thin film transistors. Chem Mater 16:4824–4840CrossRefGoogle Scholar
  68. 68.
    Burrows PE, Forrest SR, Buma T, Fenter P, Sapochak LS, Schwartz J, Ban VS, Forrest JL (1995) Organic vapor phase deposition: a new method for the growth of organic thin films with large optical non-linearities. J Cryst Growth 156:91–98CrossRefGoogle Scholar
  69. 69.
    Baldo M, Deutsch M, Burrows P, Gossenberger H, Gerstenberg M, Ban V, Forrest SR (1998) Organic vapor phase deposition. Adv Mater 10:1505–1514CrossRefGoogle Scholar
  70. 70.
    Shtein M, Peumans P, Benziger JB, Forrest SR (2003) Micropatterning of small molecular weight organic semiconductor thin films using organic vapor phase deposition. J Appl Phys 93:4005–4016CrossRefGoogle Scholar
  71. 71.
    Shtein M, Mapel J, Benziger JB, Forrest SR (2002) Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors. Appl Phys Lett 81:268–270CrossRefGoogle Scholar
  72. 72.
    Rand BP, Genoe J, Heremans P, Poortmans J (2007) Solar cells utilizing small molecular weight organic semiconductors. Prog Photovoltaics 15:659–676CrossRefGoogle Scholar
  73. 73.
    Meiss J, Leo K, Riede MK, Uhrich C, Gnehr W-M, Sonntag S, Pfeiffer M (2009) Efficient semitransparent small-molecule organic solar cells. Appl Phys Lett 95:213306CrossRefGoogle Scholar
  74. 74.
    Rusu M, Wiesner S, Mete T, Blei H, Meyer N, Heuken M, Lux-Steiner MC, Fostiropoulos K (2008) Organic donor, acceptor and buffer layers of small molecules prepared by OVPD technique for photovoltaics. Renew Energy 33:254–258CrossRefGoogle Scholar
  75. 75.
    Peumans P, Bulovic V, Forrest SR (2000) Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Appl Phys Lett 76:2650–2652CrossRefGoogle Scholar
  76. 76.
    Vogel M, Doka S, Breyer C, Lux-Steiner MC, Fostiropoulos K (2006) On the function of a bathocuproine buffer layer in organic photovoltaic cells. Appl Phys Lett 89:163501CrossRefGoogle Scholar
  77. 77.
    Breyer C, Vogel M, Mohr M, Johnev B, Fostiropoulos K (2006) Influence of exciton distribution on external quantum efficiency in bilayer organic solar cells. Physica Status Solidi (b) 243:3176–3180CrossRefGoogle Scholar
  78. 78.
    Peumans P, Uchida S, Forrest SR (2003) Efficient bulk heterojunction photovoltaic cells using small-molecular weight organic thin films. Nature 425:158–162CrossRefGoogle Scholar
  79. 79.
    Dittmer JJ, Lazzaroni R, Leclère P, Moretti P, Granström M, Petritsch K, Marseglia EA, Friend RH, Brédas JL, Rost H, Holmes AB (2000) Crystal network formation in organic solar cells. Sol Energy Mater Sol Cells 61:53–61CrossRefGoogle Scholar
  80. 80.
    Gebeyehu D, Maennig B, Drechsel J, Leo K, Pfeiffer M (2003) Bulk-heterojunction photovoltaic devices based on donor–acceptor organic small molecule blends. Sol Energy Mater Sol Cells 79:81–92CrossRefGoogle Scholar
  81. 81.
    Pannemann C, Dyakonov V, Parisi J, Hild O, Wöhrle D (2001) Electrical characterization of zinc-phthalocyanine-fullerene photovoltaic cells. Synth Metals 121:1585CrossRefGoogle Scholar
  82. 82.
    Geens W, Aernouts T, Poortmans J, Hadziioannou G (2002) Organic co-evaporated films of a PPV-pentamer and C-60: model systems for donor/acceptor polymer blends. Thin Solid Films 403:438–443CrossRefGoogle Scholar
  83. 83.
    Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338CrossRefGoogle Scholar
  84. 84.
    Granström M, Pertritsch K, Arias AC, Lux A, Andersson MR, Friend RH (1998) Laminated fabrication of polymeric photovoltaic diodes. Nature 395:257–260CrossRefGoogle Scholar
  85. 85.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270:1789–1791CrossRefGoogle Scholar
  86. 86.
    Hiramoto M, Yamaga T, Danno M, Suemori K, Matsumura Y, Yokoyama M (2006) Design of nanostructures for photoelectric conversion using an organic vertical superlattice. Appl Phys Lett 88:213105CrossRefGoogle Scholar
  87. 87.
    Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L (2010) For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22:1–4CrossRefGoogle Scholar
  88. 88.
    Feng W, Fujii A, Lee S, Wu H, Yoshino K (2000) Broad spectral sensitization of organic photovoltaic heterojunction device by perylene and C60. J Appl Phys 88:7120–7123CrossRefGoogle Scholar
  89. 89.
    Tsuzuki T, Shirota Y, Rostalski J, Meissner D (2000) The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment. Sol Energy Mater Sol Cells 61:1–8CrossRefGoogle Scholar
  90. 90.
    Hiramoto M, Suemori K, Yokoyama M (2002) Photovoltaic properties of ultramicrostructure controlled organic co-deposited films. Jpn J Appl Phys 41:2763–2766CrossRefGoogle Scholar
  91. 91.
    Halls JJM, Friend RH (1997) The photovoltaic effect in a poly(p-phenylenevinylene)/perylene heterojunction. Synth Metals 85:1307–1308CrossRefGoogle Scholar
  92. 92.
    Rand BP, Xue J, Uchida S, Forrest SR (2005) Mixed donor acceptor molecular heterojunctions for photovoltaic applications. I. Material properties. J Appl Phys 98:124902CrossRefGoogle Scholar
  93. 93.
    Uchida S, Xue J, Rand BP, Forrest SR (2004) Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C60 active layer. Appl Phys Lett 84:4218–4220CrossRefGoogle Scholar
  94. 94.
    Heutz S, Sullivan P, Sanderson BM, Schultes SM, Jones TS (2004) Influence of molecular architecture and intermixing on the photovoltaic, morphological and spectroscopic properties of CuPc-C60 heterojunctions. Sol Energy Mater Sol Cells 83:229–245CrossRefGoogle Scholar
  95. 95.
    Sullivan P, Heutz S, Schultes SM, Jones TS (2004) Influence of codeposition on the performance of CuPc-C-60 heterojunction photovoltaic devices. Appl Phys Lett 84:1210–1212CrossRefGoogle Scholar
  96. 96.
    Xue J, Rand BP, Uchida S, Forrest SR (2005) Mixed donor acceptor molecular heterojunctions for photovoltaic applications. II. Device performance. J Appl Phys 98:124903CrossRefGoogle Scholar
  97. 97.
    Opitz A, Bronner M, Bruetting W (2007) Ambipolar charge carrier transport in mixed organic layers of phthalocyanine and fullerene. J Appl Phys 101:063709CrossRefGoogle Scholar
  98. 98.
    Mihailetchi VD, Koster LJA, Blom PWM, Melzer C, de Boer B (2005) Compositional dependence of the performance of poly(p-phenylene vinylene): methanofullerene bulk-heterojunction solar cells. Adv Funct Mater 15:795–801CrossRefGoogle Scholar
  99. 99.
    Yang F, Shtein M, Forrest SR (2005) Controlled growth of a molecular bulk heterojunction photovoltaic cell. Nat Mater 4:37–41CrossRefGoogle Scholar
  100. 100.
    Xue J, Uchida S, Rand BP, Forrest SR (2004) 4.2% efficient organic photovoltaic cells with low series resistances. Appl Phys Lett 84:3013–3015CrossRefGoogle Scholar
  101. 101.
    Xue J, Rand BP, Uchida S, Forrest SR (2005) A hybrid planar-mixed molecular heterojunction photovoltaic cell. Adv Mater 17:66–70CrossRefGoogle Scholar
  102. 102.
    Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys 32:510CrossRefGoogle Scholar
  103. 103.
    Schueppel R, Timmreck R, Allinger N, Mueller T, Furno M, Uhrich C, Leo K, Riede M (2010) Controlled current matching in small molecule organic tandem solar cells using doped spacer layers. J Appl Phys 107:044503CrossRefGoogle Scholar
  104. 104.
    Hadipour A, De Boer B, Blom PWM (2008) Organic tandem and multi-junction solar cells. Adv Funct Mater 18:169–181CrossRefGoogle Scholar
  105. 105.
    Hadipour A, De Boer B, Blom PMW (2008) Device operation of organic tandem solar cells. Org Electron 9:617–624CrossRefGoogle Scholar
  106. 106.
    Ameri T, Dennler G, Lungenschmied C, Brabec CJ (2009) Organic tandem solar cells: a review. Energy Environ Sci 2:347–363CrossRefGoogle Scholar
  107. 107.
    Hiramoto M, Suezaki M, Yokoyama M (1990) Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar cell. Chem Lett 19:327–330CrossRefGoogle Scholar
  108. 108.
    Forrest SR (2005) The limits to organic photovoltaic cell efficiency. MRS Bull 30:28–32CrossRefGoogle Scholar
  109. 109.
    Yakimov A, Forrest SR (2002) High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. Appl Phys Lett 80:1667–1669CrossRefGoogle Scholar
  110. 110.
    Rand BP, Peumans P, Forrest SR (2004) Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J Appl Phys 12:7519–7526CrossRefGoogle Scholar
  111. 111.
    Triyana K, Yasuda T, Fujita K, Tsutsui T (2004) Effects of different materials used for internal floating electrode on the photovoltaic properties of tandem type organic solar cell. Jpn J Appl Phys Part I 43:2352–2356CrossRefGoogle Scholar
  112. 112.
    Triyana K, Yasuda T, Fujita K, Tsutsui T (2004) Organic tandem and multi junction solar cells. Thin Solid Films 447:198–202Google Scholar
  113. 113.
    Xue J, Uchida S, Rand BP, Forrest SR (2004) Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Appl Phys Lett 85:5757–5759CrossRefGoogle Scholar
  114. 114.
    Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693–3723CrossRefGoogle Scholar
  115. 115.
    Drechsel J, Männig B, Kozlowski F, Pfeiffer M, Leo K (2005) Efficient organic solar cells based on a double p–i–n architecture using doped wide-gap transport layers. Appl Phys Lett 86:244102CrossRefGoogle Scholar
  116. 116.
    Yu B, Zhu F, Wang H, Li G, Yan D (2008) All-organic tunnel junctions as connecting units in tandem organic solar cell. J Appl Phys 104:114503CrossRefGoogle Scholar
  117. 117.
    Chandrasekhar S, Sadashiva BK, Suresh KA (1977) Liquid-crystals of disc-like molecules. Pramana 9:471–480CrossRefGoogle Scholar
  118. 118.
    Kumar S (2006) Self-organization of disc-like molecules: chemical aspects. Chem Soc Rev 35:83–109CrossRefGoogle Scholar
  119. 119.
    Adam D, Schuhmacher P, Simmerer J, Haussling L, Siemensmeyer K, Etzbacj KH, Ringsdorf H, Haarer D (1994) Fast photoconduction in the highly ordered columnar phase of a discotic liquid-crystal. Nature 371:141–143CrossRefGoogle Scholar
  120. 120.
    van de Craats AM, Warman JM, Fechtenkotter A, Brand JD, Harbison MA, Müllen K (1999) Record charge carrier mobility in a room-temperature discotic liquid-crystalline derivative of hexabenzocoronene. Adv Mater 11:1469–1472CrossRefGoogle Scholar
  121. 121.
    Sergeyev S, Pisula W, Geerts Y (2007) Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev 36:1902–1929CrossRefGoogle Scholar
  122. 122.
    Woon KL, Aldred MP, Richards GJ, Vlachos P, Mehl GH, Kelly SM, O’Neill M (2006) Electronic charge transport in extended nematic liquid crystals. Chem Mater 18:2311–2317CrossRefGoogle Scholar
  123. 123.
    Kumar S (2002) Discotic liquid crystals for solar cells. Curr Sci India 82:256–257Google Scholar
  124. 124.
    Grelet E, Bock H (2006) Control of the orientation of thin open supported columnar liquid crystal films by the kinetics of growth. Europhys Lett 73:712–718CrossRefGoogle Scholar
  125. 125.
    Archambeau S, Seguy I, Jolinat P, Farenc J, Destruel P, Nguyen TP, Bock H, Grelet E (2006) Stabilization of discotic liquid organic thin films by ITO surface treatment. Appl Surf Sci 253:2078–2086CrossRefGoogle Scholar
  126. 126.
    Charlet E, Grelet E, Brettes P, Bock H, Saadaoui H, Cisse l, Destruel P, Gherardi N, Seguy I (2008) Ultrathin films of homeotropically aligned columnar liquid crystals on indium tin oxide electrodes. Appl Phys Lett 92:024107-1–024107-3CrossRefGoogle Scholar
  127. 127.
    Schmidt-Mende L, Fechtenkotter A, Mullen K, Moons E, Friend RH, MacKenzie JD (2001) Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293:1119–1122CrossRefGoogle Scholar
  128. 128.
    Lemaur V, Da Silva Filho DA, Coropceanu V, Lehmann M, Greerts Y, Piris J, Debije MG, van de Craats AM, Senthilkumar K, Siebbeles LDA, Warman JM, Bredas JL, Cornil J (2004) Charge transport properties in discotic liquid crystals: a quantum-chemical insight into structure–property relationships. J Am Chem Soc 126:3271–3279CrossRefGoogle Scholar
  129. 129.
    van de Craats AM, Warman JM (2001) The core-size effect on the mobility of charge in discotic liquid crystalline materials. Adv Mater 13:130–133CrossRefGoogle Scholar
  130. 130.
    Tracz A, Jeszka JK, Watson MD, Pisula W, Müllen K, Pakula T (2003) Uniaxial alignment of the columnar super-structure of a hexa (alkyl) hexa-peri-hexabenzocoronene on untreated glass by simple solution processing. J Am Chem Soc 125:1682–1683CrossRefGoogle Scholar
  131. 131.
    Pisula W, Tomovi Z, El Hamaoui B, Watson MD, Pakula T, Müllen K (2005) Control of the homeotropic order of discotic hexa-peri-hexabenzocoronenes. Adv Funct Mater 15:893–904CrossRefGoogle Scholar
  132. 132.
    Li J, Kastler M, Pisula W, Willem J, Robertson F, Wasserfallen D, Grimsdale AC, Wu J, Müllen K (2007) Organic bulk-heterojunction photovoltaics based on alkyl substituted discotics. Adv Funct Mater 17:2528–2533CrossRefGoogle Scholar
  133. 133.
    Wong WWH, Ma C-Q, Pisula W, Yan C, Feng X, Jones DJ, Müllen K, Janssen RA, Bäuerle P, Holmes AB (2010) Self-assembling thiophene dendrimers with a hexa-peri-hexabenzocoronene core-synthesis, characterization and performance in bulk heterojunction solar cells. Chem Mater 22:457–466CrossRefGoogle Scholar
  134. 134.
    Schmidt-Mende L, Fechtenkotter A, Mullen K, Friend RH, MacKenzie JD (2002) Efficient organic photovoltaics from soluble discotic liquid crystalline materials. Physica E 14:263–267CrossRefGoogle Scholar
  135. 135.
    Liu S-G, Sui G, Cormier RA et al (2002) Self-organizing liquid crystal perylene diimide thin films: spectroscopy, crystallinity, and molecular orientation. J Phys Chem B 106:1307–1315CrossRefGoogle Scholar
  136. 136.
    Schmidt-Mende L, Watson M, Müllen K, Friend RH (2003) Organic thin film photovoltaic devices from discotic materials. Mol Cryst Liq Cryst 396:73–90CrossRefGoogle Scholar
  137. 137.
    Schmidtke JP, Friend RH, Kastler M, Müllen K (2006) Cobtrol of morphology in efficient photovoltaic diodes from discotic liquid crystals. J Chem Phys 124:175704-1–175704-6CrossRefGoogle Scholar
  138. 138.
    Gregg BA, Fox MA, Bard AJ (1990) Photovoltaic effect in symmetrical cells of a liquid-crystal porphyrin. J Phys Chem 94:1586–1598CrossRefGoogle Scholar
  139. 139.
    Petristch K, Friend RH, Lux A, Rozenberg G, Moratti SC, Holmes AB (1999) Liquid crystalline phthalocyanines in organic solar cells. Synth Metals 102:1776–1777CrossRefGoogle Scholar
  140. 140.
    Levitsky IA, Euler WB, Tokranova N, Xu B, Castracane J (2004) Hybrid solar cells based on porous Si and copper phthalocyanine derivatives. Appl Phys Lett 85:6245–6247CrossRefGoogle Scholar
  141. 141.
    Boden N, Bushby RJ, Clements J (1993) Mechanism of quasi-one-dimensional electronic conductivity in disotic liquid-crystals. J Chem Phys 98:5920–5931CrossRefGoogle Scholar
  142. 142.
    Boden N, Bushby RJ, Cammidge AN, Clements J, Luo R, Donovan KJ (1995) Transient photoconductivity and dark conductivity in discotic liquid crystals. Mol Cryst Liq Cryst 261:251–257CrossRefGoogle Scholar
  143. 143.
    Kumar S, Pal SK, Kumar PS, Lakshminarayanan V (2007) Novel conducting nanocomposites: synthesis of triphenylene-covered gold nanoparticles and their insertion into a columnar matrix. Soft Matter 3:896–900CrossRefGoogle Scholar
  144. 144.
    Kumar PS, Kumar S, Lakshminarayanan V (2008) Electrical conductivity studies on discotic liquid crystal-ferrocenium donor–acceptor systems. J Phys Chem B 112:4865–4869CrossRefGoogle Scholar
  145. 145.
    Kumar PS, Kumar S, Lakshminarayanan V (2009) Hybrid organic/inorganic nanocomposite as a quasi-one-dimentsional semiconductor under ambient conditions. J Appl Phys 106:093701-1–093701-6Google Scholar
  146. 146.
    Schmidt J, Dierking I (2001) Localization and imaging of local shunts in solar cells using polymer-dispersed liquid crystals. Prog Photovoltaics 9:263–271CrossRefGoogle Scholar
  147. 147.
    Koeppe R, Bossart O, Calzaferre G, Sariciftci NS (2007) Advanced photon-harvesting concepts for low-energy gap organic solar cells. Sol Energy Mater Sol Cells 91:986–995CrossRefGoogle Scholar
  148. 148.
    Liu YX, Summers MA, Edder C, Frechet JMJ, McGehee MD (2005) Using resonance energy transfer to improve exciton harvesting in organic–inorganic hybrid photovoltaic cells. Adv Mater 17:2960–2964CrossRefGoogle Scholar
  149. 149.
    Hong ZR, Lessmann R, Maennig B, Huang Q, Harada K, Riede M, Leo K (2009) Antenna effects and improved efficiency in multiple heterojunction photovoltaic cells based on pentacene, zinc phthalocyanine, and C60. J Appl Phys 106:064511-1–064511-6Google Scholar
  150. 150.
    Imahori H, Fukuzumi S (2004) Porphyrin- and fullerene-based molecular photovoltaic devices. Adv Funct Mater 14:525–536CrossRefGoogle Scholar
  151. 151.
    Zhang C, Tong SW, Jiang C, Kang ET, Chan DSH, Zhu CX (2008) Efficient multilayer organic solar cells using the optical interference peak. Appl Phys Lett 93:043307-1–043307-3Google Scholar
  152. 152.
    Dastoor PC, McNeill CR, Frohne H, Foster CJ, Dean B, Fell CJ, Belcher WJ, Campbell WM, Officer DL, Blake IM, Thordarson P, Crossleu MJ, Hush NS, Reimers JR (2007) Understanding and improving solid-state polymer/C60-fullerene bulk-heterojunction solar cells using ternary porphyrin blends. J Phys Chem C 111:15415–15426CrossRefGoogle Scholar
  153. 153.
    Burke KB, Belcher WJ, Thomsen L, Watts B, McNeill CR, Ade H, Dastoor PC (2009) Role of solvent trapping effects in determining the structure and morphology of ternary blend organic devices. Macromolecules 42:3098–3103CrossRefGoogle Scholar
  154. 154.
    Belcher WJ, Wagner KI, Dastoor PC (2007) The effect of porphyrin inclusion on the spectral response of ternary P3HT:porphyrin:PCBM bulk heterojunction solar cells. Sol Energy Mater Sol Cells 91:447–452CrossRefGoogle Scholar
  155. 155.
    Shao Y, Yang Y (2005) Efficient organic heterojunction photovoltaic cells based on triplet materials. Adv Mater 17:2841–2844CrossRefGoogle Scholar
  156. 156.
    Schulz GL, Holdcroft S (2008) Conjugated polymers bearing iridium complexes for triplet photovoltaic devices. Chem Mater 20:5351–5355CrossRefGoogle Scholar
  157. 157.
    Yang C-M, Wu C-H, Liao H-H, Lai KY, Cheng HP, Horng SF, Meng HF, Shy JT (2007) Enhanced photovoltaic response of solar cell by singlet-tot-triplet exciton conversion. Appl Phys Lett 90:133509-1–133509-3Google Scholar
  158. 158.
    Li Y, Mastria R, Li K, Fiore A, Wang Y, Cingolani R, Manna L, Gigli G (2009) Improved photovoltaic performance of bilayer heterojunction photovoltaic cells by triplet materials and tetrapod-shaped colloidal nanocrystals doping. Appl Phys Lett 95:043101-1–043101-3Google Scholar
  159. 159.
    Guo FQ, Kim YG, Reynolds JR, Schanze KS (2006) Platinum-acetylide polymer based solar cells: involvement of the triplet state for energy conversion. Chem Commun 1887–1889Google Scholar
  160. 160.
    Hatton RA, Blanchard NP, Miller AJ, Silva SRP (2007) A multi-wall carbon nanotube-molecular semiconductor composite for bi-layer organic solar cells. Physica E 37:124–127CrossRefGoogle Scholar
  161. 161.
    Hatton RA, Blanchard NP, Stolojan V, Miller AJ, Silva SRP (2007) Nanostructured copper phthalocyanine-sensitized multiwall carbon nanotube films. Langmuir 23:6424–6430CrossRefGoogle Scholar
  162. 162.
    O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  163. 163.
    Grätzel M (2001) Measured under standard air mass 1.5 reporting conditions, PV calibration. Laboratory of the National Energy Research Laboratory (NREL), GoldenGoogle Scholar
  164. 164.
    Hinsch A, Kroon JM, Späth M, van Roosmale JAM, Bakker NJ, Sommeling P, van der Burg N, Kinderman R, Kern R, Ferber J, Schill C, Schubert M, Meyer A, Meyer T, Uhlendorf I, Holzbock J, Niepmann R (2000) In: Proceedings of the 16th European photovoltaic solar energy conference and exhibition, GlasgowGoogle Scholar
  165. 165.
    Nogueira AF, Durrant JR, De Paoli M-A (2001) Dye-sensitized nanocrystalline solar cells employing a polymer electrolyte. Adv Mater 13:826–830CrossRefGoogle Scholar
  166. 166.
    De Freitas JN, Nogueira AF, De Paoli M-A (2009) New insights into dye-sensitized solar cells with polymer electrolytes. J Mater Chem 19:5279–5294CrossRefGoogle Scholar
  167. 167.
    Freitas FS, De Freitas JN, Ito BI, De Paoli M-A, Nogueira AF (2009) Electrochemical and structural characterization of polymer gel electrolytes based on a PEO copolymer and an imidazolium-based ionic liquid for dye-sensitized solar cells. Appl Mater Interfaces 1:2870–2877CrossRefGoogle Scholar
  168. 168.
    Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Grätzel M (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395:583–585CrossRefGoogle Scholar
  169. 169.
    Kroeze JE, Hirata N, Schmidt-Mende L, Orizu C, Ogier SD, Carr K, Grätzel M, Durrant JR (2006) Parameters influencing charge separation in solid-state dye-sensitized solar cells using novel hole conductors. Adv Func Mater 16:1832–1838CrossRefGoogle Scholar
  170. 170.
    Poplavskyy D, Nelson J (2003) Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound. J Appl Phys 93:341–346CrossRefGoogle Scholar
  171. 171.
    Zhao Y, Chen W, Zhai J, Sheng X, He Q, Wei T, Bai F, Jiang L, Zhu D (2007) Solid-state dye-sensitized photovoltaic device with newly designed small organic molecule as hole-conductor. Chem Phys Lett 445:259–264CrossRefGoogle Scholar
  172. 172.
    Hagena J, Schaffrath W, Otschik P, Fink R, Bacher A, Schmidt H-W, Haarer D (1997) Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material. Synth Metals 89:215–220CrossRefGoogle Scholar
  173. 173.
    Karthikeyan CS, Thelakkat M (2008) Key aspects of individual layers in solid-state dye-sensitized solar cells and novel concepts to improve their performance. Inorg Chim Acta 361:635–655CrossRefGoogle Scholar
  174. 174.
    Tian H, Meng F (2005) Solar cells based on cyanine and polymethine dyes. In: Sun S-S, Sariciftci NS (eds) Organic photovoltaics, 1st edn. Taylor & Francis, Boca RatonGoogle Scholar
  175. 175.
    Horiuchi T, Miura H, Sumioka K, Uchida S (2004) High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J Am Chem Soc 126:12218–12219CrossRefGoogle Scholar
  176. 176.
    Ito S, Miura H, Uchida S, Takata M, Sumioka K, Liska P, Comte P, Péchy P, Grätzel M (2008) High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem Commun 5194–5196Google Scholar
  177. 177.
    O’Regan B, Lenzmann F (2004) Charge transport and recombination in a nanoscale interpenetrating network of n-type and p-type semiconductors: transient photocurrent and photovoltage studies of TiO2/Dye/CuSCN photovoltaic cells. J Phys Chem B 108:4342–4350CrossRefGoogle Scholar
  178. 178.
    Snaith HJ, Moule AJ, Klein C, Meerholz K, Friend RH, Grätzel M (2007) Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. Nano Lett 7:3372–3376CrossRefGoogle Scholar
  179. 179.
    Schmidt-Mende L, Grätzel M (2006) TiO2 pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells. Thin Solid Films 500:296–301CrossRefGoogle Scholar
  180. 180.
    Boschloo GK, Goossens A (1996) Electron trapping in porphyrin-sensitized porous nanocrystalline TiO2 electrodes. J Phys Chem 100:19489–19494CrossRefGoogle Scholar
  181. 181.
    Wienke J, Schaafsma TJ, Goossens A (1999) Visible light sensitization of titanium dioxide with self-organized porphyrins: organic P–I–N solar cells. J Phys Chem B 103:2702–2708CrossRefGoogle Scholar
  182. 182.
    Savenije TJ, Goossens A (2001) Hole transport in porphyrin thin films. Phys Rev B 64:115323CrossRefGoogle Scholar
  183. 183.
    Miyairi K, Itoh E, Hashimoto Y (2003) Photovoltaic properties of double layer devices consisting of titanium dioxide and porphyrin dispersed hole transporting material layer. Thin Solid Films 438–439:147–152Google Scholar
  184. 184.
    Simon J, Andre JJ (1998) Molecular semiconductors, photoelectrical properties and solar cells. Springer, BerlinGoogle Scholar
  185. 185.
    Gregg BA (1996) Bilayer molecular solar cells on spin-coated TiO2 substrates. Chem Phys Lett 258:376–380CrossRefGoogle Scholar
  186. 186.
    Signerski R, Jarosz G, Koscielska B (2009) On photovoltaic effect in hybrid heterojunction formed from palladium phthalocyanine and titanium dioxide layers. J Non-Crystalline Solids 355:1405–1407CrossRefGoogle Scholar
  187. 187.
    Sharma GD, Kumar R, Roy MS (2006) Investigation of charge transport, photo generated electron transfer and photovoltaic response of iron phthalocyanine (FePc):TiO2 thin films. Sol Energy Mater Sol Cells 90:32–45CrossRefGoogle Scholar
  188. 188.
    Tracey SM, Hodgson SNB, Ray AK (1998) Sol–gel derived TiO2/lead phthalocyanine photovoltaic cells. J. Sol–Gel Sci. Techn 13:219–222CrossRefGoogle Scholar
  189. 189.
    Kajihara K, Tanaka K, Hirao K, Soga N (1996) Photovoltaic effect in titanium dioxide/zinc phthalocyanine cell. Jpn J Appl Phys 35:6110–6116CrossRefGoogle Scholar
  190. 190.
    Ohmori Y, Itoh E, Miyairi K (2006) Photovoltaic properties of phthalocyanine based p–n diode evaporated onto titanium dioxide. Thin Solid Films 499:369–373CrossRefGoogle Scholar
  191. 191.
    Tachibana Y, Haque SA, Mercer IP, Durrant JR, Klug DR (2000) Electron injection and recombination in dye sensitized nanocrystalline titanium dioxide films: a comparison of ruthenium bipyridyl and porphyrin sensitizer dyes. J Phys Chem B 104:1198–1205CrossRefGoogle Scholar
  192. 192.
    Imahori H, Umeyama T, Ito S (2009) Large-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Acc Chem Res 42:1809–1818CrossRefGoogle Scholar
  193. 193.
    Campbell WM, Burrell AK, Officer DL, Jolley KW (2004) Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell. Coord Chem Rev 248:1363–1379CrossRefGoogle Scholar
  194. 194.
    Lee CY, Hupp JT (2010) Dye sensitized solar cells: TiO2 sensitization with a bodipy-porphyrin antenna system. Langmuir 26:3760–3765CrossRefGoogle Scholar
  195. 195.
    Nazeeruddin MK, Humphry-Baker R, Grätzel M, Murrer BA (1998) Efficient near IR sensitization of nanocrystalline TiO2 films by ruthenium phthalocyanine. Chem Commun 719–720Google Scholar
  196. 196.
    Yum J-H, Jang S-R, Humphry-Baker R, Grätzel M, Cid J-J, Torres T, Nazeeruddin MK (2008) Effect of coadsorbent on the photovoltaic performance of zinc pthalocyanine-sensitized solar cells. Langmuir 24:5636–5640CrossRefGoogle Scholar
  197. 197.
    Shen L, Zhu G, Guo W, Tao C, Zhang X, Liu C, Chen W, Ruan S, Zhong Z (2008) Performance improvement of TiO2/P3HT solar cells using CuPc as a sensitizer. Appl Phys Lett 92:073307CrossRefGoogle Scholar
  198. 198.
    Morandeira A, López-Duarte I, O’Regan B, Martínez-Díaz MV, Forneli A, Palomares E, Torres T, Durrant JR (2009) Ru(II)-phthalocyanine sensitized solar cells: the influence of co-adsorbents upon interfacial electron transfer kinetics. J Mater Chem 19:5016–5026CrossRefGoogle Scholar
  199. 199.
    Schouten PG, Warman JM, De haas MP, Fox MA, Pan HL (1991) Charge migration in supramolecular stacks of peripherally substituted porphyrins. Nature 353:736–737CrossRefGoogle Scholar
  200. 200.
    Lawrence MF, Huang Z, Langford CH, Ordonez I (1993) Photocurrent generation and charge transport in tin dioxide/ion-exchange polymer-zinc meso-tetraphenylporphyrin/gold cells. J Phys Chem 97:944–951CrossRefGoogle Scholar
  201. 201.
    Taleb T, Nasr C, Hotchandani S, Leblanc RM (1996) Effect of temperature on capacitance of Al/microcrystalline chlorophylla/Ag sandwich cells. J Appl Phys 79:1701CrossRefGoogle Scholar
  202. 202.
    Ioannidis A, Lawrence MF, Kassi H, Cote R, Dodelet JP, Leblanc RM (1993) Field dependence of hole mobilities in chloro-aluminum phthalocyanine. Chem Phys Lett 205:46–50CrossRefGoogle Scholar
  203. 203.
    Senadeera GKR, Jayaweera PVV, Perera VPS, Tennakone K (2002) Solid-state dye-sensitized photocell based on pentacene as a hole collector. Sol Energy Mater Sol Cells 73:103–108CrossRefGoogle Scholar
  204. 204.
    Zhang G, Bala H, Cheng Y, Shi D, Lv X, Yu Q, Wang P (2009) High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer. Chem Commun 2198–2200Google Scholar
  205. 205.
    Hara K, Tachibana Y, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003) Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes. Sol Energy Mater Sol Cells 77:89–103CrossRefGoogle Scholar
  206. 206.
    Zafer C, Kus M, Turkmen G, Dincalp H, Demic S, Kuban B, Teoman Y, Icli S (2007) New perylene derivative dyes for dye-sensitized solar cells. Sol Energy Mater Sol Cells 91:427–431CrossRefGoogle Scholar
  207. 207.
    Shibano Y, Umeyama T, Matano Y, Imahori H (2007) Electron-donating perylene tetracarboxylic acids for dye-sensitized solar cells. Org Lett 9:1971–1974CrossRefGoogle Scholar
  208. 208.
    Fortage J, Séverac M, Houarner-Rassin C, Pellegrin Y, Blart E, Odobel F (2008) Synthesis of new perylene imide dyes and their photovoltaic performances in nanocrystalline TiO2 dye-sensitized solar cells. J Photochem Photobiol A Chem 197:156–169CrossRefGoogle Scholar
  209. 209.
    Jin Y, Hua J, Wu W, Ma X, Meng F (2008) Synthesis, characterization and photovoltaic properties of two novel near-infrared absorbing perylene dyes containing benzo[e]indole for dye-sensitized solar cells. Synth Metals 158:64–71CrossRefGoogle Scholar
  210. 210.
    Zhang G, Bai Y, Li R, Shi D, Wenger S, Zakeeruddin SM, Grätzel M, Wang P (2009) Employ a bisthienothiophene linker to construct an organic chromophore for efficient and stable dye-sensitized solar cells. Energy Environ Sci 2:92–95CrossRefGoogle Scholar
  211. 211.
    Xu M, Li R, Pootrakulchote N, Shi S, Guo J, Yi Z, Zakeeruddin SM, Grätzel M, Wang P (2008) Energy-level and molecular engineering of organic D-π-A sensitizers in dye-sensitized solar cells. J Phys Chem C 112:19770–19776CrossRefGoogle Scholar
  212. 212.
    Schmidt-Mende L, Bach U, Humphry-Baker R, Horiuchi T, Miura H, Ito S, Uchida S, Grätzel M (2005) Organic dye for highly efficient solid-state dye-sensitized solar cells. Adv Mater 17:813–815CrossRefGoogle Scholar
  213. 213.
    Kuang D, Uchida S, Humphry-Baker R, Zakeeruddin SM, Grätzel M (2008) Organic dye-sensitized ionic liquid based solar cells: remarkable enhancement in performance through molecular design of indoline sensitizers. Angew Chem Int Ed 47:1923–1927CrossRefGoogle Scholar
  214. 214.
    Grätzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42(11):1788–1798CrossRefGoogle Scholar
  215. 215.
    Yum J-H, Hagberg DP, Moon S-J, Karlsson KM, Marinado T, Sun L, Hagfeldt A, Nazeeruddin MK, Grätzel M (2009) A light-resistant organic sensitizer for solar-cell applications. Angew Chem Int Ed 48:1576–1580CrossRefGoogle Scholar
  216. 216.
    Choi H, Baik C, Kang SO, Ko J-J, Kang M-S, Nazeeruddin MK, Grätzel M (2008) Highly efficient and thermally stable organic sensitizers for solvent-free dye-sensitized solar cells. Angew Chem Int Ed 47:327–330CrossRefGoogle Scholar
  217. 217.
    Haque SA, Park T, Holmes AB, Durrant JR (2003) Transient optical studies of interfacial energetic disorder at nanostructured dye-sensitised inorganic/organic semiconductor heterojunctions. ChemPhysChem 4:89–93CrossRefGoogle Scholar
  218. 218.
    O’Regan B, Schwartz DT (1998) Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL’NCS/CuSCN: initiation and potential mechanisms. Chem Mater 10:1501–1509CrossRefGoogle Scholar
  219. 219.
    Tennakone K, Kumara G, Kumarasinghe AR, Wijayantha KGU, Sirimanne PM (1995) A dye-sensitized nano-porous solid-state photovoltaic cell. Semicond Sci Technol 10:1689–1693CrossRefGoogle Scholar
  220. 220.
    Tennakone K, Senadeera GKR, De Silva D, Kottegoda IRM (2000) Highly stable dye-sensitized solid-state solar cell with the semiconductor 4CuBr 3S(C4H9)2 as the hole collector. Appl Phys Lett 77:2367CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Luiz C. P. Almeida
    • 1
  • Jilian N. de Freitas
    • 1
  • Flavio S. Freitas
    • 1
  • Ana F. Nogueira
    • 1
  1. 1.Chemistry InstituteUniversity of Campinas-UNICAMPCampinasBrazil

Personalised recommendations