Skip to main content

Photocatalytic Degradation of Water Pollutants Using Nano-TiO2

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This review discusses the utilization of photocatalysis for the degradation of water pollutants. Emphasis is placed on TiO2 nanoparticles as a benchmark photocatalyst for the destruction of microorganisms and the degradation of a wide variety of organic compounds like phenolics, dyes, pesticides and pharmaceuticals. The mechanism of photocatalytic degradation is elucidated, underlining the importance of reaction kinetics for the efficient design of the processes. The effects of different reaction parameters on photocatalytic degradation are discussed. Surface modification of TiO2 for visible light response by doping and heterostructuring is outlined. Finally, the challenges in the implementation of this technology for “real” waste water systems are summarized with a few attainable goals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Google Scholar 

  2. Frank SN, Bard AJ (1977) Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J Phys Chem 81:1484–1488

    Google Scholar 

  3. Hsiao C-Y, Lee C-L, Ollis DF (1983) Heterogeneous photocatalysis: degradation of dilute solutions of dichloromethane (CH2Cl2), chloroform (CHCl3) and carbon tetrachloride (CCl4) with illuminated TiO2 photocatalyst. J Catal 82:418–423

    Google Scholar 

  4. Pruden AL, Ollis DF (1983) Heterogeneous photocatalysis: the degradation of trichloroethylene in water. J Catal 82:404–417

    Google Scholar 

  5. Matsunaga T, Tomato R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29:211–214

    Google Scholar 

  6. O’Regan B, Grätzel M (1991) A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Google Scholar 

  7. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    Google Scholar 

  8. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Google Scholar 

  9. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms and selected results. Chem Rev 95:735–758

    Google Scholar 

  10. Mills A, Hunte SL (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A: Chem 108:1–35

    Google Scholar 

  11. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21

    Google Scholar 

  12. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177

    Google Scholar 

  13. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and surface related phenomena. Surf Sci Rep 63:515–582

    Google Scholar 

  14. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, applications, modifications and applications. Chem Rev 107:2891–2959

    Google Scholar 

  15. Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93:671–698

    Google Scholar 

  16. Herrmann J-M (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129

    Google Scholar 

  17. Bhatkhande DS, Pangarkar VG, Beenackers (2001) AACM Photocatalytic degradation for environmental applications—a review. J Chem Technol Biotechnol 77:102–116

    Google Scholar 

  18. Kabra K, Chaudhary R, Sawhney RL (2004) Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review. Ind Eng Chem Res 43:7683–7696

    Google Scholar 

  19. Zhao J, Chen C, Ma W (2005) Photocatalytic degradation of organic pollutants under visible light irradiation. Top Catal 35:269–278

    Google Scholar 

  20. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C: Photochem Rev 9:1–12

    Google Scholar 

  21. Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59

    Google Scholar 

  22. Wada Y, Yin H, Yanagida S (2002) Environmental remediation using catalysis driven under electromagnetic irradiation. Catal Sur Japan 5:127–138

    Google Scholar 

  23. Zhang Q, Gao L (2006) One-step preparation of size-defined aggregates of TiO2 nanocrystals with tuning of their phase and composition. J Eur Ceram Soc 26:1535–1545

    MathSciNet  Google Scholar 

  24. Sato S, Oimatsu S, Takahashi R, Sodesawa T, Nozaki F (1997) Pore size regulation of TiO2 by use of a complex of titanium tetraisopropoxide and stearic acid. Chem Commun 22:2219–2220

    Google Scholar 

  25. Addamo M, Augugliaro V, Paola AD, García-López E, Loddo V, Marcí G, Molinari R, Palmisano L, Schiavello M (2004) Preparation, characterization and photoactivity of polycrystalline nanostructured TiO2 catalysts. J Phys Chem B 108:3303–3310

    Google Scholar 

  26. Nagaveni K, Hegde MS, Ravishankar N, Subbanna GN, Madras G (2004) Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20:2900–2907

    Google Scholar 

  27. Mohamed MM, Bayoumy WA, Khairy M, Mousa MA (2007) Synthesis of micro-mesoporous TiO2 materials assembled via cationic surfactants: morphology, thermal stability and surface acidity characteristics. Micropor Mesopor Mater 103:174–183

    Google Scholar 

  28. Venkatachalam N, Palanichamy M, Murugesan V (2007) Sol-gel preparation and characterization of nanosize TiO2: its photocatalytic performance. Mater Chem Phys 104:454–459

    Google Scholar 

  29. Dong X, Tao J, Li Y, Zhu H (2010) Oriented single crystalline TiO2 nano-pillars directly grown on titanium substrate in tetramethylammonium hydroxide solution. Appl Surf Sci 256:2532–2538

    Google Scholar 

  30. Cheng Y, Sun H, Jin W, Xu N (2007) Photocatalytic degradation of 4-chlorophenol with combustion synthesized TiO2 under visible light irradiation. Chem Eng J 128:127–133

    Google Scholar 

  31. Zhang Z, Wang C-C, Zakaria R, Ying JY (1998) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102:10871–10878

    Google Scholar 

  32. Ryu J, Choi W (2008) Substrate-specific photocatalytic activities of TiO2 and multiactivity test for water treatment application. Environ Sci Technol 42:294–300

    Google Scholar 

  33. Hidalgo MC, Colón G, Navío JA (2002) Modification of the physicochemical properties of commercial TiO2 samples by soft mechanical activation. J Photochem Photobiol A: Chem 148:341–348

    Google Scholar 

  34. Hathway T, Jenks WS (2008) Effects of sintering of TiO2 particles on the mechanisms of photocatalytic degradation of organic molecules in water. J Photochem Photobiol A: Chem 200:216–224

    Google Scholar 

  35. Kritikos DE, Xekoukoulotakis NP, Psillakis E, Mantzavinos D (2007) Photocatalytic degradation of reactive black 5 in aqueous solutions: effect of operating conditions and coupling with ultrasound irradiation. Water Res 41:2236–2246

    Google Scholar 

  36. Sivalingam G, Nagaveni K, Hegde MS, Madras G (2003) Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2. Appl Catal B: Environ 45:23–38

    Google Scholar 

  37. Aarthi T, Madras G (2007) Photocatalytic degradation of rhodamine dyes with nano-TiO2. Ind Eng Chem Res 46:7–14

    Google Scholar 

  38. Vinu R, Akki SU, Madras G (2010) Investigation of dye functional group on the photocatalytic degradation of dyes by nano-TiO2. J Hazard Mater 176:765–773

    Google Scholar 

  39. Sivalingam G, Priya MH, Madras G (2004) Kinetics of photodegradation of substituted phenols by solution combustion synthesized TiO2. Appl Catal B: Environ 51:67–76

    Google Scholar 

  40. Priya MH, Madras G (2006) Kinetics of photocatalytic degradation of phenols with multiple substituent groups. J Photochem Photobiol A: Chem 179:256–262

    Google Scholar 

  41. Priya MH, Madras G (2006) Photocatalytic degradation of nitrobenzenes with combustion synthesized nano-TiO2. J Photochem Photobiol A: Chem 178:1–7

    Google Scholar 

  42. Vijayalakshmi SP, Madras G (2006) Photocatalytic degradation of poly(ethylene oxide) and polyacrylamide. J Appl Polym Sci 100:3997–4003

    Google Scholar 

  43. Sivalingam G, Madras G (2004) Photocatalytic degradation of poly(bisphenol-A-carbonate) in solution over combustion-synthesized TiO2: mechanism and kinetics. Appl Catal A: Gen 269:81–90

    Google Scholar 

  44. Aarthi P, Madras G (2008) Photocatalytic reduction of metals in presence of combustion synthesized nano-TiO2. Catal Commun 9:630–634

    Google Scholar 

  45. Ollis DF, Pelizzetti E, Serpone N (1991) Photocatalyzed destruction of water contaminants. Environ Sci Technol 25:1522–1529

    Google Scholar 

  46. Blake DM (2001) Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air. NREL/TP-510-31319, National Renewable Energy Laboratory, Golden

    Google Scholar 

  47. Li X, Cubbage JW, Jenks WS (1999) Photocatalytic degradation of 4-chlorophenol. 2. The 4-chlorocatechol pathway. J Org Chem 64:8525–8536

    Google Scholar 

  48. Rajeshwar K, Osugi ME, Chanmanee W, Chenthamarakshan CR, Zanoni MVB, Kajitvichyanukul P, Krishnan-Ayer R (2008) Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J Photochem Photobiol C: Photochem Rev 9:171–192

    Google Scholar 

  49. Rauf MA, Ashraf SS (2009) Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J 151:10–18

    Google Scholar 

  50. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B: Environ 49:1–14

    Google Scholar 

  51. Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170:520–529

    Google Scholar 

  52. Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A: Gen 359:25–40

    Google Scholar 

  53. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B: Environ 31:145–157

    Google Scholar 

  54. Epling GA, Lin C (2002) Photoassisted bleaching of dyes utilizing TiO2 and visible light. Chemosphere 46:561–570

    Google Scholar 

  55. Silva CG, Wang W, Faria JL (2006) Photocatalytic and photochemical degradation of mono-, di- and tri-azo dyes in aqueous solution under UV irradiation. J Photochem Photobiol A: Chem 181:314–324

    Google Scholar 

  56. Stylidi M, Kondarides DI, Verykios XE (2003) Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl Catal B: Environ 40:271–286

    Google Scholar 

  57. Sleiman M, Vildozo D, Ferronato C, Chovelon J-M (2007) Photocatalytic degradation of azo dye Metanil Yellow: optimization and kinetic modeling using a chemometric approach. Appl Catal B: Environ 77:1–11

    Google Scholar 

  58. Hu C, Yu JC, Hao Z, Wong PK (2003) Photocatalytic degradation of triazine-containing azo dyes in aqueous TiO2 suspensions. Appl Catal B: Environ 42:47–55

    Google Scholar 

  59. Saquib M, Muneer M (2002) Semiconductor mediated photocatalyzed degradation of an anthraquinone dye, Remazol Brilliant Blue R under sunlight and artificial light source. Dyes Pigments 53:237–249

    Google Scholar 

  60. Vautier M, Guillard C, Herrmann J-M (2001) Photocatalytic degradation of dyes in water: case study of indigo and of indigo carmine. J Catal 201:46–59

    Google Scholar 

  61. Wu T, Liu G, Zhao J, Hidaka H, Serpone N (1998) Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J Phys Chem B 102:5845–5851

    Google Scholar 

  62. Park H, Choi W (2005) Photocatalytic reactivities of nafion-coated TiO2 for the degradation of charged organic compounds under UV or visible light. J Phys Chem B 109:11667–11674

    Google Scholar 

  63. Chen C-C, Lu C-S (2007) Mechanistic studies of the photocatalytic degradation of Methyl Green: an investigation of products of the decomposition processes. Environ Sci Technol 41:4389–4396

    MathSciNet  Google Scholar 

  64. Konstantinou IK, Zarkadis AK, Albanis TA (2001) Photodegradation of selected herbicides in various natural waters and soils under environmental conditions. J Environ Qual 30:121–130

    Google Scholar 

  65. Zhu X, Yuan C, Bao Y, Yang J, Wu Y (2005) Photocatalytic degradation of pesticide pyridaben on TiO2 particles. J Mol Catal A: Chem 229:95–105

    Google Scholar 

  66. Wei L, Shifu C, Wei Z, Sujuan Z (2009) Titanium dioxide mediated photocatalytic degradation of methamidophos in aqueous phase. J Hazard Mater 164:154–160

    Google Scholar 

  67. Moctezuma E, Leyva E, Palestino G, de Lasa H (2007) Photocatalytic degradation of methyl parathion: reaction pathways and intermediate reaction products. J Photochem Photobiol A: Chem 186:71–84

    Google Scholar 

  68. Lhomme L, Brosillon S, Wolbert D (2007) Photocatalytic degradation of a triazole pesticide, cyproconazole, in water. J Photochem Photobiol A: Chem 188:34–42

    Google Scholar 

  69. Yu B, Zeng J, Gong L, Zhang M, Zhang L, Chen X (2007) Investigation of the photocatalytic degradation of organochlorine pesticides on a nano-TiO2 coated film. Talanta 72:1667–1674

    Google Scholar 

  70. Navarro S, Fenoll J, Vela N, Ruiz E, Navarro G (2009) Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight. J Hazard Mater 172:1303–1310

    Google Scholar 

  71. Aungpradit T, Sutthivaiyakit P, Martens D, Sutthivaiyakit S, Kettrup AAF (2007) Photocatalytic degradation of triazophos in aqueous titanium dioxide suspension: identification of intermediates and degradation pathways. J Hazard Mater 146:204–213

    Google Scholar 

  72. Molinari R, Pirillo F, Loddo V, Palmisano L (2006) Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor. Catal Today 118:205–213

    Google Scholar 

  73. Chatzitakis A, Berberidou C, Paspaltsis I, Kyriakou G, Sklaviadis T, Poulios I (2008) Photocatalytic degradation and drug activity reduction of chloramphenicol. Water Res 42:386–394

    Google Scholar 

  74. Abellán MN, Bayarri B, Giménez J, Costa J (2007) Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl Catal B: Environ 74:233–241

    Google Scholar 

  75. An T, Yang H, Li G, Song W, Cooper WJ, Nie X (2010) Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water. Appl Catal B: Environ 94:288–294

    Google Scholar 

  76. Radjenović J, Sirtori C, Petrović M, Barceló D, Malato S (2009) Solar photocatalytic degradation of persistent pharmaceuticals at pilot-scale: kinetics and characterization of major intermediate products. Appl Catal B: Environ 89:255–264

    Google Scholar 

  77. Méndez-Arriaga F, Esplugas S, Giménez J (2008) Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Res 42:585–594

    Google Scholar 

  78. Calza P, Sakkas VA, Medana C, Baiocchi C, Dimou A, Pelizzetti E, Albanis T (2006) Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl Catal B: Environ 67:197–205

    Google Scholar 

  79. Sakkas VA, Calza P, Medana C, Villioti AE, Baiocchi C, Pelizzetti E, Albanis T (2007) Heterogeneous photocatalytic degradation of the pharmaceutical agent salbutamol in aqueous titanium dioxide suspensions. Appl Catal B: Environ 77:135–144

    Google Scholar 

  80. Calza P, Massolino C, Monaco G, Medana C, Baiocchi C (2008) Study of the photolytic and photocatalytic transformation of amiloride in water. J Pharm Biomed Anal 48:315–320

    Google Scholar 

  81. Cheng YW, Chan RCY, Wong (2007) Disinfection of Legionella pneumophila by photocatalytic oxidation. Water Res 41:842–852

    Google Scholar 

  82. Ibáñez JA, Litter AI, Pizarro RA (2003) Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae: comparative study with other gram (−) bacteria. J Photochem Photobiol A:Chem 157:81–85

    Google Scholar 

  83. Prasad GK, Agarwal GS, Singh B, Rai GP, Vijayaraghavan R (2009) Photocatalytic inactivation of Bacillus anthracis by titania nanomaterials. J Hazard Mater 165:506–510

    Google Scholar 

  84. Liu H-L, Yang TC-K (2003) Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light. Process Biochem 39:475–481

    Google Scholar 

  85. Kubacka A, Ferrer M, Martínez-Arias A, Fernández-García M (2008) Ag promotion of TiO2-anatase disinfection capability: study of Escherichia coli inactivation. Appl Catal B: Environ 84:87–93

    Google Scholar 

  86. Hu C, Guo J, Qu J, Hu X (2007) Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation. Langmuir 23:4982–4987

    Google Scholar 

  87. Wu T-S, Wang K-X, Li G-D, Sun S-Y, Sun J, Chen J-S (2010) Montmorillonite-supported Ag/TiO2 nanoparticles: an efficient visible-light bacteria photodegradation material. ACS Appl Mater Interf 2:544–550

    Google Scholar 

  88. Wu P, Xie R, Imlay JA, Shang JK (2009) Visible-light-induced photocatalytic inactivation of bacteria by composite photocatalysts of palladium oxide and nitrogen-doped titanium oxide. Appl Catal B: Environ 88:576–581

    Google Scholar 

  89. Yu JC, Ho W, Yu J, Yip H, Wong PK, Zhao J (2005) Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ Sci Technol 39:1175–1179

    Google Scholar 

  90. Pelaez M, de la Cruz AA, Stathatos E, Falaras P, Dionysiou DD (2009) Visible light-activated N–F-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water. Catal Today 144:19–25

    Google Scholar 

  91. Cho M, Chung H, Choi W, Yoon J (2004) Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res 34:1069–1077

    Google Scholar 

  92. Matsunaga T, Tomoda R, Nakajima T, Nakamura N, Komine T (1988) Continuous-sterilization system that uses photosemiconductor powders. Appl Environ Microbiol 54:1330–1333

    Google Scholar 

  93. Saito T, Iwase T, Horie J, Morioka T (1992) Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci. J Photochem Photobiol B: Biol 14:369–379

    Google Scholar 

  94. Maness P-C, Smolinski S, Blake DM, Hyang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098

    Google Scholar 

  95. Rincón A-G, Pulgarin C (2004) Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2: implications in solar water ds infection. Appl Catal B: Environ 51:283–302

    Google Scholar 

  96. Pal A, Pehkonen SO, Yu LE, Ray MB (2008) Photocatalytic inactivation of airborne bacteria in a continuous-flow reactor. Ind Eng Chem Res 47:7580–7585

    Google Scholar 

  97. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Coll Interf Sci 145:83–96

    Google Scholar 

  98. Naeem K, Weiqian P, Ouyang F (2010) Thermodynamic parameters of activation for photodegradation of phenolics. Chem Eng J 156:505–509

    Google Scholar 

  99. Madras G, Smith JM, McCoy BJ (1996) Thermal degradation of poly(α-methyl styrene) in solution. Polym Degrad Stab 52:349–358

    Google Scholar 

  100. Devi LG, Murthy BN, Kumar SG (2009) Heterogeneous photo catalytic degradation of anionic and cationic dyes over TiO2 and TiO2 doped with Mo6+ ions under solar light: correlation of dye structure and its adsorptive tendency on the degradation rate. Chemosphere 76:1163–1166

    Google Scholar 

  101. Alrousan DMA, Dunlop PSM, McMurray TA, Byrne JA (2009) Photocatalytic inactivation of E. coli in surface water using immobilized nanoparticle TiO2 films. Water Res 43:47–54

    Google Scholar 

  102. Matthews RW, McEvoy SR (1992) A comparison of 254 and 350 nm excitation of TiO2 in simple photocatalytic reactors. J Photochem Photobiol A: Chem 66:355–366

    Google Scholar 

  103. Kuhn HJ, Braslavsky SE, Schmidt R (2004) Chemical actinometry. Pure Appl Chem 76:2105–2146

    Google Scholar 

  104. Meng Y, Huang X, Wu Y, Wang X, Qian Y (2002) Kinetic study and modeling on photocatalytic degradation of para-chlorobenzoate at different light intensities. Environ Poll 117:307–313

    Google Scholar 

  105. Wu C-H, Chern J-M (2006) Kinetics of photocatalytic decomposition of methylene blue. Ind Eng Chem Res 45:6450–6457

    Google Scholar 

  106. Lim LLP, Lynch RJ, In S-I (2009) Comparison of simple and economical photocatalyst immobilization procedures. Appl Catal A: Gen 365:214–221

    Google Scholar 

  107. Epling GA, Lin C (2002) Investigation of retardation effects on the titanium dioxide photodegradation system. Chemosphere 46:937–944

    Google Scholar 

  108. Azevedo EB, Neto FRA, Dezotti M (2004) TiO2-photocatalyzed degradation of phenol in saline media: lumped kinetics, intermediates and acute toxicity. Appl Catal B: Environ 54:165–173

    Google Scholar 

  109. Chen D, Ray AK (2001) Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem Eng Sci 56:1561–1570

    Google Scholar 

  110. Prairie MR, Evans LR, Stange BM, Martinez SL (1993) An investigation of TiO2 photocatalysis for the treatment of water contaminated with metals and organic chemicals. Environ Sci Technol 27:1776–1782

    Google Scholar 

  111. Chen C, Li X, Ma W, Zhao J, Hidaka H, Serpone N (2002) Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: a probe for interfacial electron transfer process and reaction mechanism. J Phys Chem B 106:318–324

    Google Scholar 

  112. Kyung H, Lee J, Choi W (2005) Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination. Environ Sci Technol 39:2376–2382

    Google Scholar 

  113. Wang N, Chen Z, Zhu L, Jiang X, Lv B, Tang H (2007) Synergistic effects of cupric and fluoride ions on photocatalytic degradation of phenol. J Photochem Photobiol A: Chem 191:193–200

    Google Scholar 

  114. Vinu R, Madras G (2008) Kinetics of simultaneous photocatalytic degradation of phenolic compounds and reduction of metal ions with nano-TiO2. Environ Sci Technol 42:913–919

    Google Scholar 

  115. Sun B, Reddy EP, Smirniotis PG (2005) Visible light Cr(VI) reduction and organic chemical oxidation by TiO2 photocatalysis. Environ Sci Technol 39:6251–6259

    Google Scholar 

  116. Turchi CS, Ollis DF (1990) Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J Catal 122:178–192

    Google Scholar 

  117. Li Y, Sun S, Ma M, Ouyang Y, Yan W (2008) Kinetic study and model of the photocatalytic degradation of rhodamine B(RhB) by a TiO2-coated activated carbon catalyst: effects of initial RhB content, light intensity and TiO2 content in the catalyst. Chem Eng J 142:147–155

    Google Scholar 

  118. Almquist CB, Biswas P (2001) A mechanistic approach to modeling the effect of dissolved oxygen in photo-oxidation reactions on titanium dioxide in aqueous systems. Chem Eng Sci 56:3421–3430

    Google Scholar 

  119. Benabbou AK, Derriche Z, Felix C, Lejeune P, Guillard C (2007) Photocatalytic inactivation of Escherischia coli: effect of concentration of TiO2 and microorganism, nature and intensity of UV irradiation. Appl Catal B: Environ 76:257–263

    Google Scholar 

  120. Marugán J, van Grieken R, Sordo C, Cruz C (2008) Kinetics of photocatalytic disinfection of Escherichia coli suspensions. Appl Catal B: Environ 82:27–36

    Google Scholar 

  121. Labas MD, Brandi RJ, Martín CA, Cassano AE (2006) Kinetics of bacteria inactivation employing UV radiation under clear water conditions. Chem Eng J 121:135–145

    Google Scholar 

  122. Marugán J, van Griekan R, Pablos C, Sordo C (2010) Anologies and differences between photocatalytic oxidation of chemicals and photocatalytic inactivation of microorganisms. Water Res 44:789–796

    Google Scholar 

  123. Priya MH, Madras G (2006) Kinetics of photocatalytic degradation of chlorophenol, nitrophenol and their mixtures. Ind Eng Chem Res 45:482–486

    Google Scholar 

  124. Aarthi P, Narahari P, Madras G (2007) Photocatalytic degradation of azure and sudan dyes using nano-TiO2. J Hazard Mater 149:725–734

    Google Scholar 

  125. Levenspiel O (1999) Chemical reaction engineering. John Wiley, Singapore

    Google Scholar 

  126. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679

    Google Scholar 

  127. Serpone N, Lawless D, Disdier J, Herrmann J-M (1994) Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids: naked and with the lattice doped with Cr3+, Fe3+ and V5+ cations. Langmuir 10:643–652

    Google Scholar 

  128. Shah SI, Li W, Huang C-P, Jung O, Ni C (2002) Study of Nd3+, Pd2+, Pt4+ and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles. Proc Nat Acad Sci 99:6482–6486

    Google Scholar 

  129. Dvoranová D, Brezová V, Mazúr M, Malati MA (2002) Investigations of metal-doped titanium dioxide photocatalysts. Appl Catal B: Environ 37:91–105

    Google Scholar 

  130. Nagaveni K, Hegde MS, Madras G (2004) Structure and photocatalytic activity of Ti1-xMxO2±δ (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method. J Phys Chem B 108:20204–20212

    Google Scholar 

  131. Štengl V, Bakardjieva S, Murafa N (2009) Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater Chem Phys 114:217–226

    Google Scholar 

  132. Roy S, Hegde MS, Ravishankar N, Madras G (2007) Creation of redox adsorption sites by Pd2+ ion substitution in nano TiO2 for high photocatalytic activity of CO oxidation, NO reduction and NO decomposition. J Phys Chem C 111:8153–8160

    Google Scholar 

  133. Vinu R, Madras G (2008) Synthesis and photoactivity of Pd substituted nano-TiO2. J Mol Catal A: Chem 291:5–11

    Google Scholar 

  134. Paola AD, García-López E, Ikeda S, Marcí G, Ohtani B, Palmisano L (2002) Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catal Today 75:87–93

    Google Scholar 

  135. Vinu R, Madras G (2009) Photocatalytic activity of Ag-substituted and impregnated nano-TiO2. Appl Catal A: Gen 366:130–140

    Google Scholar 

  136. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2002) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Google Scholar 

  137. Khan SUM, Al-Shahry M, Ingler WB Jr (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245

    Google Scholar 

  138. Liu G, Wang L, Yang HG, Cheng H-M, Lu GQM (2010) Titania-based photocatalysts–crystal growth, doping and heterostructuring. J Mater Chem 20:831–843

    Google Scholar 

  139. Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110:24287–24293

    Google Scholar 

  140. Nagaveni K, Sivalingam G, Hegde MS, Madras G (2004) Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2. Appl Catal B: Environ 48:83–93

    Google Scholar 

  141. Xiao Q, Zhang J, Xiao C, Si Z, Tan X (2008) Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension. Sol Energy 82:706–713

    Google Scholar 

  142. Zhong J, Chen F, Zhang J (2010) Carbon-deposited TiO2: synthesis, characterization and visible photocatalytic performance. J Phys Chem C 114:933–939

    Google Scholar 

  143. Ao Y, Xu J, Fu D, Yuan C (2009) Synthesis of C, N, S-tridoped mesoporous titania with enhanced visible light-induced photocatalytic activity. Micropor Mesopor Mater 122:1–6

    Google Scholar 

  144. Yu T, Tan X, Zhao L, Yin Y, Chen P, Wei J (2009) Characterization, activity and kinetics of a visible light driven photocatalyst: cerium and nitrogen co-doped TiO2 particles. Chem Eng J. doi: 10.1016/j.cej.2009.10.051

  145. Ho W, Yu JC, Lin J, Yu J, Li P (2004) Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. Langmuir 20:5865–5869

    Google Scholar 

  146. Wang D, Zhang J, Luo Q, Li X, Duan Y, An J (2009) Characterization and photocatalytic activity of poly(3-hexyl thiophene)-modified TiO2 for degradation of methyl orange under visible light. J Hazard Mater 169:546–550

    Google Scholar 

  147. Sun Q, Xu Y (2009) Sensitization of TiO2 with aluminium phthalocyanine: factors influencing the efficiency for chlorophenol degradation in water under visible light. J Phys Chem C 113:12387–12394

    Google Scholar 

  148. Liang H-C, Li X-Z (2009) Visible-induced photocatalytic reactivity of polymer sensitized titania nanotube films. Appl Catal B: Environ 86:8–17

    MathSciNet  Google Scholar 

  149. Xiangzhong L, Wei Z, Jincai Z (2002) Visible light-sensitized semiconductor photocatalytic degradation of 2, 4-dichlorophenol. Sci China Ser B 45:421–425

    Google Scholar 

  150. Gilma GO, Carlos APM, Fernando MO, Edgar AP-M (2005) Photocatalytic degradation of phenol on TiO2 and TiO2/Pt sensitized with matallophthalocyanines. Catal Today 107–108:589–594

    Google Scholar 

  151. Ross H, Bendig J, Hecht S (1994) Sensitized photocatalytical oxidation of terbutylazine. Solar Energy Mater Solar Cells 33:475–481

    Google Scholar 

  152. Granados-Oliveros G, Páez-Mozo EA, Ortega FM, Ferronato C, Chovelon J-M (2009) Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation. Appl Catal B: Environ 89:448–454

    Google Scholar 

  153. Bae E, Choi W (2003) Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ Sci Technol 37:147–152

    Google Scholar 

  154. Li G-S, Zhang D-Q, Yu JC (2009) A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2. Environ Sci Technol 43:7079–7085

    Google Scholar 

  155. Chiou C-S, Shie J-L, Chang C-Y, Liu C-C, Chang C-T (2006) Degradation of di-n-butyl phthalate using photoreactor packed with TiO2 immobilized on glass beads. J Hazard Mater B 137:1123–1129

    Google Scholar 

  156. Horikoshi S, Watanabe N, Onishi H, Hidaka H, Serpone N (2002) Photodecomposition of a nonylphenol polyethoxylate surfactant in a cylindrical photoreactor with TiO2 immobilized fiberglass cloth. Appl Catal B: Environ 37:117–129

    Google Scholar 

  157. Lee J-M, Kim M-S, Kim B-W (2004) Photodegradation of bisphenol-A with TiO2immobilized on the glass tubes including the UV light lamps. Water Res 38:3605–3613

    Google Scholar 

  158. Tryba B (2008) Immobilization of TiO2 and Fe-C-TiO2 photocatalysts on the cotton material for application in a flow photocatalytic reactor for decomposition of phenol in water. J Hazard Mater 151:623–627

    Google Scholar 

  159. Chen Y, Dionysiou DD (2007) A comparative study on physicochemical properties and photocatalytic behavior of macroporous TiO2–P25 composite films and macroporous TiO2 films coated on stainless steel substrate. Appl Catal A: Gen 317:129–137

    Google Scholar 

  160. Zhang Q, Fan W, Gao L (2007) Anatase TiO2 nanoparticles immobilized on ZnO tetrapods as a highly efficient and easily recyclable photocatalyst. Appl Catal B: Environ 76:168–173

    Google Scholar 

  161. Gao Y, Liu H (2005) Preparation and catalytic property study of a novel kind of suspended photocatalyst of TiO2-activated carbon immobilized on silicone rubber film. Mater Chem Phys 92:604–608

    Google Scholar 

  162. Nakashima T, Ohko Y, Tryk DA, Fujishima A (2002) Decomposition of endocrine-disrupting chemicals in water by use of TiO2 photocatalysts immobilized on polytetrafluoroethylene mesh sheets. J Photochem Photobiol A: Chem 151:207–212

    Google Scholar 

  163. Magalhães F, Lago RM (2009) Floating photocatalysts based on TiO2 grafted on expanded polystyrene beads for the solar degradation of dyes. Sol Energy 83:1521–1526

    Google Scholar 

  164. Faramarzpour M, Vossoughi M, Borghei M (2009) Photocatalytic degradation of furfural by titania nanoparticles in a floating-bed photoreactor. Chem Eng J 146:79–85

    Google Scholar 

  165. Rachel A, Lavedrine B, Subrahmanyam M, Boule P (2002) Use of porous lavas as supports of photocatalysis. Catal Commun 3:165–171

    Google Scholar 

  166. Grieken RV, Marugán J, Sordo C, Pablos C (2009) Comparison of the photocatalytic disinfection of E. coli suspensions in slurry, wall and fixed-bed reactors. Catal Today 144:48–54

    Google Scholar 

  167. Rao KVS, Subrahmanyam M, Boule P (2004) Immobilized TiO2 photocatalyst during long-tem use: decrease of activity. Appl Catal B: Environ 49:239–249

    Google Scholar 

  168. Lasa H, Serrano B, Salaices M (2005) Photocatalytic reaction engineering. Springer, New York

    Google Scholar 

  169. Puma GL, Yue PL (2001) A novel fountain photocatalytic reactor: model development and experimental validation. Chem Eng Sci 56:2733–2744

    Google Scholar 

  170. Denny F, Scott J, Pareek V, Peng GD, Amal R (2009) CFD modeling for a TiO2-coated glass-bead photoreactor irradiated by optical fibres: photocatalytic degradation of oxalic acid. Chem Eng Sci 64:1695–1706

    Google Scholar 

  171. Imoberdorf GE, Taghipour F, Keshmiri M, Mohseni M (2008) Predictive radiative field modeling for fluidized bed photocatalytic reactors. Chem Eng Sci 63:4228–4238

    Google Scholar 

  172. Jarandehei A, Visscher AD (2009) Three-dimensional CFD model for a flat plate photocatalytic reactor: degradation of TCE in a serpentine flow field. AIChE J 55:312–320

    Google Scholar 

  173. Chen D, Li F, Ray AK (2000) Effect of mass transfer and catalyst layer thickness on photocatalytic reaction. AIChE J 46:1034–1045

    Google Scholar 

  174. Dijkstra MFJ, Hoerts ECB, Beenackers AACM, Wesselingh JA (2003) Performance of immobilized photocatalytic reactors in continuous mode. AIChE J 49:734–744

    Google Scholar 

  175. Imoberdorf GE, Irazoqui HA, Alfano OM, Cassano AE (2007) Scaling-up from first principles of a photocatalytic reactor for air pollution remediation. Chem Eng Sci 62:793–804

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giridhar Madras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Vinu, R., Madras, G. (2011). Photocatalytic Degradation of Water Pollutants Using Nano-TiO2 . In: Zang, L. (eds) Energy Efficiency and Renewable Energy Through Nanotechnology. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-0-85729-638-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-638-2_19

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-637-5

  • Online ISBN: 978-0-85729-638-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics