Nitrogen Photofixation at Nanostructured Iron Titanate Films

  • Horst Kisch
Part of the Green Energy and Technology book series (GREEN)


A nanostructured iron titanate thin film on glass is prepared by a sol-gel method from iron(III) chloride and titanium tetraisopropylate. Energy dispersive X-ray analysis, Mößbauer spectroscopy, and wavelength dependent measurements of the quasi-Fermi level suggest the presence of an Fe2Ti2O7 phase having n-type semiconductor characteristics. In the presence of ethanol or humic acids and traces of oxygen, the film photocatalyzes the fixation of dinitrogen to ammonia and nitrate under ultraviolet or visible light irradiation. In the first observable reaction step, hydrazine is produced, which then undergoes further photoreduction to ammonia. Oxidation of the latter by oxygen yields nitrate as the final product. Since the reaction also occurs in air and with visible light (λ > 455 nm), and since the iron titanate phase can be formed by weathering of ilmenite minerals, the system may be a model for a previously unknown non-enzymatic nitrogen fixation in nature.


Humic Acid Ammonium Chloride Solution Hydroxyethyl Radical Methyl Lithium Current Amplification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Deutsche Forschungsgemeinschaft. Helpful assistance by Dr. P. Zabek is highly appreciated.


  1. 1.
    Hidai M, Mizobe Y (1995) Recent advances in the chemistry of dinitrogen complexes. Chem Rev (Washington DC) 95(4):1115–1133Google Scholar
  2. 2.
    Sellmann D, Weiss W (1978) Consecutive nucleophilic and electrophilic attack on nitrogen ligands: synthesis of azomethane from molecular nitrogen. Angewandte Chemie 90(4):295–296CrossRefGoogle Scholar
  3. 3.
    Schrauzer GN, Guth TD (1977) Photocatalytic reactions. 1. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J Am Chem Soc 99(22):7189–7193CrossRefGoogle Scholar
  4. 4.
    Radford PP, Francis CG (1983) Photoreduction of nitrogen by metal-doped titanium dioxide powders: A novel use for metal vapor techniques. J Chem Soc Chem Commun 24:1520–1521CrossRefGoogle Scholar
  5. 5.
    Endoh E, Bard AJ (1987) Heterogeneous photoreduction of nitrogen to ammonia on catalyst-loaded titanium(IV) oxide powders. New J Chem 11(3):217–219Google Scholar
  6. 6.
    Endoh E, Leland JK, Bard AJ (1986) Heterogeneous photoreduction of nitrogen to ammonia on tungsten oxide. J Phys Chem 90(23):6223–6226CrossRefGoogle Scholar
  7. 7.
    Lichtin NN, Vijayakumar KM (1986) Photoassisted solid-catalyzed reduction of molecular nitrogen by water. Evidence for a photostationary state and for catalytic activity of many oxides. J Indian Chem Soc 63(1):29–34Google Scholar
  8. 8.
    Augugliaro V, Lauricella A, Rizzuti L, Schiavello M, Sclafani A (1982) Conversion of solar energy to chemical energy by photoassisted processes—I. Preliminary results on ammonia production over doped titanium dioxide catalysts in a fluidized-bed reactor. Int J Hydrogen Energy 7(11):845–849CrossRefGoogle Scholar
  9. 9.
    Augugliaro V, D’Alba F, Rizzuti L, Schiavello M, Sclafani A (1982) Conversion of solar energy to chemical energy by photoassisted processes–II. Influence of the iron content on the activity of doped titanium dioxide catalysts for ammonia photoproduction. Int J Hydrogen Energy 7(11):851–855CrossRefGoogle Scholar
  10. 10.
    Khader MM, Lichtin NN, Vurens GH, Salmeron M, Somorjai GA (1987) Photoassisted catalytic dissociation of water and reduction of nitrogen to ammonia on partially reduced ferric oxide. Langmuir 3(2):303–304CrossRefGoogle Scholar
  11. 11.
    Miyama H, Fujii N, Nagae Y (1980) Heterogeneous photocatalytic synthesis of ammonia from water and nitrogen. Chem Phys Lett 74(3):523–524CrossRefGoogle Scholar
  12. 12.
    Rao NN, Dube S, Natarajan P, Manjubala (1994) Photocatalytic reduction of nitrogen over (Fe, Ru or Os)/Tio2 catalysts. Appl Catal B 5(1–2):33–42CrossRefGoogle Scholar
  13. 13.
    Litter MI, Navío JA (1996) Photocatalytic properties of iron-doped titania semiconductors. J Photochem Photobiol A: Chem 98:171–181CrossRefGoogle Scholar
  14. 14.
    Yue PL, Khan F, Rizzuti L (1983) Photocatalytic ammonia synthesis in a fluidized bed reactor. Chem Eng Sci 38(11):1893–1900CrossRefGoogle Scholar
  15. 15.
    Khan MMT, Chatterjee D, Bala M (1992) Photocatalytic reduction of nitrogen to ammonia sensitized by the [ruthenium(III)-ethylenediaminetetraacetate-2, 2′-bipyridyl]-complex in a platinum-titania semiconductor particulate system. J Photochem Photobiol A 67(3):349–352CrossRefGoogle Scholar
  16. 16.
    Soria J, Conesa JC, Augugliaro V, Palmisano L, Schiavello M, Sclafani A (1991) Dinitrogen photoreduction to ammonia over titanium dioxide powders doped with ferric ions. J Phys Chem 95(1):274–282CrossRefGoogle Scholar
  17. 17.
    Sclafani A, Palmisano L, Schiavello M (1992) Photoreduction of dinitrogen and photooxidation of phenol and nitrophenol isomers as examples of heterogeneous photocatalytic reactions. Res Chem Intermed 18(2–3):211–226CrossRefGoogle Scholar
  18. 18.
    Palmisano L, Augugliaro V, Sclafani A, Schiavello M (1988) Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation. J Phys Chem 92(23):6710–6713CrossRefGoogle Scholar
  19. 19.
    Augugliaro V, Soria J (1993) Concerning “an opinion on the heterogeneous photoreduction of nitrogen with water”. Angew Chem 105(4):579 (See also Angew Chem, Int Ed Engl, 1993, 1932(1994), 1550)CrossRefGoogle Scholar
  20. 20.
    Palmisano L, Schiavello M, Sclafani A (1993) Concerning “an opinion on the heterogeneous photoreduction of nitrogen with water”. Angew Chem 105 (4):580 (See also Angew Chem, Int Ed Engl, 1993, 1932(1994), 1551)CrossRefGoogle Scholar
  21. 21.
    Hoshino K, Inui M, Kitamura T, Kokado H (2000) Fixation of dinitrogen to a mesoscale solid salt using a titanium oxide/conducting polymer system. Angew Chem Int Ed 39(14):2509–2512CrossRefGoogle Scholar
  22. 22.
    Hoshino K, Kuchii R, Ogawa T (2008) Dinitrogen photofixation properties of different titanium oxides in conducting polymer/titanium oxide hybrid systems. Appl Catal B Appl Catal B: Environ 79(1):81–88CrossRefGoogle Scholar
  23. 23.
    Boucher DL, Davies JA, Edwards JG, Mennad A (1995) An investigation of the putative photosynthesis of ammonia on iron-doped titania and other metal oxides. J Photochem Photobiol A 88(1):53–64CrossRefGoogle Scholar
  24. 24.
    Edwards JG, Davies JA, Boucher DL, Mennad A (1992) Comments on heterogeneous photoreaction of nitrogen with water. Angew Chem 104 (4):489–491 (See also Angew Chem Int Ed Engl, 1992, 1931(1994), 1480-1992)CrossRefGoogle Scholar
  25. 25.
    Gupta SK, Rajakumar V, Grieveson P (1991) Phase transformations during heating of ilmenite concentrates. Metall Trans B 22B(5):711–716CrossRefGoogle Scholar
  26. 26.
    Joint commitee on powder diffraction standards 1970–1989, powder diffraction file (Swarthmore, Pennsylvania: International Center for Diffraction Data)Google Scholar
  27. 27.
    Goldanski VI, Herber RH (1968) Chemical applications of mössbauer spectroscopy. Academic Press, New YorkGoogle Scholar
  28. 28.
    Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. J Phys Soc Jpn Suppl 21:123–126Google Scholar
  29. 29.
    Rusina O, Linnik O, Eremenko A, Kisch H (2003) Nitrogen photofixation on nanostructured iron titanate films. Chem Eur J 9(2):561–565CrossRefGoogle Scholar
  30. 30.
    Roy AM, De GC, Sasmal N, Bhattacharyya SS (1995) Determination of the flatband potential of semiconductor particles in suspension by photovoltage measurement. Int J Hydrogen Energy 20(8):627–630CrossRefGoogle Scholar
  31. 31.
    Gerischer H (1966) Electrochemical behavior of semiconductors under illumination. J Electrochem Soc 113 (11):1174–1181 (discussion 1181–1172)CrossRefGoogle Scholar
  32. 32.
    Ward MD, White JR, Bard AJ (1983) Electrochemical investigation of the energetics of particulate titanium dioxide photocatalysts. The methyl viologen-acetate system. J Am Chem Soc 105(1):27–31CrossRefGoogle Scholar
  33. 33.
    White JR, Bard AJ (1985) Electrochemical investigation of photocatalysis at cadmium sulfide suspensions in the presence of methylviologen. J Phys Chem 89(10):1947–1954CrossRefGoogle Scholar
  34. 34.
    Rusina O, Macyk W, Kisch H (2005) Photoelectrochemical properties of a dinitrogen-fixing iron titanate thin film. J Phys Chem B 109(21):10858–10862CrossRefGoogle Scholar
  35. 35.
    Linnik O, Kisch H (2006) On the mechanism of nitrogen photofixation at nanostructured iron titanate films. Photochem Photobiol Sci 5(10):938–942CrossRefGoogle Scholar
  36. 36.
    Zones SI, Palmer MR, Palmer JG, Doemeny JM, Schrauzer GN (1978) Hydrogen evolving systems. 3. Further observations on the reduction of molecular nitrogen and of other substrates in the vanadium(II) hydroxide-magnesium hydroxide system. J Am Chem Soc 100(7):2113–2121CrossRefGoogle Scholar
  37. 37.
    Ileperuma OA, Kiridena WCB, Dissanayake WDDP (1991) Photoreduction of nitrogen and water on montmorillonite clays loaded with hydrous ferric oxide. J Photochem Photobiol A 59(2):191–197CrossRefGoogle Scholar
  38. 38.
    Schrauzer GN, Guth TD, Salehi J, Strampach N, Hui LN, Palmer MR (1986) Photoreduction and -oxidation of molecular nitrogen on titanium dioxide and titanium containing minerals. NATO ASI Ser, Ser C (Homogeneous Heterog Photocatal) 174:509–520Google Scholar
  39. 39.
    McLean WR, Ritchie M (1965) Reactions on titanium dioxide photooxidation of ammonia. J Appl Chem 15(10):452–460CrossRefGoogle Scholar
  40. 40.
    Mozzanega H, Herrmann JM, Pichat P (1979) Ammonia oxidation over UV-irradiated titanium dioxide at room temperature. J Phys Chem 83(17):2251–2255CrossRefGoogle Scholar
  41. 41.
    Pichat P, Herrmann JM, Courbon H, Disdier J, Mozzanega MN (1982) Photocatalytic oxidation of various compounds over titanium dioxide and other semiconductor oxides; mechanistic considerations. Can J Chem Eng 60(1):27–32CrossRefGoogle Scholar
  42. 42.
    Pollema CH, Milosavljevic EB, Hendrix JL, Solujic L, Nelson JH (1992) Photocatalytic oxidation of aqueous ammonia (ammonium ion) to nitrite or nitrate at titanium dioxide particles. Monatsh Chem 123(4):333–339CrossRefGoogle Scholar
  43. 43.
    Calza P, Pelizzetti E (2001) Photocatalytic transformation of organic compounds in the presence of inorganic ions. Pure Appl Chem 73(12):1839–1848CrossRefGoogle Scholar
  44. 44.
    Lewandowski M, Ollis DF (2003) Halide acid pretreatments of photocatalysts for oxidation of aromatic air contaminants: rate enhancement, rate inhibition, and a thermodynamic rationale. J Catal 217(1):38–46Google Scholar
  45. 45.
    Schrauzer GN, Palmer JG (2003) The chemical evolution of a nitrogenase model, XXIV. Correlational analysis of effects of organic acids on in vitro MoFe-protein substrate reduction activities. [erratum to document cited in ca136:305895]. Z Naturforsch B: Chem Sci 58(8):820Google Scholar
  46. 46.
    Zones SI, Vickrey TM, Palmer JG, Schrauzer GN (1976) Hydrogen evolving systems. 2. The reduction of molecular nitrogen, organic substrates, and protons by vanadium(II). J Am Chem Soc 98(23):7289–7295CrossRefGoogle Scholar
  47. 47.
    Schrauzer GN, Palmer MR (1981) Hydrogen-evolving systems. 4. The reduction of molecular nitrogen and of other substrates in the vanadium(II)-pyrocatechol system. J Am Chem Soc 103(10):2659–2667CrossRefGoogle Scholar
  48. 48.
    Schrauzer GN, Strampach N, Palmer MR, Zones SI (1981) Reduction of acetylene and nitrogen in the vanadium(II)-magnesium hydroxide system: concerning reaction stoichiometries and mechanisms of substrate reduction. Nouv J Chim 5(1):5–10Google Scholar
  49. 49.
    Schrauzer GN, Strampach N, Hui LN, Palmer MR, Salehi J (1983) Nitrogen photoreduction on desert sands under sterile conditions. Proc Natl Acad Sci USA 80(12):3873–3876CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Chemistry and Pharmacy, Institute of Inorganic ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations