Nanostructured Electrodes and Devices for Converting Carbon Dioxide Back to Fuels: Advances and Perspectives

  • Gabriele Centi
  • Siglinda Perathoner
Part of the Green Energy and Technology book series (GREEN)


The production of solar fuels from water and CO2 is an efficient solution to store and use solar energy and reduce the negative effects associated with large volumes of CO2 emissions. In this vision, the liquid fuels produced by recycling CO2 using solar energy are an ideal energy source: easy to store/transport and providing full integration into the existing energy infrastructure. After discussing the possible option to reach this objective, the use of a novel photoelectrocatalytic (PEC) device is analyzed in a more detail. New characteristics of the photoanode and electrocatalyst are required. Some aspects related to the characteristics of nanostructured (a) TiO2 thin films (based on an ordered array of titania nanotubes) and their performances as photoanodes and (b) carbon nanotube-based electrodes for the gas phase reduction of CO2 to liquid fuels (mainly isopropanol) together with their application for the design of a novel photoelectrocatalytic (PEC) approach for the synthesis of solar fuels will be presented.


Liquid Fuel TiO2 Thin Film Photocatalytic Reduction Electrocatalytic Reduction Concentrate Solar Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This paper derives from many discussions we had in the frame of various EU projects (NATAMA, ELCAT, IDECAT) dedicated to this topic, and in the frame of the activities of the European Laboratory of Catalysis and Surface Science (ELCASS) which partners (FHI-MPG, and LMSPC-ECPM-ULP) are gratefully acknowledged. In particular, we are grateful for useful discussions with Prof. R. Schlögl and Dr. D.S. Su (Fritz Haber Institute of Max Plank Gesellschaft, Berlin, Germany) and Prof. R. Lambert (University of Cambridge, U.K.).


  1. 1.
    Figuero JD, Fout T, Plasynski S et al (2008) Advances in CO2 capture technology-The U.S. department of energy’s carbon sequestration program. Int J Greenhouse Gas Control 2:9–20CrossRefGoogle Scholar
  2. 2.
    Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2(9):796–854CrossRefGoogle Scholar
  3. 3.
    Yu KM, Curcic I, Gabriel J, Tsang SC (2008) Recent advances in CO2 capture and utilization. ChemSusChem 1(11):893–899CrossRefGoogle Scholar
  4. 4.
    Mikkelsen M, Jørgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Env Sci 3(1):43–81CrossRefGoogle Scholar
  5. 5.
    Peters M, Mueller T, Leitner W (2009) CO2: from waste to value. Tce 813:46–47Google Scholar
  6. 6.
    Ritter SK (2007) What can we do with carbon dioxide? Chem Eng News 85(18):11CrossRefGoogle Scholar
  7. 7.
    International energy agency—IEA (2009) World energy outlook 2009, ParisGoogle Scholar
  8. 8.
    Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans (28): 2975–2992Google Scholar
  9. 9.
    Sakakura T, Choi J-C, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107(6):2365–2387CrossRefGoogle Scholar
  10. 10.
    Omae I (2006) Aspects of carbon dioxide utilization. Catal Today 115(1–4):33–52CrossRefGoogle Scholar
  11. 11.
    Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115(1–4):2–32CrossRefGoogle Scholar
  12. 12.
    Sun Y (2004) Carbon dioxide utilization for global sustainability. Stud Surf Sci Catal 153:9–16CrossRefGoogle Scholar
  13. 13.
    Aresta M, Dibenedetto A (2004) The contribution of the utilization option to reducing the CO2 atmospheric loading: Research needed to overcome existing barriers for a full exploitation of the potential of the CO2 use. Catal Today 98(4):455–462CrossRefGoogle Scholar
  14. 14.
    Arakawa H, Aresta M, Armor JN et al (2001) Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem Rev 101(4):953–996CrossRefGoogle Scholar
  15. 15.
    Graham-Rowe D (2008) Turning CO2 back into hydrocarbons. New Scientist 2645 (March): 32Google Scholar
  16. 16.
    Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148(3–4):191–205CrossRefGoogle Scholar
  17. 17.
    Centi G, Perathoner S (2004) Carbon dioxide utilization for global sustainability. Stud Surf Sci Catal 153:1–8CrossRefGoogle Scholar
  18. 18.
    Centi G, Perathoner S, Rak ZS (2003) Reduction of greenhouse gas emissions by catalytic processes. Appl Catal B: Env 41(1–2):143–155CrossRefGoogle Scholar
  19. 19.
    Bell AT, Gates BC, Ray D (2007) Basic research needs: catalysis for energy (PNNL-17214). U.S. Department of Energy, Washington, DCGoogle Scholar
  20. 20.
    Olah GA, Goeppert A, Prakash GKS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74(2):487–498CrossRefGoogle Scholar
  21. 21.
    Centi G, van Santen RA (2007) Catalysis for renewables. Wiley-VCH, Weinheim (Germany)CrossRefGoogle Scholar
  22. 22.
    Cavani F, Centi G, Perathoner S et al (2009) Sustainable industrial chemistry—principles, tools and industrial examples. Wiley-VCH, Weinheim (Germany)CrossRefGoogle Scholar
  23. 23.
    Centi G, Perathoner S (2009) The role of nanostructure in improving the performance of electrodes for energy storage and conversion. Eur J Inorg Chem 26:3851–3878CrossRefGoogle Scholar
  24. 24.
    Serrano E, Rus G, García-Martínez J (2009) Nanotechnology for sustainable energy. Renew Sustain Energy Rev 13(9):2373–2384CrossRefGoogle Scholar
  25. 25.
    Muradov NZ, Veziroğlu TN (2008) “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. Int J Hydrogen Energy 33(23):6804–6839CrossRefGoogle Scholar
  26. 26.
    Sahaym U, Norton MG (2008) Advances in the application of nanotechnology in enabling a ‘hydrogen economy’. J Mater Sci 43(16):5395–5429CrossRefGoogle Scholar
  27. 27.
    Züttel A, Borgschulte A, Schlapbach L (2008) Hydrogen as a future energy carrier. Wiley-VCH, Weinheim (Germany)CrossRefGoogle Scholar
  28. 28.
    Centi G, Perathoner S (2010) Towards solar fuels from water and CO2. ChemSusChem 3:195–208CrossRefGoogle Scholar
  29. 29.
    Ampelli C, Centi G, Passalacqua R, Perathoner S (2010) Synthesis of solar fuels by a novel photoelectrocatalytic approach. Energy Env Sci 3(3):292–301CrossRefGoogle Scholar
  30. 30.
    Centi G, Perathoner S, Passalacqua R, Ampelli C (2010) Solar production of fuels from water and CO2. In: Veziroglu N, Muradov N (eds) Carbon neutral fuels and energy carriers: science and technology. Taylor & Francis, LondonGoogle Scholar
  31. 31.
    Higo M, Dowaki K (2010) A life cycle analysis on a Bio-DME production system considering the species of biomass feedstock in Japan and Papua New Guinea. Appl Energy 87(1):58–67CrossRefGoogle Scholar
  32. 32.
    Azzopardi B, Mutale J (2010) Life cycle analysis for future photovoltaic systems using hybrid solar cells. Renew Sustain Energy Rev 14(3):1130–1134CrossRefGoogle Scholar
  33. 33.
    Dufour J, Gálvez JL, Serrano DP et al (2009) Life cycle assessment of hydrogen production by methane decomposition using carbonaceous catalysts. Int J Hydrogen Energy 35(3):1205–1212CrossRefGoogle Scholar
  34. 34.
    Lee J-Y, Yoo M, Cha K et al (2009) Life cycle cost analysis to examine the economical feasibility of hydrogen as an alternative fuel. Int J Hydrogen Energy 34(10):4243–4255CrossRefGoogle Scholar
  35. 35.
    Li Z, Gao D, Chang L, Liu P et al (2010) Coal-derived methanol for hydrogen vehicles in China: energy, environment, and economic analysis for distributed reforming. Chem Eng Res Des 88(1):73–80CrossRefGoogle Scholar
  36. 36.
    Xiao J, Shen L, Zhang Y et al (2009) Integrated analysis of energy, economic, and environmental performance of biomethanol from rice straw in China. Ind Eng Chem Research 48(22):9999–10007CrossRefGoogle Scholar
  37. 37.
    Dowaki K, Genchi Y (2009) Life cycle inventory analysis on Bio-DME and/or Bio-MeOH products through BLUE tower process. Int J Life Cycle Assess 14(7):611–620CrossRefGoogle Scholar
  38. 38.
    Dowaki K, Eguchi T, Ohkubo R et al (2009) A life cycle assessment on a fuel production through distributed biomass gasification process. IEEJ Trans Electron, Inform Syst 128(2):168–175CrossRefGoogle Scholar
  39. 39.
    Wu JCS (2009) Photocatalytic reduction of greenhouse gas CO2 to fuel. Catal Surv Jpn 13(1):30–40Google Scholar
  40. 40.
    Armor JN (2007) Addressing the CO2 dilemma. Catal Letters 114(3–4):115–121CrossRefGoogle Scholar
  41. 41.
    Centi G, Cum G (2008) Conversion of carbon dioxide to fuels and chemicals. In: Centi G, Cum G, Fierro JLG et al. (eds), Direct conversion of methane, ethane and carbon dioxide to fuels and chemicals, CAP Report, The catalyst group resources. Spring House, Pa (US)Google Scholar
  42. 42.
    Dey GR (2007) Chemical Reduction of CO2 to different products during photo catalytic reaction on TiO2 under diverse conditions: an overview. J Natural Gas Chem 16(3):217–226CrossRefGoogle Scholar
  43. 43.
    Kodama T (2003) High-temperature solar chemistry for converting solar heat to chemical fuels. Prog Energy Combust Sci 29(6):567–597CrossRefGoogle Scholar
  44. 44.
    Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42(12):1983–1994CrossRefGoogle Scholar
  45. 45.
    Magnuson A, Anderlund M, Johansson O et al (2009) Biomimetic and microbial approaches to solar fuel generation. Acc Chem Res 42(12):1899–1909CrossRefGoogle Scholar
  46. 46.
    Jessop PG, Joó F, Tai C-C (2004) Recent advances in the homogeneous hydrogenation of carbon dioxide. Coord Chem Rev 248(21–24):2425–2442CrossRefGoogle Scholar
  47. 47.
    Stöcker M (2008) Biofuels and biomass-to-liquid fuels in the biorefinery: Catalytic conversion of lignocellulosic biomass using porous materials. Angew Chemie–Int Ed 47(48):9200–9211CrossRefGoogle Scholar
  48. 48.
    van Steen E, Claeys M (2008) Fischer-Tropsch catalysts for the biomass-to-liquid process. Chem Eng Techn 31(5):655–666CrossRefGoogle Scholar
  49. 49.
    Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232CrossRefGoogle Scholar
  50. 50.
    Brennan L, Owende P (2010) Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577CrossRefGoogle Scholar
  51. 51.
    Lardon L, Hélias A, Sialve B et al (2009) Life-cycle assessment of biodiesel production from microalgae. Env Sci Technol 43(17):6475–6481CrossRefGoogle Scholar
  52. 52.
    Allakhverdiev SI, Kreslavski VD, Thavasi V et al (2009) Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems. Photochem Photobiolo Sci 8(2):148–156CrossRefGoogle Scholar
  53. 53.
    Angermayr SA, Hellingwerf KJ, Lindblad P et al (2009) Energy biotechnology with cyanobacteria. Current Opinion Biotechnol 20(3):257–263CrossRefGoogle Scholar
  54. 54.
    Kodama T, Gokon N (2007) Thermochemical cycles for high-temperature solar hydrogen production. Chem Rev 107(10):4048–4077CrossRefGoogle Scholar
  55. 55.
    Licht S (2005) Thermochemical solar hydrogen generation. Chemical Comm 37(7):4635–4646CrossRefGoogle Scholar
  56. 56.
    N’Tsoukpoe KE, Liu H, Le Pierrès N et al (2009) A review on long-term sorption solar energy storage. Renew Sustain Energy Rev 13(9):2385–2396CrossRefGoogle Scholar
  57. 57.
    Tributsch H (2008) Photovoltaic hydrogen generation. Int J Hydrogen Energy 33(21):5911–5930CrossRefGoogle Scholar
  58. 58.
    Kaneko M, Nemoto J, Ueno H et al (2006) Photoelectrochemical reaction of biomass and bio-related compounds with nanoporous TiO2 film photoanode and O2-reducing cathode. Electrochem Comm 8(2):336–340CrossRefGoogle Scholar
  59. 59.
    Currao A (2007) Photoelectrochemical water splitting. Chimia 61(12):815–819CrossRefGoogle Scholar
  60. 60.
    Barton EE, Rampulla DM, Bocarsly AB (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP-based photoelectrochemical cell. J Am Chem Soc 130(20):6342–6344CrossRefGoogle Scholar
  61. 61.
    Navarro Yerga RM, Alvarez Galván MC, del Valle F et al (2009) Water splitting on semiconductor catalysts under visible-light irradiation. ChemSusChem 2(6):471–485CrossRefGoogle Scholar
  62. 62.
    Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278CrossRefGoogle Scholar
  63. 63.
    Minero C, Maurino V (2007) Chapter 16 Solar photocatalysis for hydrogen production and CO2 conversion. In: Centi G, van Santen R (eds) Catalysis for renewables. Wiley-VCH, Weinheim (Germany), pp 351–385CrossRefGoogle Scholar
  64. 64.
    Dey GR, Belapurkarb AD, Kishore K (2004) Photo-catalytic reduction of carbon dioxide to methane using TiO2 as suspension in water. J Photochem Photobiol: Chem 163(3):503–508CrossRefGoogle Scholar
  65. 65.
    Tana SS, Zoub L, Hu E (2006) Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets. Catal Today 115(1–4):269–273CrossRefGoogle Scholar
  66. 66.
    Wu JCS (2009) Photocatalytic reduction of greenhouse gas CO2 to fuel. Catal Surv Jpn 13(1):30–40Google Scholar
  67. 67.
    Neumann B, Bogdanoff P, Tributsch H (2009) TiO2-protected photoelectrochemical tandem Cu(In, Ga)Se2 thin film membrane for light-induced water splitting and hydrogen evolution. J Phys Chem C 113(49):20980–20989CrossRefGoogle Scholar
  68. 68.
    Van de Krol R, Schoonman J (2008) Photo-electrochemical production of hydrogen. In: Hanjali K, Van de Krol R, Lekić A (eds) Sustainable energy technologies. Springer, Netherlands, pp 121–142CrossRefGoogle Scholar
  69. 69.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  70. 70.
    Olah GA, Goeppert A, Surya Prakash GK (2009) Beyond oil and gas: the methanol economy. Wiley-VCH, (Germany)CrossRefGoogle Scholar
  71. 71.
    DuBois DL (2006) Chapter 6.2 Electrochemical reactions of carbon dioxide. In: DuBois DL (ed) Encyclopedia of Electrochemistry, vol 7. Wiley-VCH, (Germany), pp 202–225Google Scholar
  72. 72.
    Gattrell M, Gupta N, Co A (2006) A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem 594(1):1–19CrossRefGoogle Scholar
  73. 73.
    Hara K, Kudo A, Sakata T (1995) Electrochemical reduction of carbon dioxide under high pressure on various electrodes in an aqueous electrolyte. J Electroanalytical Chem 391(1–2):141–147CrossRefGoogle Scholar
  74. 74.
    Hori Y, Konishi H, Futamura T et al (2005) Deactivation of copper electrode in electrochemical reduction of CO2. Electrochim Acta 50(27):5354–5369CrossRefGoogle Scholar
  75. 75.
    Centi G, Perathoner S (2007) Nano-architecture and reactivity of titania catalytic materials. Quasi-1D nanostructures. In: Spivey JJ (ed) Catalysis (specialist periodical reports). Royal society of chemistry, vol 20. Cambridge, UK, pp 367–394Google Scholar
  76. 76.
    Centi G, Perathoner S (2009) Nano-architecture and reactivity of titania catalytic materials bidimensional nanostructured films. In: Spivey JJ, Dooley KM (eds) Catalysis (specialist periodical reports). Royal society of chemistry, vol 21. Cambridge, UK, pp 82–130Google Scholar
  77. 77.
    Centi G, Passalacqua R, Perathoner S et al (2007) Oxide thin films based on ordered arrays of 1D nanostructure. A possible approach toward bridging material gap in catalysis. Phys Chem Chem Phys 9:4930–4938CrossRefGoogle Scholar
  78. 78.
    Grimes CA, Mor GK (2009) TiO2 nanotube arrays: synthesis properties and applications. Springer, (Germany)Google Scholar
  79. 79.
    Schmuki P (2009) Self-organized oxide nanotube layers on titanium and other transition metals. In: Schmuki P, Virtanen S (eds) Electrochemistry at the nanoscale. Springer Science, (New York, US), pp 435–466CrossRefGoogle Scholar
  80. 80.
    Mor GK, Shankar K, Paulose M et al (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6(2):215–218CrossRefGoogle Scholar
  81. 81.
    Kuang D, Brillet J, Chen P et al (2008) Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2(6):1113–1116CrossRefGoogle Scholar
  82. 82.
    Shankar K, Basham JI, Allam NK et al (2009) Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113(16):6327–6359CrossRefGoogle Scholar
  83. 83.
    Antoniadou M, Kondarides DI, Lianos P (2009) Photooxidation products of ethanol during photoelectrochemical operation using a nanocrystalline titania anode and a two compartment chemically biased cell. Catal Letters 129(3–4):344–349CrossRefGoogle Scholar
  84. 84.
    Patermarakis G (1998) Development of a theory for the determination of the composition of the anodizing solution inside the pores during the growth of porous anodic Al2O3 films on aluminium by a transport phenomenon analysis. J Elec Anal Chem 447(1–2):25–41CrossRefGoogle Scholar
  85. 85.
    Salimon J, Kalaji M (2003) Electrochemical reduction of CO2 at polycrystalline copper in aqueous phosphate buffered solution: pH and temperature dependence. Malaysian J Chem 5(1):23–29Google Scholar
  86. 86.
    Qu J, Zhang X, Wang Y et al (2005) Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. Electrochim Acta 50(16–17):3576–3580CrossRefGoogle Scholar
  87. 87.
    Shibata H, Moulijn JA, Mul G (2008) Enabling electrocatalytic Fischer–Tropsch synthesis from carbon dioxide over copper-based electrodes. Catal Lett 123(3–4):186–192CrossRefGoogle Scholar
  88. 88.
    Centi G, Perathoner S, Wine G et al (2006) Converting CO2 to fuel: a dream or a challenge? Prepr Symp–Am Chem Soc Div Fuel Chem 51:745–746Google Scholar
  89. 89.
    Centi G, Perathoner S, Wine G et al (2007) Electrocatalytic conversion of CO2 to long carbon-chain hydrocarbons. Green Chem 9(6):671–678CrossRefGoogle Scholar
  90. 90.
    Centi G, Perathoner S (2009) Catalysis: role and challenges for a sustainable energy. Top Catal 52(8):948–961CrossRefGoogle Scholar
  91. 91.
    Gangeri M, Perathoner S, Caudo S et al (2009) Fe and Pt carbon nanotubes for the electrocatalytic conversion of carbon dioxide to oxygenates. Catal Today 143(1–2):57–63CrossRefGoogle Scholar
  92. 92.
    Perathoner S, Gangeri M, Lanzafame P et al (2007) Nanostructured electrocatalytic Pt-carbon materials for fuel cells and CO2 conversion. Kinet Catal 48:877–883CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Dipartimento di Chimica Industriale ed Ingegneria dei Materiali and CASPE (INSTM Laboratory of Catalysis for Sustainable Production and Energy)Università di MessinaMessinaItaly

Personalised recommendations