Skip to main content

Heterogeneous Photocatalytic Conversion of Carbon Dioxide

  • Chapter
  • First Online:
Energy Efficiency and Renewable Energy Through Nanotechnology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Carbon dioxide is a greenhouse gas, which may contribute to the global warming. The conversion of carbon dioxide to more useful chemicals is not an easy task because of a high thermodynamic barrier, which requires much energy consumption. However, we should not use energy from fossil resources to convert the carbon dioxide because the use of them produces carbon dioxide; therefore, it is desirable to use natural energy for this purpose. Photocatalysis, which can utilize solar energy and break the thermodynamic limitation, is a possible green technology available for the carbon dioxide conversion and many studies have been carried out. In this chapter, after a description of the importance of the photocatalytic system, the physical and chemical basis for carbon dioxide conversion, and the basis for photocatalysis and photocatalysts, we will review a brief history about heterogeneous photocatalytic conversion of carbon dioxide to other compounds, such as methane, methanol and carbon monoxide, by using reducing reagents such as water, hydrogen and methane. The perspectives related to the field of nanotechnology will also be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Indrakanti VP, Kubicki JD, Schobert HH (2009) Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. Energy Environ Sci 2:745–758

    Article  Google Scholar 

  2. Armor JN (2007) Addressing the CO2 dilemma. Catal Lett 114:115–121

    Article  Google Scholar 

  3. Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115:2–32

    Article  Google Scholar 

  4. Xiaoding X, Moulijn JA (1996) Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products. Energy Fuels 10:305–325

    Article  Google Scholar 

  5. Sakakura T, Choi JC, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107:2365–2387

    Article  Google Scholar 

  6. Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 2975–2992

    Google Scholar 

  7. Usubharatana P, McMartin D, Veawab A, Tontiwachwuthikul P (2006) Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Ind Eng Chem Res 45:2558–2568

    Article  Google Scholar 

  8. Hattori H (1995) Heterogeneous Basic Catalysis. Chem Rev 95:537–558

    Article  Google Scholar 

  9. Yuliati L, Yoshida H (2008) Photocatalytic conversion of methane. Chem Soc Rev 37:1592–1602

    Article  Google Scholar 

  10. Roh H-S, Potdar HS, Jun K-W (2004) Catal Today 93–95:39–44

    Article  Google Scholar 

  11. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  Google Scholar 

  12. The Chemical Society of Japan (1984) Kagakubinran kisohen, 3rd edn. Maruzen, Tokyo

    Google Scholar 

  13. Atkins PW (1998) Physical chemistry, 6th edn. Oxford University Press, Oxford

    Google Scholar 

  14. Shaw DA, Holland DMP, Hayes MA et al (1995) A study of the absolute photoabsorption, photoionisation and photodissociation cross sections and the photoionisation quantum efficiency of carbon dioxide from the ionisation threshold to 345 Å. Chem Phys 198:381–396

    Article  Google Scholar 

  15. Freund HJ, Roberts MW (1996) Surface chemistry of carbon dioxide. Surf Sci Rep 25:225–273

    Article  Google Scholar 

  16. The CODATA Task Group on key values for thermodynamics (1978) CODATA recommended key values for thermodynamics, 1977. J Chem Thermodyn 10:903–906

    Google Scholar 

  17. Murata C, Yoshida H, Kumagai J, Hattori T (2003) Active sites and active oxygen species for photocatalytic epoxidation of propene by molecular oxygen over TiO2–SiO2 binary oxides. J Phys Chem B 107:4364–4373

    Article  Google Scholar 

  18. Yoshida H (2003) Silica-based quantum photocatalysts for selective reactions. Curr Opin Solid State Mater Sci 7:435–442

    Article  Google Scholar 

  19. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  20. Hemminger JC, Carr R, Somorjai GA (1978) The photoassisted reaction of gaseous water and carbon dioxide adsorbed on the SrTiO3 (111) crystal face to form methane. Chem Phys Lett 57:100–104

    Article  Google Scholar 

  21. Halmann M (1978) Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275:115–116

    Article  Google Scholar 

  22. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638

    Article  Google Scholar 

  23. Aurian-Blajeni B, Halmann M, Manassen J (1980) Photoreduction of carbon dioxide and water into formaldehyde and methanol on semiconductor materials. Sol Energy 25:165–170

    Article  Google Scholar 

  24. Halmann M, Ulman M, Aurian-Blajeni B (1983) Photochemical solar collector for the photoassisted reduction of aqueous carbon dioxide. Sol Energy 31:429–431

    Article  Google Scholar 

  25. Irvine JTS, Eggins BR, Grimshaw J (1990) Solar energy fixation of carbon dioxide via cadmium sulphide and other semiconductor photocatalysts. Sol Energy 45:27–33

    Article  Google Scholar 

  26. Bard AJ (1980) Photoelectrochemistry. Science 207:139–144

    Article  Google Scholar 

  27. Sato S, White JM (1980) Photodecomposition of water over Pt/TiO2 catalysts. Chem Phys Lett 72:83–86

    Article  Google Scholar 

  28. Chandrasekaran K, Thomas JK (1983) Photochemical reduction of carbonate to formaldehyde on TiO2 powder. Chem Phys Lett 99:7–10

    Article  Google Scholar 

  29. Halmann M, Katzir V, Borgarello E, Kiwi J (1984) Photoassisted carbon dioxide reduction on aqueous suspensions of titanium dioxide. Solar Energy Mater 10:85–91

    Article  Google Scholar 

  30. Tennakone K (1984) Photoreduction of carbonic acid by mercury coated n-titanium dioxide. Solar Energy Mater 10:235–238

    Article  Google Scholar 

  31. Raphael MW, Malati MA (1989) The photocatalysed reduction of aqueous sodium carbonate using platinized titania. J Photochem Photobiol A 46:367–377

    Article  Google Scholar 

  32. Hirano K, Inoue K, Yatsu T (1992) Photocatalysed reduction of CO2 in aqueous TiO2 suspension mixed with copper powder. J Photochem Photobiol A 64:255–258

    Article  Google Scholar 

  33. Ishitani O, Inoue C, Suzuki Y, Ibusuki T (1993) Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2. J Photochem Photobiol A 72:269–271

    Article  Google Scholar 

  34. Solymosi F, Tombácz I (1994) Photocatalytic reaction of H2O+CO2 over pure and doped Rh/TiO2. Catal Lett 27:61–65

    Article  Google Scholar 

  35. Yamashita H, Nishiguchi H, Kamada N et al (1994) Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts. Res Chem Intermed 20:815–823

    Article  Google Scholar 

  36. Tseng IH, Chang WC, Wu JCS (2002) Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Appl Catal B 37:37–48

    Article  Google Scholar 

  37. Tseng IH, Wu JCS, Chou HY (2004) Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J Catal 221:432–440

    Article  Google Scholar 

  38. Wu JCS, Lin HM, Lai CL (2005) Photo reduction of CO2 to methanol using optical-fiber photoreactor. Appl Catal A 296:194–200

    Article  Google Scholar 

  39. Nguyen TV, Wu JCS (2008) Photoreduction of CO2 in an optical-fiber photoreactor: effects of metals addition and catalyst carrier. Appl Catal A 335:112–120

    Article  Google Scholar 

  40. Kiwi J, Grätzel M (1984) Optimization of conditions for photochemical water cleavage. Aqueous Pt/TiO2 (anatase) dispersions under ultraviolet light. J Phys Chem 88:1302–1307

    Article  Google Scholar 

  41. Kiwi J, Morrison C (1984) Heterogeneous photocatalysis. Dynamics of charge transfer in lithium-doped anatase-based catalyst powders with enhanced water photocleavage under ultraviolet irradiation. J Phys Chem 88:6146–6152

    Article  Google Scholar 

  42. Yamaguti K, Sato S (1985) Pressure dependence of the rate and stoichiometry of water photolysis over platinized TiO2 catalysts. J Phys Chem 89:5510–5513

    Article  Google Scholar 

  43. Munuera G, Rives-Arnau V, Saucedo A (1979) Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO2 surfaces. Part 1.–Role of hydroxyl groups in photoadsorption. J Chem Soc, Faraday Trans 1 75:736–747

    Article  Google Scholar 

  44. Gonzalez-Elipe A, Munuera G, Soria J (1979) Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO2 surfaces. Part 2.–Study of radical intermediates by electron paramagnetic resonance. J Chem Soc, Faraday Trans 1 75:748–761

    Article  Google Scholar 

  45. Sayama K, Arakawa H (1993) Photocatalytic decomposition of water and photocatalytic reduction of carbon dioxide over ZrO2 catalyst. J Phys Chem 97:531–533

    Article  Google Scholar 

  46. Adachi K, Ohta K, Mizuno T (1994) Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Sol Energy 53:187–190

    Article  Google Scholar 

  47. Mizuno T, Adachi K, Ohta K, Saji A (1996) Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions. J Photochem Photobiol A 98:87–90

    Article  Google Scholar 

  48. Pathak P, Meziani MJ, Li Y et al (2004) Improving photoreduction of CO2 with homogeneously dispersed nanoscale TiO2 catalysts. Chem Commun 1234–1235

    Google Scholar 

  49. Pathak P, Meziani MJ, Castillo L, Sun YP (2005) Metal-coated nanoscale TiO2 catalysts for enhanced CO2 photoreduction. Green Chem 7:667–670

    Article  Google Scholar 

  50. Saladin F, Alxneit I (1997) Temperature dependence of the photochemical reduction of CO2 in the presence of H2O at the solid/gas interface of TiO2. J Chem Soc, Faraday Trans 93:4159–4163

    Article  Google Scholar 

  51. Mizuno T, Tsutsumi H, Ohta K, et al. (1994) Photocatalytic reduction of CO2 with dispersed TiO2/Cu powder mixtures in supercritical CO2. Chem Lett 1533–1536

    Google Scholar 

  52. Kaneco S, Kurimoto H, Ohta K et al (1997) Photocatalytic reduction of CO2 using TiO2 powders in liauid CO2 medium. J Photochem Photobiol A 109:59–63

    Article  Google Scholar 

  53. Yahaya AH, Gondal MA, Hameed A (2004) Selective laser enhanced photocatalytic conversion of CO2 into methanol. Chem Phys Lett 400:206–212

    Article  Google Scholar 

  54. Kočí K, Obalová L, Matějová L et al (2009) Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl Catal B 89:494–502

    Article  Google Scholar 

  55. Yang HC, Lin HY, Chien YS et al (2009) Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 composite photocatalysts for photoreduction of CO2 to methanol. Catal Lett 131:381–387

    Article  Google Scholar 

  56. Yoneyama H (1997) Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution. Catal Today 39:169–175

    Article  Google Scholar 

  57. Yamashita H, Kamada N, He H et al (1994) Reduction of CO2 with H2O on TiO2(100) and TiO2(110) single crystals under UV-irradiation. Chem Lett 23:855–858

    Article  Google Scholar 

  58. Zhang QH, Han WD, Hong YJ, Yu JG (2009) Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal Today 148:335–340

    Article  Google Scholar 

  59. Ozcan O, Yukruk F, Akkaya EU, Uner D (2007) Dye sensitized CO2 reduction over pure and platinized TiO2. Top Catal 44:523–528

    Article  Google Scholar 

  60. Nguyen TV, Wu JCS, Chiou CH (2008) Photoreduction of CO2 over ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catal Commun 9:2073–2076

    Article  Google Scholar 

  61. Wang C, Thompson RL, Baltrus J, Matranga C (2010) Visible light photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts. J Phys Chem Lett 1:48–53

    Article  Google Scholar 

  62. Matsumoto Y, Obata M, Hombo J (1994) Photocatalytic reduction of carbon dioxide on p-type CaFe2O4 powder. J Phys Chem 98:2950–2951

    Article  Google Scholar 

  63. Pan PW, Chen YW (2007) Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catal Commun 8:1546–1549

    Article  Google Scholar 

  64. Jia L, Li J, Fang W (2009) Enhanced visible-light active C and Fe co-doped LaCoO3 for reduction of carbon dioxide. Catal Commun 11:87–90

    Article  Google Scholar 

  65. Miseki Y, Iizuka K, Saito K et al (2009) Water splitting and CO2 reduction over ALa4Ti4O15 (A=Ca, Sr, Ba) photocatalysts layered perovskite structure. Catal Catal 51:84–86

    Google Scholar 

  66. Iizuka K, Kojima Y, Kudo A (2009) CO2 reduction using heterogeneous photocatalysts aiming at artificial photosynthesis. Catal Catal 51:228–233

    Google Scholar 

  67. Iwase A, Kato H, Okutomi H, Kudo A (2004) Formation of surface nano-step structures and improvement of photocatalytic activities of NaTaO3 by doping of alkaline earth metal ions. Chem Lett 33:1260–1261

    Article  Google Scholar 

  68. Miseki Y, Kato H, Kudo A (2009) Water splitting into H2 and O2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure. Energy Environ Sci 2:306–314

    Article  Google Scholar 

  69. Liu Y, Huang B, Dai Y et al (2009) Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst. Catal Commun 11:210–213

    Article  Google Scholar 

  70. Anpo M, Chiba K (1992) Photocatalytic reduction of CO2 on anchored titanium oxide catalysts. J Mol Catal 74:207–212

    Article  Google Scholar 

  71. Zhang SG, Fujii Y, Yamashita H et al (1997) Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolites at 328 K. Chem Lett 26:659–660

    Article  Google Scholar 

  72. Anpo M, Yamashita H, Ichihashi Y et al (1997) Photocatalytic reduction of CO2 with H2O on titanium oxide anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt. J Phys Chem B 101:2632–2636

    Article  Google Scholar 

  73. Ikeue K, Yamashita H, Anpo M, Takewaki T (2001) Photocatalytic reduction of CO2 with H2O on Ti-β zeolite photocatalysts: effect of the hydrophobic and hydrophilic properties. J Phys Chem B 105:8350–8355

    Article  Google Scholar 

  74. Ikeue K, Nozaki S, Ogawa M, Anpo M (2002) Characterization of self-standing Ti-containing porous silica thin films and their reactivity for the photocatalytic reduction of CO2 with H2O. Catal Today 74:241–248

    Article  Google Scholar 

  75. Lin W, Han H, Frei H (2004) CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41 silicate sieve. J Phys Chem B 108:18269–18273

    Article  Google Scholar 

  76. Lin W, Frei H (2006) Bimetallic redox sites for photochemical CO2 splitting in mesoporous silicate sieve. C R Chimie 9:207–213

    Article  Google Scholar 

  77. Thampi KR, Kiwi J, Grätzel M (1987) Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature 327:506–508

    Article  Google Scholar 

  78. Kohno Y, Hayashi H, Takenaka S et al (1999) Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. J Photochem Photobiol A 126:117–123

    Article  Google Scholar 

  79. Kohno Y, Yamamoto T, Tanaka T, Funabiki T (2001) Photoenhanced reduction of CO2 by H2 over Rh/TiO2. Characterization of supported Rh species by means of infrared and X-ray absorption spectroscopy. J Mol Catal A 175:173–178

    Article  Google Scholar 

  80. Kohno Y, Tanaka T, Funabiki T, Yoshida S (1997) Photoreduction of carbon dioxide with hydrogen over ZrO2. Chem Commun 841–842

    Google Scholar 

  81. Kohno Y, Tanaka T, Funabiki T, Yoshida S (1998) Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2. J Chem Soc, Faraday Trans 94:1875–1880

    Article  Google Scholar 

  82. Kohno Y, Tanaka T, Funabiki T, Yoshida S (2000) Photoreduction of CO2 with H2 over ZrO2. A study on interaction of hydrogen with photoexcited CO2. Phys Chem Chem Phys 2:2635–2639

    Article  Google Scholar 

  83. Yoshida S, Kohno Y (2000) A new type of photocatalysis initiated by photoexcitation of adsorbed carbon dioxide on ZrO2. Catal Surv Jpn 4:107–114

    Article  Google Scholar 

  84. Lunsford JH, Jayne JP (1965) Formation of CO2 radical ions when CO2 is adsorbed on irradiated magnesium oxide. J Phys Chem 69:2182–2184

    Article  Google Scholar 

  85. Kohno Y, Ishikawa H, Tanaka T, Funabiki T, Yoshida S (2001) Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Phys Chem Chem Phys 3:1108–1113

    Article  Google Scholar 

  86. Teramura K, Tanaka T, Ishikawa H et al (2004) Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. J Phys Chem B 108:346–354

    Article  Google Scholar 

  87. Kohno Y, Tanaka T, Funabiki T, Yoshida S (1997) Photoreduction of carbon dioxide with methane over ZrO2. Chem Lett 993–994

    Google Scholar 

  88. Kohno Y, Tanaka T, Funabiki T, Yoshida S (2000) Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2. Phys Chem Chem Phys 2:5302–5307

    Article  Google Scholar 

  89. Lo CC, Hung CH, Yuan CS, Wu JF (2007) Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Mater Solar Cells 91:1765–1774

    Article  Google Scholar 

  90. Teramura K, Tsuneoka H, Shishido T, Tanaka T (2008) Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst. Chem Phys Lett 467:191–194

    Article  Google Scholar 

  91. Collins SE, Baltanás MA, Bonivardi AL (2005) Hydrogen chemisorption on gallium oxide polymorphs. Langmuir 21:962–970

    Article  Google Scholar 

  92. Collins SE, Baltanás MA, Bonivardi AL (2006) Infrared spectroscopic study of the carbon dioxide adsorption on the surface of Ga2O3 polymorphs. J Phys Chem B 110:5498–5507

    Article  Google Scholar 

  93. Guan G, Kida T, Yoshida A (2003) Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst. Appl Catal B 41:387–396

    Article  Google Scholar 

  94. Forster P, Ramaswamy V, Artaxo P et al (2007) Changes in atmospheric constituents and radiative forcing. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 129–234

    Google Scholar 

  95. Hu YH, Ruckenstein E (2002) Binary MgO-based solid solution catalysts for methane conversion to syngas. Catal Rev 44:423–453 and references therein

    Article  Google Scholar 

  96. Shi D, Feng Y, Zhong S (2004) Photocatalytic conversion of CH4 and CO2 to oxygenated compounds over Cu/CdS–TiO2/SiO2 catalyst. Catal Today 98:505–509

    Article  Google Scholar 

  97. Yuliati L, Itoh H, Yoshida H (2008) Photocatalytic conversion of methane and carbon dioxide over gallium oxide. Chem Phys Lett 452:178–182

    Article  Google Scholar 

  98. Yuliati L, Hattori T, Itoh H, Yoshida H (2008) Photocatalytic nonoxidative coupling of methane on gallium oxide and silica-supported gallium oxide. J Catal 257:396–402

    Article  Google Scholar 

  99. Yoshida H, Maeda K (2010) Preparation of gallium oxide photocatalysts for reduction of carbon dioxide. Stud Surf Sci Catal 175:351–354

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Yoshida, H. (2011). Heterogeneous Photocatalytic Conversion of Carbon Dioxide. In: Zang, L. (eds) Energy Efficiency and Renewable Energy Through Nanotechnology. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-0-85729-638-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-638-2_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-637-5

  • Online ISBN: 978-0-85729-638-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics