Advertisement

(Oxy)nitrides and Oxysulfides as Visible-Light-Driven Photocatalysts for Overall Water Splitting

  • Kazuhiko Maeda
  • Tsuyoshi Takata
  • Kazunari Domen
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Overall water splitting to form hydrogen and oxygen using a particulate photocatalyst with solar energy is a promising process for clean hydrogen production in large-scale. In recent years, numerous attempts have been made for the development of photocatalysts that work under visible-light irradiation to efficiently utilize solar energy. This chapter presents recent research progress in the development of visible-light-driven photocatalysts, focusing on the refinement of non-oxide type photocatalysts such as (oxy)nitrides and oxysulfides. These materials harvest visible photons (450–700 nm), and work as stable photocatalysts for water reduction and oxidation under visible-light.

Keywords

Photocatalytic Activity Valence Band Water Splitting Water Oxidation Aqueous Methanol Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37CrossRefGoogle Scholar
  2. 2.
    Domen K, Naito S, Soma M, Onishi T, Tamaru K (1980) Photocatalytic decomposition of water vapour on an NiO-SrTiO3 catalyst. J Chem Soc, Chem Commun 543Google Scholar
  3. 3.
    Sato S, White JM (1980) Photodecomposition of water over Pt/TiO2 catalysts. Chem Phys Lett 72:83CrossRefGoogle Scholar
  4. 4.
    Lehn JM, Sauvage JP, Ziessel R (1980) Photochemical water splitting continuous generation of hydrogen and oxygen by irradiation of aqueous suspensions of metal loaded strontium titanate. Nouv J Chim 4:623Google Scholar
  5. 5.
    Domen K, Kudo A, Shinozaki A, Tanaka A, Maruya K, Onishi T (1986) Photodecomposition of water and hydrogen evolution from aqueous methanol solution over novel niobate photocatalysts. J Chem Soc, Chem Commun 356Google Scholar
  6. 6.
    Kudo A, Tanaka A, Domen K, Maruya K, Aika K, Onishi T (1988) Photocatalytic decomposition of water over NiO-K4Nb6O17 catalyst. J Catal 111:67CrossRefGoogle Scholar
  7. 7.
    Kudo A, Tanaka A, Domen K, Onishi T (1988) Nickel-loaded K4Nb6O17 photocatalyst in the decomposition of H2O into H2 and O2: structure and reaction mechanism. J Catal 111:296CrossRefGoogle Scholar
  8. 8.
    Inoue Y, Kubokawa T, Sato K (1990) Photocatalytic activity of sodium hexatitanate, Na2Ti6O13, with a tunnel structure for decomposition of water. J Chem Soc, Chem Commun 1298Google Scholar
  9. 9.
    Takata T, Furumi Y, Shinohara K, Tanaka A, Hara M, Kondo JN, Domen K (1997) Photocatalytic decomposition of water on spontaneously hydrated layered perovskites. Chem Mater 9:1063CrossRefGoogle Scholar
  10. 10.
    Ikeda S, Hara M, Kondo JN, Domen K, Takahashi H, Okubo T, Kakihana M (1998) Preparation of K2La2Ti3O10 by polymerized complex method and photocatalytic decomposition of water. J Mater Res 13:852CrossRefGoogle Scholar
  11. 11.
    Kudo A, Kato H (1997) Photocatalytic decomposition of water into H2 and O2 over novel photocatalyst K3Ta3Si2O13 with pillered structure consisting of three TaO6 chains. Chem Lett 26:867CrossRefGoogle Scholar
  12. 12.
    Kudo A, Kato H, Nakagawa S (2000) Water splitting into H2 and O2 on new Sr2M2O7 (M=Nb and Ta) photocatalysts with layered perovskite structures: factors affecting the photocatalytic activity. J Phys Chem B 104:571CrossRefGoogle Scholar
  13. 13.
    Kato H, Kudo A (2001) Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A=Li, Na, and K). J Phys Chem B 105:4285CrossRefGoogle Scholar
  14. 14.
    Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125:3082CrossRefGoogle Scholar
  15. 15.
    Sato J, Saito N, Nishiyama H, Inoue Y (2001) New photocatalyst group for water decomposition of RuO2-loaded p-block metal (In, Sn, and Sb) oxides with d10configuration. J Phys Chem B 105:6061CrossRefGoogle Scholar
  16. 16.
    Ikarashi K, Sato J, Kobayashi H, Saito N, Nishiyama H, Inoue Y (2002) Photocatalysis for water decomposition by RuO2-dispersed ZnGa2O4 with d10 configuration. J Phys Chem B 106:9048CrossRefGoogle Scholar
  17. 17.
    Sato J, Saito N, Nishiyama H, Inoue Y (2002) Photocatalytic water decomposition by RuO2-loaded antimonates, M2Sb2O7 (M = Ca, Sr), CaSb2O6 and NaSbO3, with d10 configuration. J Photochem Photobiol A 148:85CrossRefGoogle Scholar
  18. 18.
    Sato J, Kobayashi H, Saito N, Nishiyama H, Inoue Y (2003) Photocatalytic activities for water decomposition of RuO2-loaded AInO2 (A = Li, Na) with d10 configuration. J Photochem Photobiol A 158:139CrossRefGoogle Scholar
  19. 19.
    Sato J, Saito N, Nishiyama H, Inoue Y (2003) Photocatalytic activity for water decomposition of indates with octahedrally coordinated d10 configuration. I. Influences of preparation conditions on activity. J Phys Chem B 107:7965CrossRefGoogle Scholar
  20. 20.
    Sato J, Kobayashi H, Ikarashi K, Saito N, Nishiyama H, Inoue Y (2004) Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration. J Phys Chem B 108:4369CrossRefGoogle Scholar
  21. 21.
    Scaife DE (1980) Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol Energy 25:41CrossRefGoogle Scholar
  22. 22.
    Williams R (1960) Becquerel photovoltaic effect in binary compounds. J Chem Phys 32:1505CrossRefGoogle Scholar
  23. 23.
    Ellis AB, Kaiser SW, Bolts JM, Wrighton MS (1997) Study of n-type semiconductoring cadmium chalcogenide-based photoelectrochemical cells employing polychalcogenide electrolytes. J Am Chem Soc 99:2839CrossRefGoogle Scholar
  24. 24.
    Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111:7851CrossRefGoogle Scholar
  25. 25.
    Jansen M, Letschert HP (2000) Inorganic yellow-red pigments without toxic metals. Nature 404:980CrossRefGoogle Scholar
  26. 26.
    Gunter EU, Hagenmayer R, Jansen MZ (2000) Structural investigations on the oxidenitrides SrTaO2N, CaTaO2N and LaTaON2 by neutron and x-ray powder diffraction. Anorg Allg Chem 626:1519CrossRefGoogle Scholar
  27. 27.
    Pors F, Marchand R, Laurent Y, Bacher P, Roult G (1988) Neutron diffraction structural study of the strontium tantalum oxynitride (SrTaO2N) perovskite and of the barium strontium tantalum oxynitride (Ba1-xSrxTaO2N) solid solution. Mater Res Bull 23:1447CrossRefGoogle Scholar
  28. 28.
    Armytage B, Fender BEF (1974) Anion ordering in tantalum oxynitride. Powder neutron-diffraction investigation. Acta Crystallogr B 30:809CrossRefGoogle Scholar
  29. 29.
    Brese NE (1991) Structure of tantalum nitride (Ta3N5) at 16 K by time-of-flight neutron diffraction. Acta Crystallogr C 47:2291CrossRefGoogle Scholar
  30. 30.
    Kakihana M (1996) Sol-gel preparation of high temperature superconducting oxides. J Sol-Gel Sci 5:7CrossRefGoogle Scholar
  31. 31.
    Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) (Oxy)nitrides as new photocatalysts for water splitting under visible light irradiation. Electrochem 70:463Google Scholar
  32. 32.
    Takata T, Hitoki G, Kondo JN, Hara M, Kobayashi H, Domen K (2007) Visible-light-driven photocatalytic behavior of tantalum-oxynitride and nitride. Res Chem Intermed 33:13CrossRefGoogle Scholar
  33. 33.
    Fang CM, Orhan E, Wijs GA, Hintzen HT, Groot RA, Marchand R, Saillard JY, With G (2001) The electronic structure of tantalum (oxy)nitrides TaON and Ta3N5. J Mater Chem 11:1248CrossRefGoogle Scholar
  34. 34.
    Chun WA, Ishikawa A, Fujisawa H, Takata T, Kondo JN, Hara M, Kawai M, Matsumoto Y, Domen K (2003) Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by ups and electrochemical methods. J Phys Chem B 107:1798CrossRefGoogle Scholar
  35. 35.
    Bard AJ, Wrighton MS (1977) Thermodynamic potential for the anodic dissolution of n-type semiconductors. A crucial factor controlling durability and efficiency in photoelectrochemical cells and an important criterion in the selection of new electrode/electrolyte systems. J Electrochem Soc 124:1706CrossRefGoogle Scholar
  36. 36.
    Clarke SJ, Guinot BP, Michie CW, Calmont MJC, Rosseinsky MJ (2002) Oxynitride perovskites: synthesis and structures of LaZrO2N, NdTiO2N, and LaTiO2N and comparison with oxide perovskites. Chem Mater 14:288CrossRefGoogle Scholar
  37. 37.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269CrossRefGoogle Scholar
  38. 38.
    Kasahara A, Nukumizu K, Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) Photoreactions on LaTiO2N under visible light irradiation. J Phys Chem A 106:6750CrossRefGoogle Scholar
  39. 39.
    Kasahara A, Nukumizu K, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2003) LaTiO2N as a visible-light (≤600 nm)— driven photocatalyst. J Phys Chem B 107(2):791CrossRefGoogle Scholar
  40. 40.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallogr Sect A 32:751CrossRefGoogle Scholar
  41. 41.
    Harriman A, Pickering IJ, Thomas JM, Christensen PA (1988) Redox reactions with colloidal metal oxides. Comparison of radiation-generated and chemically generated RuO2·2H2O and MnO2 colloids. J Chem Soc Faraday Trans 1 84:2795CrossRefGoogle Scholar
  42. 42.
    Ishikawa A, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤650 nm). J Am Chem Soc 124:13547CrossRefGoogle Scholar
  43. 43.
    Ishikawa A, Yamada Y, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2003) Novel synthesis and photocatalytic activity of oxysulfide Sm2Ti2S2O5. Chem Mater 15:4442CrossRefGoogle Scholar
  44. 44.
    Tabira Y, Withers RL, Minervini L, Grimes RW (2000) Systematic structural change in selected rare earth oxide pyrochlores as determined by wide-angle CBED and a comparison with the results of atomistic computer simulation. J Solid State Chem 153:16CrossRefGoogle Scholar
  45. 45.
    Goga M, Seshadri R, Ksenofontov V, Gütlich P, Tremel W (1999) Ln2Ti2S2O5 (Ln=Nd, Pr, Sm): a novel series of defective Ruddlesden–Popper phases. Chem Commun 979Google Scholar
  46. 46.
    Sato J, Saito N, Yamada Y, Maeda K, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K, Inoue Y (2005) RuO2-loaded β-Ge3N4 as a non-oxide photocatalyst for overall water splitting. J Am Chem Soc 127:4150CrossRefGoogle Scholar
  47. 47.
    Maeda K, Saito N, Lu D, Inoue Y, Domen K (2007) Photocatalytic properties of RuO2-loaded β-Ge3N4 for overall water splitting. J Phys Chem C 111:4749CrossRefGoogle Scholar
  48. 48.
    Dong J, Sankey OF, Deb SK, Wolf G, McMillan PF (2000) Theoretical study of β-Ge3N4 and its high-pressure spinel γ phase. Phys Rev B 61:11979CrossRefGoogle Scholar
  49. 49.
    Deb SK, Dong J, Hubertc H, McMillana PF, Sankey OF (2000) The Raman spectra of the hexagonal and cubic (spinel) forms of Ge3N4: an experimental and theoretical study. Solid State Commun 114:137CrossRefGoogle Scholar
  50. 50.
    Soignard E, McMillan PF, Hejny C, Leinenweberd K (2004) Pressure-induced transformations in α- and β-Ge3N4: in situ studies by synchrotron x-ray diffraction. J Solid State Chem 177:299CrossRefGoogle Scholar
  51. 51.
    Johnson WC (1930) Nitrogen compounds of germanium. I. The preparation and properties of germanic nitride. J Am Chem Soc 52:5160CrossRefGoogle Scholar
  52. 52.
    Maeda K, Saito N, Inoue Y, Domen K (2007) Dependence of activity and stability of germanium nitride powder for photocatalytic overall water splitting on structural properties. Chem Mater 19:4092CrossRefGoogle Scholar
  53. 53.
    Lee Y, Watanabe T, Takata T, Hara M, Yoshimura M, Domen K (2006) Effect of high-pressure ammonia treatment on the activity of Ge3N4 photocatalyst for overall water splitting. J Phys Chem B 110:17563CrossRefGoogle Scholar
  54. 54.
    Linke WF (1958) Solubilities: inorganic and metal-organic compounds, (A-Ir), vol I, 4th edn. D. Van Nostrand, PrincetonGoogle Scholar
  55. 55.
    Suhulz H, Thiemann KH (1977) Crystal structure refinement of AlN and GaN. Solid State Commun 23:815CrossRefGoogle Scholar
  56. 56.
    Garcia-Martinez O, Rojas RM, Vila E, Martin de Vidales JL (1997) Microstructural characterization of nanocrystals of ZnO and CuO obtained from basic salts. Solid State Ionics 63:442CrossRefGoogle Scholar
  57. 57.
    Wei SH, Zunger A (1988) Role of metal d states in II-VI semiconductors. Phys Rev B 37:8958CrossRefGoogle Scholar
  58. 58.
    Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc 127:8286CrossRefGoogle Scholar
  59. 59.
    Maeda K, Teramura K, Takata T, Hara M, Saito N, Toda K, Inoue Y, Kobayashi H, Domen K (2005) Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst: relationship between physical properties and photocatalytic activity. J Phys Chem B 109:20504CrossRefGoogle Scholar
  60. 60.
    Yashima M, Maeda K, Teramura K, Takata T, Domen K (2005) Crystal structure and optical properties of (Ga1-xZnx)(N1-xOx) oxynitride photocatalyst (x = 0.13). Chem Phys Lett 416:225CrossRefGoogle Scholar
  61. 61.
    Hirai T, Maeda K, Yoshida M, Kubota J, Ikeda S, Matsumura M, Domen K (2007) Origin of visible light absorption in GaN-rich (Ga1-xZnx)(N1-xOx) photocatalysts. J Phys Chem C 111:18853CrossRefGoogle Scholar
  62. 62.
    Maeda K, Teramura K, Saito N, Inoue Y, Kobayashi H, Domen K (2006) Overall water splitting using (oxy)nitride photocatalysts. Pure Appl Chem 78:2267CrossRefGoogle Scholar
  63. 63.
    Jensen LL, Muckerman JT, Newton MD (2008) First-principles studies of the structural and electronic properties of the (Ga1-xZnx)(N1-xOx) solid solution photocatalyst. J Phys Chem C 112:3439CrossRefGoogle Scholar
  64. 64.
    Wei W, Dai Y, Yang K, Guo M, Huang B (2008) Origin of the visible light absorption of GaN-rich (Ga1-xZnx)(NxOx) (x = 0.125) solid solution. J Phys Chem C 112:15915CrossRefGoogle Scholar
  65. 65.
    Izhevskiy VA, Genova LA, Bressiani JC, Aldinger F (2000) Progress in SiAlON. J Eur Ceram Soc 20:2275CrossRefGoogle Scholar
  66. 66.
    Teramura K, Maeda K, Saito T, Takata T, Saito N, Inoue Y, Domen K (2005) Characterization of ruthenium oxide nanocluster as a cocatalyst with (Ga1-xZnx)(N1-xOx) for photocatalytic overall water splitting. J Phys Chem B 109:21915CrossRefGoogle Scholar
  67. 67.
    Gerischer H (1966) Electrochemical behaviour of semiconductors under illumination. J Electrochem Soc 113:1174CrossRefGoogle Scholar
  68. 68.
    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalyst releasing hydrogen from water. Enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440:295CrossRefGoogle Scholar
  69. 69.
    Maeda K, Teramura K, Saito N, Inoue Y, Domen K (2006) Improvement of photocatalytic activity of (Ga1-xZnx)(N1-xO1-x) solid solution for overall water splitting by co-loading Cr and another transition metal. J Catal 243:303CrossRefGoogle Scholar
  70. 70.
    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Characterization of Rh-Cr mixed-oxide nanoparticles dispersed on (Ga1-xZnx)(N1-xOx) as a cocatalyst for visible-light-driven overall water splitting. J Phys Chem B 110:13753CrossRefGoogle Scholar
  71. 71.
    Maeda K, Teramura K, Masuda H, Takata T, Saito N, Inoue Y, Domen K (2006) Efficient overall water splitting under visible-light irradiation on (Ga1-xZnx)(N1-xOx) dispersed with rh-cr mixed-oxide nanoparticles: effect of reaction conditions on photocatalytic activity. J Phys Chem B 110:13107CrossRefGoogle Scholar
  72. 72.
    Maeda K, Masuda H, Domen K (2009) Effect of electrolyte addition on activity of (Ga1-xZnx)(N1-xOx) photocatalyst for overall water splitting under visible light. Catal Today 147:173CrossRefGoogle Scholar
  73. 73.
    Maeda K, Teramura K, Domen K (2008) Effect of post-calcination on photocatalytic activity of (Ga1-xZnx)(N1-xOx) solid solution for overall water splitting under visible light. J Catal 254:198CrossRefGoogle Scholar
  74. 74.
    Hisatomi H, Maeda K, Lu D, Domen K (2009) The effects of starting materials in the synthesis of (Ga1-xZnx)(N1-xOx) solid solution on its photocatalytic activity for overall water splitting under visible light. Chem Sus Chem 2:336Google Scholar
  75. 75.
    Maeda K, Domen K (2010) Solid solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light. Chem Mater 22:612CrossRefGoogle Scholar
  76. 76.
    Sun X, Maeda K, Le Faucheur M, Teramura K, Domen K (2007) Preparation of (Ga1-xZnx)(N1-xOx) solid-solution from ZnGa2O4 and ZnO as a photo-catalyst for overall water splitting under visible light. Appl Catal A: Gen 327:114CrossRefGoogle Scholar
  77. 77.
    Maeda K, Hashiguchi H, Masuda H, Abe R, Domen K (2008) Photocatalytic activity of (Ga1-xZnx)(N1-xOx) for visible-light-driven H2 and O2 evolution in the presence of sacrificial reagents. J Phys Chem C 112:3447CrossRefGoogle Scholar
  78. 78.
    Hisatomi T, Maeda K, Takanabe K, Kubota J, Domen K (2009) Aspects of the water splitting mechanism on (Ga1-xZnx)(N1-xOx) photocatalyst modified with Rh2-yCryO3 cocatalyst. J Phys Chem C 113:21458CrossRefGoogle Scholar
  79. 79.
    Lee Y, Terashima H, Shimodaira Y, Teramura K, Hara M, Kobayashi H, Domen K, Yashima M (2007) Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light. J Phys Chem C 111:1042CrossRefGoogle Scholar
  80. 80.
    Lee Y, Teramura K, Hara M, Domen K (2007) Modification of (Zn1+xGe)(N2Ox) solid solution as a visible light driven photocatalyst for overall water splitting. Chem Mater 19:2120CrossRefGoogle Scholar
  81. 81.
    Larson WL, Maruska HP, Stevenson DA (1974) Synthesis and properties of zinc germanium nitride (ZnGeN2). J Electrochem Soc 121:1673CrossRefGoogle Scholar
  82. 82.
    Misaki T, Wu X, Wakahara A, Yoshida A (2000) Theoretical analysis of multinary nitride semiconductors by density functional theory. In: Proc. Int. Workshop nitride semiconductors IPAP Conf. Series 1 685Google Scholar
  83. 83.
    Tessier F, Maillard P, Lee Y, Bleugat C, Domen K (2009) Zinc germanium oxynitride: influence of the preparation method on the photocatalytic properties for overall water splitting. J Phys Chem C 113:8526CrossRefGoogle Scholar
  84. 84.
    Wang X, Maeda K, Lee Y, Domen K (2008) Enhancement of photocatalytic activity of (Zn1+xGe)(N2Ox) for visible-light-driven overall water splitting by calcination under nitrogen. Chem Phys Lett 457:134CrossRefGoogle Scholar
  85. 85.
    Takanabe K, Uzawa T, Wang X, Maeda K, Katayama M, Kubota J, Kudo A, Domen K (2009) Enhancement of photocatalytic activity of zinc-germanium oxynitride solid solution for overall water splitting under visible irradiation. Dalton Trans 10055Google Scholar
  86. 86.
    Kudo A, Niishiro R, Iwase A, Kato H (2007) Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts. Chem Phys 339:104CrossRefGoogle Scholar
  87. 87.
    Bechstedt F, Furthmuller J (2002) Do we know the fundamental energy gap of InN? J Cryst Growth 246:315CrossRefGoogle Scholar
  88. 88.
    Gao L, Zhang Q, Li J (2003) Preparation of ultrafine InN powder by the nitridation of In2O3 or In(OH)3 and its thermal stability. J Mater Chem 13:154CrossRefGoogle Scholar
  89. 89.
    Kamata K, Maeda K, Lu D, Kako Y, Domen K (2009) Synthesis and photocatalytic activity of gallium–zinc–indium mixed oxynitride for hydrogen and oxygen evolution under visible light. Chem Phys Lett 470:90CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Kazuhiko Maeda
    • 1
  • Tsuyoshi Takata
    • 1
  • Kazunari Domen
    • 1
  1. 1.Department of Chemical System EngineeringThe University of TokyoBunkyo-ku, TokyoJapan

Personalised recommendations