Nanostructured Materials for Photolytic Hydrogen Production

  • Jiefang Zhu
  • Dinko Chakarov
  • Michael Zäch
Part of the Green Energy and Technology book series (GREEN)


A hydrogen economy is often considered an attractive alternative to our current fossil fuel-based energy system. In order for such a hydrogen economy to become reality, several challenges associated with the production, storage, transportation and use of hydrogen must be solved. This chapter addresses the issue of hydrogen production. While the currently most widely used method to produce hydrogen is based on the conversion of fossil fuel resources and does not therefore fulfill the requirement of CO2 neutrality, we discuss here the photolytic production of hydrogen via water splitting. This scheme is based on energy input from the most powerful and ultimately sustainable energy source mankind has at its disposal: the sun. Moreover, no carbon dioxide is released into the atmosphere, and the method has potential for cost-effective large-scale production.


Photocatalytic Activity Hydrogen Production Water Splitting Photogenerated Electron High Photocatalytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge financial support by the Foundation for Strategic Environmental Research (Mistra, Dnr 2004-118), Ångpanneföreningen’s Foundation for Research and Development (09-370), the Environmental Foundation of the Swedish Association of Graduate Engineers and N-INNER through the Solar Hydrogen project (P30938-1 Solväte).


  1. 1.
    Smalley RE (2005) Future global energy prosperity: the Terawatt challenge. MRS Bull 30:412–417CrossRefGoogle Scholar
  2. 2.
    Mikkelsen M, Jørgensen M, Krebs FC (2010) The teraton challenge, a review of fixation and transformation of carbon dioxide. Energy Environ Sci 3:43–81CrossRefGoogle Scholar
  3. 3.
    Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758CrossRefGoogle Scholar
  4. 4.
    Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111:7851–7861CrossRefGoogle Scholar
  5. 5.
    Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRefGoogle Scholar
  6. 6.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  7. 7.
    Carp O, Huisman CL, Reller A (2007) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177CrossRefGoogle Scholar
  8. 8.
    Salazar K, Kimball SM (2009) Mineral commodities summaries 2009, US Geological Survey. Accessed 31 Aug 2010
  9. 9.
    Zhu J, Zhang J, Chen F et al (2005) High photocatalytic activity TiO2 prepared by a modified sol-gel method: characterization and their photocatalytic activity for degradation of XRG and X-GL. Top Catal 35:261–268CrossRefGoogle Scholar
  10. 10.
    Zhu J, Zhang J, Chen F et al (2005) Preparation of high photocatalytic activity TiO2 with a bicrystalline phase containing anatase and TiO2 (B). Mater Lett 59:3378–3381CrossRefGoogle Scholar
  11. 11.
    Zhang HZ, Banfield JF (2000) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2 . J Phys Chem B 104:3481–3487CrossRefGoogle Scholar
  12. 12.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRefGoogle Scholar
  13. 13.
    Hernández-Alonso MD, Fresno F, Suárez S et al (2009) Development of alternative photocatalysts to TiO2 : challenges and opportunities. Energy Environ Sci 2:1231–1257CrossRefGoogle Scholar
  14. 14.
    Boschloo G, Edvinsson T, Hagfeldt A (2006) Dye-sensitized nanostructured ZnO electrodes for solar cell application. In: Tetsuo S (ed) Nanostructured materials for solar energy conversion. Elsevier, AmsterdamGoogle Scholar
  15. 15.
    Özgür Ü, Alivov YI, Liu C et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301CrossRefGoogle Scholar
  16. 16.
    Zhang H, Chen G, Bahnemann DW (2009) Photoelectrocatalytic materials for environmental applications. J Mater Chem 19:5089–5121CrossRefGoogle Scholar
  17. 17.
    Anpo M, Chapter 10, pp 175–185; Inoue Y, Chapter 15, pp 249–261 (2002) In: Kaneko M, Okura I (eds) Photocatalysis: science and technology, Springer, New YorkGoogle Scholar
  18. 18.
    Domen K, Chapter 16, pp 261–278 (2002) In: Kaneko M, Okura I (eds) Photocatalysis: science and technology, Springer, New YorkGoogle Scholar
  19. 19.
    Rajeshwar K (2008) Hydrogen generation from irradiated semiconductor-liquid interfaces. In: Rajeshwar K, McConnell R, Licht S (eds) Solar hydrogen generation. Springer, New YorkCrossRefGoogle Scholar
  20. 20.
    Kim HG, Hwang DW, Kim J et al (1999) Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting. Chem Commun 1999:1077–1078CrossRefGoogle Scholar
  21. 21.
    Ishikawa A, Takata T, Kondo JN et al (2002) Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm). J Am Chem Soc 124:13547–13553CrossRefGoogle Scholar
  22. 22.
    Kato H, Kudo A (2001) Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A = Li, Na, and K). J Phys Chem B 105:4285–4292CrossRefGoogle Scholar
  23. 23.
    Shangguan WF (2007) Hydrogen evolution from water splitting on nanocomposite photocatalysts. Sci Tech Adv Mater 8:76–81CrossRefGoogle Scholar
  24. 24.
    Tian MK, Shangguan WF, Yuan J et al (2007) Promotion effect of nanosized Pt, RuO2 and NiOx loading on visible light-driven photocatalysts K4Ce2M10O30 (M = Ta, Nb) for hydrogen evolution from water decomposition. Sci Tech Adv Mater 8:82–88CrossRefGoogle Scholar
  25. 25.
    Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20:35–54CrossRefGoogle Scholar
  26. 26.
    Asahi R, Morikawa T, Ohwaki T et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271CrossRefGoogle Scholar
  27. 27.
    Hitoki G, Ishikawa A, Takata T et al (2002) Ta3N5 as a novel visible light-driven photocatalyst (λ < 600 nm). Chem Lett 33:736–737CrossRefGoogle Scholar
  28. 28.
    Sato J, Saito N, Yamada Y et al (2005) RuO2-loaded β-Ge3N4 as a non-oxide photocatalyst for overall water splitting. J Am Chem Soc 127:4150–4151CrossRefGoogle Scholar
  29. 29.
    Kida T, Minami Y, Guan G et al (2006) Photocatalytic activity of gallium nitride for producing hydrogen from water under light irradiation. J Mater Sci 41:3527–3534CrossRefGoogle Scholar
  30. 30.
    Hara M, Takata T, Kondo JN et al (2004) Photocatalytic reduction of water by TaON under visible light irradiation. Catal Today 90:313–317CrossRefGoogle Scholar
  31. 31.
    Yamasita D, Takata T, Hara M et al (2004) Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ionics 172:591–595CrossRefGoogle Scholar
  32. 32.
    Kasahara A, Nukumizu K, Takata T et al (2003) LaTiO2N as a visible-light (≤600 nm)-driven photocatalyst (2). J Phys Chem B 107:791–797CrossRefGoogle Scholar
  33. 33.
    Liu M, You W, Lei Z et al. (2004) Water reduction and oxidation on Pt–Ru/Y2Ta2O5N2 catalyst under visible light irradiation. Chem Commun 2004: 2192–2193Google Scholar
  34. 34.
    Maeda K, Teramura K, Lu DL et al (2006) Photocatalyst releasing hydrogen from water-enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440:295CrossRefGoogle Scholar
  35. 35.
    Lee Y, Terashima H, Shimodaira Y et al (2007) Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light. J Phys Chem C 111:1042–1048CrossRefGoogle Scholar
  36. 36.
    Ishikawa A, Takata T, Matsumura T et al (2004) Oxysulfides Ln2Ti2S2O5 as stable photocatalysts for water oxidation and reduction under visible-light irradiation. J Phys Chem B 108:2637–2642CrossRefGoogle Scholar
  37. 37.
    Finklea HO (1988) Semiconductor electrodes. Elsevier, AmsterdamGoogle Scholar
  38. 38.
    Heller A (1984) Hydrogen-evolving solar cells. Science 223:1141–1148CrossRefGoogle Scholar
  39. 39.
    Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280:425–427CrossRefGoogle Scholar
  40. 40.
    Taniguchi Y, Yoneyama H, Tamura H (1983) Hydrogen evolution on surface-modified silicon powder photocatalysts in aqueous ethanol solutions. Chem Lett 12:269–272CrossRefGoogle Scholar
  41. 41.
    Yoneyama H, Matsumoto N, Tamura H (1986) Photocatalytic decomposition of formic acid on platinized n-type silicon powder in aqueous solution. Bull Chem Soc Jpn 59:3302–3304CrossRefGoogle Scholar
  42. 42.
    Sakai Y, Sugahara S, Matsumura M et al (1988) Photoelectrochemical water splitting by tandem type and heterojunction amorphous silicon electrodes. Can J Chem 66:1853–1856CrossRefGoogle Scholar
  43. 43.
    Frame FA, Carroll EC, Larsen DS et al (2008) First demonstration of CdSe as a photocatalyst for hydrogen evolution from water under UV and visible light. Chem Commun 19:2206–2208CrossRefGoogle Scholar
  44. 44.
    Schürch D, Currao A, Sarkar S et al (2002) The silver chloride photoanode in photoelectrochemical water splitting. J Phys Chem B 106:12764–12775CrossRefGoogle Scholar
  45. 45.
    Currao A, Reddy VR, van Veen MK et al (2004) Water splitting with silver chloride photoanodes and amorphous silicon solar cells. Photochem Photobiol Sci 3:1017–1025CrossRefGoogle Scholar
  46. 46.
    Gao Y, Wang Y, Wang Y (2007) Photocatalytic hydrogen evolution from water on SiC under visible light irradiation. React Kinet Catal Lett 91:13–19CrossRefGoogle Scholar
  47. 47.
    Levy B (1997) Photochemistry of nanostructured materials for energy applications. J Electroceramics 1:239–272CrossRefGoogle Scholar
  48. 48.
    Stroyuk AL, Kryukov AI, Kuchmii SY et al (2009) Semiconductor photocatalytic systems for the production of hydrogen by the action of visible light. Theor Exp Chem 45:209–233CrossRefGoogle Scholar
  49. 49.
    Li D, Haneda H, Hishita S et al (2005) Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. J Fluor Chem 126:69–77CrossRefGoogle Scholar
  50. 50.
    Lin ZS, Orlov A, Lambert RM et al (2005) New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2 . J Phys Chem B 109:20948–20952CrossRefGoogle Scholar
  51. 51.
    Nakamura R, Tanaka T, Nakato Y (2004) Mechanism for visible light responses in anodic photocurrents at n-doped TiO2 film electrodes. J Phys Chem B 108:10617–10620CrossRefGoogle Scholar
  52. 52.
    Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111:2834–2860CrossRefGoogle Scholar
  53. 53.
    Baba R, Nakabayashi S, Fujishima A et al (1985) Investigation of the mechanism of hydrogen evolution during photocatalytic water decomposition on metal-loaded semiconductor powders. J Phys Chem 89:1902–1905CrossRefGoogle Scholar
  54. 54.
    Nosaka Y, Norimatsu K, Miyama H (1984) The function of metals in metal-compounded semiconductor photocatalysts. Chem Phys Lett 106:128–131CrossRefGoogle Scholar
  55. 55.
    Subramanian V, Wolf EE, Kamat PV (2004) Catalysis with TiO2 /Au nanocomposites effect of metal particle size on the Fermi level equilibration. J Am Chem Soc 126:4943–4950CrossRefGoogle Scholar
  56. 56.
    Sayama K, Mukasa K, Abe R et al (2002) A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. J Photochem Photobio A: Chem 148:71–77CrossRefGoogle Scholar
  57. 57.
    Tada H, Mitsui T, Kiyonaga T et al (2006) All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nature Mater 5:782–786CrossRefGoogle Scholar
  58. 58.
    Campbell P, Green MA (1987) Light trapping properties of pyramidally textured surfaces. J Appl Phys 62:243–249CrossRefGoogle Scholar
  59. 59.
    Heine C, Morf RH (1995) Submicrometer gratings for solar energy applications. Appl Optics 34:2476–2482CrossRefGoogle Scholar
  60. 60.
    Ito S, Murakami TN, Comte P et al (2008) Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516:4613–4619CrossRefGoogle Scholar
  61. 61.
    Vahala KJ (2003) Optical microcavities. Nature 424:839–846CrossRefGoogle Scholar
  62. 62.
    Halaoui LI, Abrams NM, Mallouk TE (2005) Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals. J Phys Chem B 109:6334–6342CrossRefGoogle Scholar
  63. 63.
    Bermel P, Luo C, Zeng L et al (2007) Improving thin-film crystalline silicon solar cell efficencies with photonic crystals. Opt Express 15:16986–17000CrossRefGoogle Scholar
  64. 64.
    Wiersma DS, Sapienza R, Mujumdar S et al (2005) Optics of nanostructured dielectrics. J Opt A: Pure Appl Opt 7:S190–S197CrossRefGoogle Scholar
  65. 65.
    Mayer B, Madronich S (2004) Actinic flux and photolysis in water droplets: Mie calculations and geometrical optics limit. Atmos Chem Phys 4:2241–2250CrossRefGoogle Scholar
  66. 66.
    Robinson JT, Manolatou C, Chen L et al (2005) Ultrasmall mode volumes in dielectric optical microcavities. Phys Rev Lett 95:143901CrossRefGoogle Scholar
  67. 67.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinGoogle Scholar
  68. 68.
    Coyle S, Netti MC, Baumberg JJ et al (2001) Confined plasmons in metallic nanocavities. Phys Rev Lett 87:176801CrossRefGoogle Scholar
  69. 69.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213CrossRefGoogle Scholar
  70. 70.
    Tsai F-J, Wang J-Y, Huang J-J et al (2010) Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles. Opt Express 18:A207–A220CrossRefGoogle Scholar
  71. 71.
    Hägglund C, Zäch M, Petersson G et al (2008) Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl Phys Lett 92:053110CrossRefGoogle Scholar
  72. 72.
    Ferry VE, Sweatlock LA, Pacifici D et al (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8:4391–4397CrossRefGoogle Scholar
  73. 73.
    Bai W, Gan Q, Bartoli F et al (2009) Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells. Optics Lett 34:3725–3727CrossRefGoogle Scholar
  74. 74.
    Kirkengen M, Bergli J, Galperin YM (2007) Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles. J Appl Phys 102:093713CrossRefGoogle Scholar
  75. 75.
    Hägglund C, Zäch M, Kasemo B (2008) Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. Appl Phys Lett 92:013113CrossRefGoogle Scholar
  76. 76.
    Kelzenberg MD, Boettcher SW, Petykiewicz JA et al (2010) Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 9:239–244CrossRefGoogle Scholar
  77. 77.
    Zhu J, Hsu C-M, Yu Z et al (2010) Nanodome solar cells with efficient light management and self-cleaning. Nano Lett 10:1979–1984CrossRefGoogle Scholar
  78. 78.
    Brus L (2008) Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc Chem Res 41:1742–1749CrossRefGoogle Scholar
  79. 79.
    Watanabe K, Menzel D, Nilius N et al (2006) Photochemistry on metal nanoparticles. Chem Rev 106:4301–4320CrossRefGoogle Scholar
  80. 80.
    Awazu K, Fujimaki M, Rockstuhl C et al (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130:1676–1680CrossRefGoogle Scholar
  81. 81.
    Christopher P, Ingram DB, Linic S (2010) Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: photochemistry mediated by Ag surface plasmons. J Phys Chem C 114:9173–9177CrossRefGoogle Scholar
  82. 82.
    Tian Y, Tatsuma T (2005) Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 127:7632–7637CrossRefGoogle Scholar
  83. 83.
    Ertl G, Knözinger H, Weitkamp J (1997) Handbook of heterogeneous catalysis. Wiley, WeinheimCrossRefGoogle Scholar
  84. 84.
    Haruta M, Kobayashi T, Sano H et al (1987) Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0°C. Chem Lett 2:405–406CrossRefGoogle Scholar
  85. 85.
    Maira AJ, Yeung KL, Lee CY et al (2000) Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. J Catal 192:185–196CrossRefGoogle Scholar
  86. 86.
    Suzuki Y, Ngamsinlapasathian S, Yoshida R et al (2006) Partially nanowire-structured TiO2 electrode for dye-sensitized solar cells. Cent Eur J Chem 4:476–488CrossRefGoogle Scholar
  87. 87.
    Beermann N, Vayssieres L, Lindquist S-E et al (2000) Photoeletrochemical studies of oriented nanorod thin films of hematite. J Electrochem Soc 147:2456–2461CrossRefGoogle Scholar
  88. 88.
    van de Krol R, Liang Y, Schoonman J (2008) Solar hydrogen production with nanostructured metal oxides. J Mater Chem 2008(18):2311–2320CrossRefGoogle Scholar
  89. 89.
    Kay A, Cesar I, Grätzel M (2006) New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem Soc 128:15714–15721CrossRefGoogle Scholar
  90. 90.
    Lindgren T, Wang H, Beermann N et al (2002) Aqueous photoelectrochemistry of hematite nanorod array. Sol Energy Mater Sol Cells 71:231–243CrossRefGoogle Scholar
  91. 91.
    Wang Y, Zhang Z, Zhu Y et al (2008) Nanostructured VO2 photocatalysts for hydrogen production. ACS Nano 2:1492–1496CrossRefGoogle Scholar
  92. 92.
    Feng X, LaTempa TJ, Basham JI et al (2010) Ta3N5 nanotube arrays for visible light water photoelectrolysis. Nano Lett 10:948–952CrossRefGoogle Scholar
  93. 93.
    Shankar K, Basham JI, Allam NK et al (2009) Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113:6327–6359CrossRefGoogle Scholar
  94. 94.
    Khan SUM, Sultana T (2003) Photoresponse of n-TiO2 thin film and nanowire electrodes. Sol Energy Mater Sol Cells 76:211–221CrossRefGoogle Scholar
  95. 95.
    Wolcott A, Smith WA, Kuykendall TR et al (2009) Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small 5:104–111CrossRefGoogle Scholar
  96. 96.
    Mor GK, Shankar K, Paulose M et al (2005) Enhanced photocleavage of water using titania nanotube arrays. Nano Lett 5:191–195CrossRefGoogle Scholar
  97. 97.
    Lin CH, Lee CH, Chao JH et al (2004) Photocatalytic generation of H2 gas from neat ethanol over Pt/TiO2 nanotube catalysts. Catal Lett 98:61–66CrossRefGoogle Scholar
  98. 98.
    Nam W, Han GY (2007) Preparation and characterization of anodized Pt-TiO2 nanotube arrays for water splitting. J Chem Eng Jpn 40:266–269CrossRefGoogle Scholar
  99. 99.
    Khan MA, Akhtar MS, Woo SI et al (2008) Enhanced photoresponse under visible light in Pt ionized TiO2 nanotube for the photocatalytic splitting of water. Catal Commun 10:1–5CrossRefGoogle Scholar
  100. 100.
    Thimsen E, Rastgar N, Biswas P (2008) Nanostructured TiO2 films with controlled morphology synthesized in a single step process: performance of dye-sensitized solar cells and photo water splitting. J Phys Chem C 112:4134–4140CrossRefGoogle Scholar
  101. 101.
    Jitputti J, Suzuki Y, Yoshikawa S (2008) Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution. Catal Commun 9:1265–1271CrossRefGoogle Scholar
  102. 102.
    Kuo HL, Kuo CY, Liu CH et al (2007) A highly active bi-crystalline photocatalyst consisting of TiO2 (B) nanotube and anatase particle for producing H2 gas from neat ethanol. Catal Lett 113:7–12CrossRefGoogle Scholar
  103. 103.
    Lin CH, Chao JH, Liu CH et al (2008) Effect of calcination temperature on the structure of a Pt/TiO2 (B) nanofiber and its photocatalytic activity in generating H2. Langmuir 24:9907–9915CrossRefGoogle Scholar
  104. 104.
    Janet CM, Viswanath RP (2006) Large scale synthesis of CdS nanorods and its utilization in photo-catalytic H2 production. Nanotechnology 17:5271–5277CrossRefGoogle Scholar
  105. 105.
    Jang JS, Joshi UA, Lee JS (2007) Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J. Phys Chem C 111:13280–13287CrossRefGoogle Scholar
  106. 106.
    Wang G, Yang X, Qian F et al (2010) Double-sided CdS and CdSe quantum dots co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett 10:1088–1092CrossRefGoogle Scholar
  107. 107.
    Costi R, Saunders AE, Elmalem E et al (2008) Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells. Nano Lett 8:637–641CrossRefGoogle Scholar
  108. 108.
    Amirav L, Alivisatos AP (2010) Photocatalytic hydrogen production with tunable nanorod heterostructures. J Phys Chem Lett 1:1051–1054CrossRefGoogle Scholar
  109. 109.
    Qu Y, Liao L, Cheng R et al (2010) Rational design and synthesis of freestanding photoelectric nanodevices as highly efficient photocatalysts. Nano Lett 10:1941–1949CrossRefGoogle Scholar
  110. 110.
    Yu JG, Qi LF, Jaroniec M (2010) Hydrogen Production by Photocatalytic Water Splitting over Pt/TiO2 nanosheets with exposed (001) facets. J Phys Chem C 114:13118–13125CrossRefGoogle Scholar
  111. 111.
    Liu G, Yang HG, Wang XW et al (2009) Visible light responsive nitrogen doped anatase TiO2 sheets with dominant 001 facets derived from TiN. J Am Chem Soc 131:12868–12869CrossRefGoogle Scholar
  112. 112.
    Liu G, Yang HG, Wang XW et al (2009) Enhanced photoactivity of oxygen-deficient anatase TiO2 sheets with dominant 001 facets. J Phys Chem C 113:21784–21788CrossRefGoogle Scholar
  113. 113.
    Youngblood WJ, Lee SHA, Maeda K et al (2009) Visible light water splitting using dye-sensitized oxide semiconductors. Acc Chem Res 42:1966–1973CrossRefGoogle Scholar
  114. 114.
    Yi H, Peng T, Ke D et al (2008) Photocatalytic H2 production from methanol aqueous solution over titania nanoparticles with mesostructures. Int J Hydrogen Energy 33:672–678CrossRefGoogle Scholar
  115. 115.
    Lakshminarasimhan N, Bae E, Choi W (2007) Enhanced photocatalytic production of H2 on mesoporous TiO2 prepared by template-free method: role of interparticle charge transfer. J Phys Chem C 111:15244–15250CrossRefGoogle Scholar
  116. 116.
    Korzhak A, Ermokhina N, Stroyuk A et al (2008) Photocatalytic hydrogen evolution over mesoporous TiO2 /metal nanocomposites. J Photochem Photobio A: Chem 198:126–134CrossRefGoogle Scholar
  117. 117.
    Yamashita H, Mori K (2007) Applications of single-site photocatalysts implanted within the silica matrixes of zeolite and mesoporous silica. Chem Lett 36:348–353CrossRefGoogle Scholar
  118. 118.
    Zhang YJ, Zhang L (2008) Synthesis of composite material CdS/Al-HMS and hydrogen production by photocatalytic pollutant degradation under visible light irradiation. J Inorg Mater 23:66–70CrossRefGoogle Scholar
  119. 119.
    Ryu SY, Balcerski W, Lee TK et al (2007) Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silicas. J Phys Chem C 111:18195–18203CrossRefGoogle Scholar
  120. 120.
    Lunawat PS, Senapati S, Kumar R et al (2007) Visible light-induced splitting of water using CdS nanocrystallites immobilized over water-repellant polymeric surface Int. J Hydrogen Energy 32:2784–2790CrossRefGoogle Scholar
  121. 121.
    Guan GQ, Kida T, Kusakabe K et al (2004) Photocatalytic H2 evolution under visible light irradiation on CdS/ETS-4 composite. Chem Phys Lett 385:319–322CrossRefGoogle Scholar
  122. 122.
    Maeda K, Teramura K, Lu D et al (2006) Noble-metal/Cr2O3 core/shell nanoparticles as a co-catalyst for photocatalytic overall water splitting. Angew Chem Int Ed 45:7806–7809CrossRefGoogle Scholar
  123. 123.
    Yoshida M, Takanabe K, Maeda K et al (2009) Role and function of noble-metal/Cr-layer core/shell structure co-catalysts for photocatalytic overall water splitting studied by model electrodes. J Phys Chem C 113:10151–10157CrossRefGoogle Scholar
  124. 124.
    Maeda K, Xiong A, Yoshinaga T et al (2010) Photocatalytic overall water splitting promoted by two co-catalysts for hydrogen and oxygen evolution under visible light. Angew Chem Int Ed. 49:4096–4099Google Scholar
  125. 125.
    Ikeda S, Hirao K, Ishino S et al (2006) Preparation of platinized strontium titanate covered with hollow silica and its activity for overall water splitting in a novel phase-boundary photocatalytic system. Catal Today 117:343–349CrossRefGoogle Scholar
  126. 126.
    Kale BB, Baeg J-O, Apte SK et al (2007) Confinement of nano CdS in designated glass: a novel functionality of quantum dot-glass nanosystems in solar hydrogen production. J Mater Chem 17:4297–4303CrossRefGoogle Scholar
  127. 127.
    Dähne L, Leporatti S, Donath E et al (2001) Fabrication of micro reaction cages with tailored properties. J Am Chem Soc 123:5431–5436CrossRefGoogle Scholar
  128. 128.
    Nardin C, Thoeni S, Widmer J et al (2000) Nanoreactors based on (polymerized) ABA-triblock copolymer vesicles. Chem Commun 2000:1433–1434CrossRefGoogle Scholar
  129. 129.
    Ruysschaert T, Germain M, da Silva Gomes JFP et al (2004) Liposome-based nanocapsules. IEEE Trans Nanobiosci 3:49–55CrossRefGoogle Scholar
  130. 130.
    Karlsson M, Davidson M, Karlsson R et al (2004) Biomimetic nanoscale reactors and networks. Ann Rev Phys Chem 55:613–649CrossRefGoogle Scholar
  131. 131.
    Doshi DA, Huesing N, Lu M et al (2000) Optically defined multifunctional patterning of photosensitive thin-film silica mesophases. Science 290:107–111CrossRefGoogle Scholar
  132. 132.
    Shtykov SN (2002) Chemical analysis in nanoreactors: main concepts and applications. J Anal Chem 57:859–868CrossRefGoogle Scholar
  133. 133.
    Herrmann J-M (2005) Heterogeneous photocatalysis: state of the art and present applications. Top Catal 34:49–65CrossRefGoogle Scholar
  134. 134.
    Santiso EE, George AM, Turner CH et al (2005) Adsorption and catalysis: the effect of confinement on chemical reactions. Appl Surf Sci 252:766–777CrossRefGoogle Scholar
  135. 135.
    Shchukin DG, Sviridov DV (2006) Photocatalytic processes in spatially confined micro- and nanoreactors. J Photochem Photobiol C 7:23–39CrossRefGoogle Scholar
  136. 136.
    Koblenz TS, Wassenaar J, Reek JNH (2008) Reactivity within a confined self-assembled nanospace. Chem Soc Rev 37:247–262CrossRefGoogle Scholar
  137. 137.
    Li J, Zeng HC (2005) Size tuning, functionalization, and reactivation of Au in TiO2 nanoreactors. Angew Chem Int Ed 44:4342–4345CrossRefGoogle Scholar
  138. 138.
    Yen CW, Mahmoud MA, El-Sayed MA (2009) Photocatalysis in gold nanocage nanoreactors. J Phys Chem A 113:4340–4345CrossRefGoogle Scholar
  139. 139.
    Harris C, Kamat PV (2009) Photocatalysis with CdSe nanoparticles in confined media: mapping charge transfer events in the subpicosecond to second timescales. ACS Nano 3:682–690CrossRefGoogle Scholar
  140. 140.
    Parmon VN, Lymar SV, Tsvetkov IM et al (1983) Development of microheterogeneous systems based on lipid vesicles for photocatalytic charge separation in molecular converters of solar energy. J Mol Catal 21:353–363Google Scholar
  141. 141.
    Khramov MI, Parmon VN (1993) Synthesis of ultrafine particles of transition metal sulphides in the cavities of lipid vesicles and the light-stimulated transmembrane electron transfer catalysed by these particles. J Photochem Photobiol A: Chem 71:279–284CrossRefGoogle Scholar
  142. 142.
    Efimova EV, Lymar SV, Parmon VN (1994) 1,4-bis(1, 2, 6-triphenyl-4-pyridyl)benzene as a novel hydrophobic eletron relay for dihydrogen evolution in photocatalytic systems based on lipid vesicles. J. Photochem Photobiol A: Chem 83:153–159CrossRefGoogle Scholar
  143. 143.
    Tricot Y-M, Emeren Å, Fendler JH (1985) In situ generation of catalyst-coated CdS particles in polymerized and unpolymerized surfactant vesicles and their utilization for efficient visible-light induced hydrogen production. J Phys Chem 89:4721–4726CrossRefGoogle Scholar
  144. 144.
    Bergeld J, Kasemo B, Chakarov D (2008) Photocatalytic reactions at the graphite/ice interface. Phys Chem Chem Phys 10:1151–1155CrossRefGoogle Scholar
  145. 145.
    Hulteen JC, van Dyne RP (1994) Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces. J Vac Sci Technol A 13:1553–1558CrossRefGoogle Scholar
  146. 146.
    Fredriksson H, Alaverdyan Y, Dmitriev A et al (2007) Hole-mask colloidal lithography. Adv Mater 19:4297–4302CrossRefGoogle Scholar
  147. 147.
    Johanek V, Laurin M, Grant AW et al (2004) Fluctuations and bistabilities on catalyst nanoparticles. Science 304:1639–1644CrossRefGoogle Scholar
  148. 148.
    Langhammer C, Zoric I, Kasemo B et al (2007) Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme. Nano Lett 7:3122–3127CrossRefGoogle Scholar
  149. 149.
    Komanicky V, Iddir H, Chang KC et al (2009) Shape-dependent activity of platinum array catalyst. J Am Chem Soc 131:5732–5733CrossRefGoogle Scholar
  150. 150.
    Brown EC, Wilke SK, Boyd DA et al (2010) Polymer sphere lithography for solid oxide fuel cells: a route to functional, well-defined electrode structures. J Mater Chem 20:2190–2196CrossRefGoogle Scholar
  151. 151.
    Seidel YE, Scheider A, Jusys Z et al (2010) Transport effects in the electrooxidation of methanol studied on nanostructured Pt/glassy carbon electrodes. Langmuir 26:3569–3578CrossRefGoogle Scholar
  152. 152.
    Olah GA, Goeppert A, Prakash GKS (2009) Beyond oil and gas: the methanol economy, 2nd edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Materials ChemistryUppsala UniversityUppsalaSweden
  2. 2.Department of Applied PhysicsChalmers University of TechnologyGöteborgSweden

Personalised recommendations