Nanomaterials for Proton Exchange Membrane Fuel Cells

Part of the Green Energy and Technology book series (GREEN)


The development of fuel cell technology, especially the proton exchange membrane fuel cell, is progressed through the use of nanomaterials. This chapter introduces the recent development of nanostructured electrocatalysts for fuel cell applications. An overview of various synthesis methods for nanostructured electrocatalyts is first presented. The morphology control of the electrocatalysts is then discussed, including zero-dimensional, one-dimensional, multi-dimensional, and hollow structures. Multi-component electrocatalysts with improved durability and activity for various fuel cell reactions are also introduced. Finally, the advantage of using carbon nanotubes as electrocatalyst support and noncovalent functionalization of nanotube surface is discussed in detail.


Fuel Cell Oxygen Reduction Reaction Electrocatalytic Activity Methanol Oxidation Proton Exchange Membrane Fuel Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arico AS, Srinivasan S, Antonucci V (2001) DMFCs: DMFCs: from fundamental aspects to technology development. Fuel Cells 1:1–29CrossRefGoogle Scholar
  2. 2.
    Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, Mcgrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Zyun S, Uchimoto Y, Yasuda K, Kimijima K-i, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 3904–3951Google Scholar
  3. 3.
    Carmo M, Paganin VA, Rosolen JM, Gonzalez ER (2005) Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes. J Power Sources 142:169–176CrossRefGoogle Scholar
  4. 4.
    Du B, Guo QH, Pollard R, Rodriguez D, Smith C, Elter J (2006) PEM fuel cells: status and challenges for commercial stationary power applications. JOM 58:45–49CrossRefGoogle Scholar
  5. 5.
    Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications—a review. J Membr Sci 259:10–26CrossRefGoogle Scholar
  6. 6.
    Zhu YM, Khan Z, Masel RI (2005) The behavior of palladium catalysts in direct formic acid fuel cells. J Power Sources 139:15–20CrossRefGoogle Scholar
  7. 7.
    Ralph TR, Hards GA, Keating JE, Campbell SA, Wilkinson DP, Davis M, StPierre J, Johnson MC (1997) Low cost electrodes for proton exchange membrane fuel cells — performance in single cells and Ballard stacks. J Electrochem Soc 144:3845–3857CrossRefGoogle Scholar
  8. 8.
    Bock C, Paquet C, Couillard M, Botton GA, MacDougall BR (2004) Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism. J Am Chem Soc 126:8028–8037CrossRefGoogle Scholar
  9. 9.
    Wang SY, Wang X, Jiang SP (2008) PtRu nanoparticles supported on 1- aminopyrene-functionalized multiwalled carbon nanotubes and their electrocatalytic activity for methanol oxidation. Langmuir 24:10505–10512MathSciNetCrossRefGoogle Scholar
  10. 10.
    Han MY, Gao XH, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635CrossRefGoogle Scholar
  11. 11.
    Kim F, Song JH, Yang PD (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124:14316–14317CrossRefGoogle Scholar
  12. 12.
    Wang S (2010) Nanostructured electrocatalysts for proton exchange membrane fuel cells (PEMFCs). PhD Thesis, Nanyang Technological University, SingaporeGoogle Scholar
  13. 13.
    Xu Z, Xiao FS, Purnell SK, Alexeev O, Kawi S, Deutsch SE, Gates BC (1994) Size-dependent catalytic activity of supported metal clusters. Nature 372:346–348CrossRefGoogle Scholar
  14. 14.
    Zhang ZB, Sun XZ, Dresselhaus MS, Ying JY, Heremans J (2000) Electronic transport properties of single-crystal bismuth nanowire arrays. Phys Rev B 61:4850–4861CrossRefGoogle Scholar
  15. 15.
    Hsin YL, Hwang KC, Yeh CT (2007) Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells. J Am Chem Soc 129:9999–10010CrossRefGoogle Scholar
  16. 16.
    Arenz M, Mayrhofer KJJ, Stamenkovic V, Blizanac BB, Tomoyuki T, Ross PN, Markovic NM (2005) The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts. J Am Chem Soc 127:6819–6829CrossRefGoogle Scholar
  17. 17.
    Wang C, Daimon H, Onodera T, Koda T, Sun SH (2008) A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angewandte Chemie-International Edition 47:3588–3591CrossRefGoogle Scholar
  18. 18.
    Xiao L, Zhuang L, Liu Y, Lu JT, Abruna HD (2009) Activating Pd by morphology tailoring for oxygen reduction. J Am Chem Soc 131:602–608CrossRefGoogle Scholar
  19. 19.
    Bi YP, Lu GX (2008) Facile synthesis of platinum nanofiber/nanotube junction structures at room temperature. Chem Mater 20:1224–1226CrossRefGoogle Scholar
  20. 20.
    Bai YX, Wu JJ, Qiu XP, Xi JY, Wang JS, Li JF, Zhu WT, Chen LQ (2007) Electrochemical characterization of Pt-CeO2/C and Pt-CexZr1 − xO2/C catalysts for ethanol electro-oxidation. Appl Catal B-Environ 73:144–149CrossRefGoogle Scholar
  21. 21.
    Xu CX, Zhang Y, Wang LQ, Xu LQ, Bian XF, Ma HY, Ding Y (2009) Nanotubular mesoporous PdCu bimetallic electrocatalysts toward oxygen reduction reaction. Chem Mater 21:3110–3116CrossRefGoogle Scholar
  22. 22.
    Xu CW, Wang H, Shen PK, Jiang SP (2007) Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells. Adv Mater 19:4256CrossRefGoogle Scholar
  23. 23.
    Koczkur K, Yi QF, Chen AC (2007) Nanoporous Pt-Ru networks and their electrocatalytical properties. Adv Mater 19:2648CrossRefGoogle Scholar
  24. 24.
    Wang SY, Wang X, Jiang SP (2008) Controllable self-assembly of Pd nanowire networks as highly active electrocatalysts for direct formic acid fuel cells. Nanotechnology 19:455602CrossRefGoogle Scholar
  25. 25.
    Guo DJ, Cui SK (2009) Hollow PtCo nanospheres supported on multiwalled carbon nanotubes for methanol electrooxidation. J Colloid Interface Sci 340:53–57CrossRefGoogle Scholar
  26. 26.
    Guo DJ, Zhao L, Qiu XP, Chen LQ, Zhu WT (2008) Novel hollow PtRu nanospheres supported on multi-walled carbon nanotube for methanol electrooxidation. J Power Sources 177:334–338CrossRefGoogle Scholar
  27. 27.
    Liang HP, Zhang HM, Hu JS, Guo YG, Wan LJ, Bai CL (2004) Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts. Angewandte Chemie-International Edition 43:1540–1543CrossRefGoogle Scholar
  28. 28.
    Zhao J, Chen WX, Zheng YF, Li X (2006) Novel carbon supported hollow Pt nanospheres for methanol electrooxidation. J Power Sources 162:168–172CrossRefGoogle Scholar
  29. 29.
    Kotobuki M, Watanabe A, Uchida H, Yamashita H, Watanabe M (2005) Reaction mechanism of preferential oxidation of carbon monoxide on Pt, Fe, and Pt-Fe/mordenite catalysts. J Catal 236:262–269CrossRefGoogle Scholar
  30. 30.
    Stamenkovic VR, Fowler B, Mun BS, Wang GJ, Ross PN, Lucas CA, Markovic NM (2007) Improve oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493CrossRefGoogle Scholar
  31. 31.
    Toda T, Igarashi H, Watanabe M (1999) Enhancement of the electrocatalytic O2 reduction on Pt-Fe alloys. J Electroanal Chem 460:258–262CrossRefGoogle Scholar
  32. 32.
    Kristian N (2010) Study of Pt-M (M=Au and Co) nano-catalysts with low Pt loading for PEMFC applications. PhD Thesis, Nanyang Technological University, SingaporeGoogle Scholar
  33. 33.
    Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction. J Phys Chem B 109:22701–22704CrossRefGoogle Scholar
  34. 34.
    Kristian N, Wang X (2008) Pt-shell-Au-core/C electrocatalyst with a controlled shell thickness and improved Pt utilization for fuel cell reactions. Electrochem Commun 10:12–15CrossRefGoogle Scholar
  35. 35.
    Kristian N, Yan Y, Wang X (2007) Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation. Chem Commun 353–355Google Scholar
  36. 36.
    Song HQ, Qiu XP, Li FS, Zhu WT, Chen LQ (2007) Ethanol electro-oxidation on catalysts with TiO2 coated carbon nanotubes as support. Electrochem Commun 9:1416–1421CrossRefGoogle Scholar
  37. 37.
    Hou Z, Yi B, Yu H, Lin Z, Zhang H (2003) CO tolerance electrocatalyst of PtRu-HxMeO3/C (Me = W, Mo) made by composite support method. J Power Sources 123:116–125CrossRefGoogle Scholar
  38. 38.
    Jayaraman S, Jaramillo TF, Baeck SH, McFarland EW (2005) Synthesis and characterization of Pt-WO3 as methanol oxidation catalysts for fuel cells. J Phys Chem B 109:22958–22966CrossRefGoogle Scholar
  39. 39.
    Jiang L, Colmenares L, Jusys Z, Sun G, Behm RJ (2007) Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt:Sn ratio. Electrochim Acta 53:377CrossRefGoogle Scholar
  40. 40.
    Waki K, Matsubara K, Ke K, Yamazaki Y (2005) Self-organized Pt/SnO2 electrocatalysts on multiwalled carbon nanotubes. Electrochem Solid State Lett 8:A489–A491CrossRefGoogle Scholar
  41. 41.
    Zhou CM, Wang HJ, Peng F, Liang JH, Yu H, Yang J (2009) MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells. Langmuir 25:7711–7717CrossRefGoogle Scholar
  42. 42.
    Kowal A, Li M, Shao M, Sasaki K, Vukmirovic MB, Zhang J, Marinkovic NS, Liu P, Frenkel AI, Adzic RR (2009) Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat Mater 8:325–330CrossRefGoogle Scholar
  43. 43.
    Shao YY, Liu J, Wang Y, Lin YH (2009) Novel catalyst support materials for PEM fuel cells: current status and future prospects. J Mater Chem 19:46–59CrossRefGoogle Scholar
  44. 44.
    Wang JJ, Yin GP, Shao YY, Wang ZB, Gao YZ (2008) Investigation of further improvement of platinum catalyst durability with highly graphitized carbon nanotubes support. J Phys Chem C 112:5784–5789CrossRefGoogle Scholar
  45. 45.
    Wang X, Li WZ, Chen ZW, Waje M, Yan YS (2006) Durability inestigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J Power Sources 158:154–159CrossRefGoogle Scholar
  46. 46.
    Liu ZL, Lin XH, Lee JY, Zhang W, Han M, Gan LM (2002) Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir 18:4054–4060CrossRefGoogle Scholar
  47. 47.
    Tian ZQ, Jiang SP, Liang YM, Shen PK (2006) Synthesis and characterization of platinum catalysts on muldwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. J Phys Chem B 110:5343–5350CrossRefGoogle Scholar
  48. 48.
    Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192CrossRefGoogle Scholar
  49. 49.
    Yu RQ, Chen LW, Liu QP, Lin JY, Tan KL, Ng SC, Chan HSO, Xu GQ, Hor TSA (1998) Platinum deposition on carbon nanotubes via chemical modification. Chem Mater 10:718–722CrossRefGoogle Scholar
  50. 50.
    Ou YY, Huang MH (2006) High-density assembly of gold nanoparticles on multiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker. J Phys Chem B 110:2031–2036CrossRefGoogle Scholar
  51. 51.
    Wang SY, Jiang SP, White TJ, Guo J, Wang X (2009) Electrocatalytic activity and interconnectivity of Pt nanoparticles on multiwalled carbon nanotubes for fuel cells. J Phys Chem C 113:18935–18945CrossRefGoogle Scholar
  52. 52.
    Yang W, Wang XL, Yang F, Yang C, Yang XR (2008) Carbon nanotubes decorated with Pt nanocubes by a noncovalent functionalization method and their role in oxygen reduction. Adv Mater 20:2579–2587CrossRefGoogle Scholar
  53. 53.
    Wu BH, Hu D, Kuang YJ, Liu B, Zhang XH, Chen JH (2009) Functionalization of carbon nanotubes by an ionic-liquid polymer: dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol. Angewandte Chemie-International Edition 48:4751–4754CrossRefGoogle Scholar
  54. 54.
    Chen ZW, Waje M, Li WZ, Yan YS (2007) Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angewandte Chemie-International Edition 46:4060–4063CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations