Enhancement of Si-Based Solar Cell Efficiency via Nanostructure Integration

Part of the Green Energy and Technology book series (GREEN)


Solar cells are considered one of the most promising clean and renewable energy sources. Si wafer-based solar cells currently dominate the photovoltaic (PV) market with over 80% of the market share, largely owing to the available and rich manufacturing processes developed for the integrated circuit industry. However, the relatively high cost of the PV modules using Si wafer solar cells compared to conventional fossil fuels-based energy restricts its wide adoption for the civil electricity supply. How to effectively lower the costs of PV modules becomes one of the most important scientific and technical topics, especially considering the current world-wide efforts to combat climate change due to the “greenhouse” gas emissions when consuming carbon-based fossil energy. Two methodologies are generally pursued to realize this goal: one is to utilize low-grade raw materials and the other is by increasing the power conversion efficiency (PCE). In this chapter, the approaches to lower the costs and enhance the PCE of the Si-based solar cells by incorporating various Si nanostructures (e.g., nanodots, nanowires, nanocones and nanoholes) are presented, with details on the preparation techniques and their optical and electrical characteristics. The possible mechanisms of PCE improvement using these Si nanostructures are discussed in terms of enhanced light absorption and photogenerated carrier collection.


Solar Cell Power Conversion Efficiency Plasma Enhance Chemical Vapor Deposition Thin Film Solar Cell Photogenerated Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Würfel P (2005) Physics of solar cells: from principles to new concepts. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Pagliaro M, Palmisano G, Ciriminna R (2008) Flexible solar cells. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  3. 3.
    Green MA (2001) Third generation photovoltaics: ultra-high conversion efficiency at low cost. Prog Photovolt Res Appl 9:123–135CrossRefGoogle Scholar
  4. 4.
    Green MA (2003) Third generation photovoltaics: advanced solar energy conversion. Springer, BerlinGoogle Scholar
  5. 5.
    Green MA (2002) Third generation photovoltaics: solar cells for 2020 and beyond. Physica E 14:65–70CrossRefGoogle Scholar
  6. 6.
    Conibeer G, Green MA, Corkish R et al (2006) Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511:654–662CrossRefGoogle Scholar
  7. 7.
    Conibeer G, Green MA, Cho EC et al (2008) Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films 516:6748–6756CrossRefGoogle Scholar
  8. 8.
    Kayes BM, Atwater HA, Lewis NS (2005) Comparison of the device physics principles of planar and radial p–n junction nanorod solar cells. J Appl Phys 97:114302-11CrossRefGoogle Scholar
  9. 9.
    Zhu J, Yu Z, Burkhard GF et al (2009) Optical absorption enhancement in amorphous silicon nanowire and nanocone array. Nano Lett 9:279–282CrossRefGoogle Scholar
  10. 10.
    Yuan HC, Yost VE, Page MR et al (2009) Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules. Appl Phys Lett 95:123501-3Google Scholar
  11. 11.
    Kim TW, Cho CH, Kim BH et al (2006) Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3. Appl Phys Lett 88:123102-3Google Scholar
  12. 12.
    van Buuren T, Dinh LN, Chase LL et al (1998) Changes in the electronic properties of Si nanocrystals as a function of particle size. Phys Rev Lett 80:3803–3806CrossRefGoogle Scholar
  13. 13.
    Tian B, Zheng X, Kempa TJ et al (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885–890CrossRefGoogle Scholar
  14. 14.
    Zacharias M, Heitmann J, Scholz R et al (2002) Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach. Appl Phys Lett 80:661–663CrossRefGoogle Scholar
  15. 15.
    Scardera G, Puzzer T, Conibeer G et al (2008) Fourier transform infrared spectroscopy of annealed silicon-rich silicon nitride films. J Appl Phys 104:104310-7CrossRefGoogle Scholar
  16. 16.
    Song D, Cho EC, Conibeer G et al (2007) Fabrication and electrical characteristics of Si nanocrystal/c-Si heterojunctions. Appl Phys Lett 91:123510-3Google Scholar
  17. 17.
    Kayes BM, Filler MA, Putnam MC et al (2007) Growth of vertically aligned Si wire array over large areas (>1 cm2) with Au and Cu catalysts. Appl Phys Lett 91:103110-3CrossRefGoogle Scholar
  18. 18.
    Stelzner T, Pietsch M, Andrä G et al (2008) Silicon nanowire-based solar cells. Nanotechnology 19:295203-4CrossRefGoogle Scholar
  19. 19.
    Hsu CM, Connor ST, Tang MX et al (2008) Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching. Appl Phys Lett 93:133109-3Google Scholar
  20. 20.
    Hsu CH, Lo HC, Chen CF et al (2004) Generally applicable self-masked dry etching technique for nanotip array fabrication. Nano Lett 4:471–475CrossRefGoogle Scholar
  21. 21.
    Huang MJ, Yang CR, Chiou YC et al (2008) Fabrication of nanoporous antireflection surfaces on silicon. Sol Energy Mater Sol Cells 92:1352–1357CrossRefGoogle Scholar
  22. 22.
    Branz HM, Yost VE, Ward S et al (2009) Nanostructured black silicon and the optical reflectance of graded-density surfaces. Appl Phys Lett 94:231121-3CrossRefGoogle Scholar
  23. 23.
    Conibeer G (2007) Third-generation photovoltaics. Mater Today 10:42–50CrossRefGoogle Scholar
  24. 24.
    Conibeer G, Ekins-Daukes N, Guillemoles JF et al (2009) Progress on hot carrier cells. Sol Energy Mater Sol Cells 93:713–719CrossRefGoogle Scholar
  25. 25.
    Boutry GA (1948) Augustin Fresnel: his time, life and work 1788–1827. Sci Prog 36:587–604Google Scholar
  26. 26.
    Xi JQ, Schubert MF, Kim JK et al (2007) Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat Photon 1:176–179Google Scholar
  27. 27.
    Arndt RA, Allison JF, Haynos JG et al (1975) Optical properties of the COMSAT non-reflective cell. In: Proceedings of 11th IEEE photovoltaic specialists conference, Scottsdale, May, pp 40–43Google Scholar
  28. 28.
    Zhao J, Wang A, Green MA et al (1998) 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl Phys Lett 73:1991–1993CrossRefGoogle Scholar
  29. 29.
    Green MA (2009) The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog Photovolt Res Appl 17:183–189CrossRefGoogle Scholar
  30. 30.
    Li JS, Yu HY, Wong SM et al (2009) Si nanopillar array optimization on Si thin films for solar energy harvesting. Appl Phys Lett 95:033102-3Google Scholar
  31. 31.
    Li JS, Yu HY, Wong SM et al (2009) Surface nanostructure optimization for solar energy harvesting in Si thin film based solar cells. In: IEEE technical digest, international electron devices meeting, pp 547–550Google Scholar
  32. 32.
    Iacona F, Franzò G, Spinella C (2000) Correlation between luminescence and structural properties of Si nanocrystals. J Appl Phys 87:1295–1303CrossRefGoogle Scholar
  33. 33.
    Tsybeskov L, Hirschman KD, Duttagupta SP et al (1998) Nanocrystalline-silicon superlattice produced by controlled recrystallization. Appl Phys Lett 72:43–45CrossRefGoogle Scholar
  34. 34.
    Zhang RJ, Chen YM, Lu WJ (2009) Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix. Appl Phys Lett 95:161109-3Google Scholar
  35. 35.
    Kim TY, Park NM, Kim KH et al (2004) Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Appl Phys Lett 85:5355–5357CrossRefGoogle Scholar
  36. 36.
    Park NM, Choi CJ, Seong TY et al (2001) Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride. Phys Rev Lett 86:1355–1357CrossRefGoogle Scholar
  37. 37.
    Boer KW (1990) Survey of semiconductor physics. van Nostrand Reinhold, New YorkGoogle Scholar
  38. 38.
    Jiang CW, Green MA (2006) Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J Appl Phys 99:114902-7Google Scholar
  39. 39.
    Meillaud F, Shah A, Droz C et al (2006) Efficiency limits for single-junction and tandem solar cells. Sol Energy Mater Sol Cells 90:2952–2959CrossRefGoogle Scholar
  40. 40.
    Song D, Cho EC, Conibeer G et al (2008) Structural, electrical and photovoltaic characterization of Si nanocrystals embedded SiC matrix and Si nanocrystals/c-Si heterojunction devices. Sol Energy Mater Sol Cells 92:474–481CrossRefGoogle Scholar
  41. 41.
    Cho EC, Park S, Hao X et al (2008) Silicon quantum dot/crystalline silicon solar cells. Nanotechnology 19:245201-5CrossRefGoogle Scholar
  42. 42.
    Stupca M, Alsalhi M, Saud TA et al (2007) Enhancement of polycrystalline silicon solar cells using ultrathin films of silicon nanoparticle. Appl Phys Lett 91:063107-3CrossRefGoogle Scholar
  43. 43.
    Kim SK, Cho CH, Kim BH et al (2009) Electrical and optical characteristics of silicon nanocrystal solar cells. Appl Phys Lett 95:143120-3Google Scholar
  44. 44.
    Perez-Wurfl I, Hao X, Gentle A et al (2009) Si nanocrystal p–i–n diodes fabricated on quartz substrates for third generation solar cell applications. Appl Phys Lett 95:153506-3CrossRefGoogle Scholar
  45. 45.
    Cantele G, Degoli E, Luppi E et al (2005) First-principles study of n- and p-doped silicon nanoclusters. Phys Rev B 72:113303-4CrossRefGoogle Scholar
  46. 46.
    Erwin SC, Zu L, Haftel MI et al (2005) Doping semiconductor nanocrystals. Nature 436:91–94CrossRefGoogle Scholar
  47. 47.
    Westwater J, Gosain DP, Tomiya S et al (1997) Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. J Vac Sci Technol B 15:554–557CrossRefGoogle Scholar
  48. 48.
    Hochbaum AI, Fan R, He R et al (2005) Controlled growth of Si nanowire array for device integration. Nano Lett 5:457–460CrossRefGoogle Scholar
  49. 49.
    Schmidt V, Senz S, Gösele U (2005) Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett 5:931–935CrossRefGoogle Scholar
  50. 50.
    Tsakalakos L, Balch J, Fronheiser J et al (2007) Strong broadband optical absorption in silicon nanowire films. J. Nanophoton 1:013552-10CrossRefGoogle Scholar
  51. 51.
    Hochbaum AI, Chen R, Delgado RD et al (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163–168CrossRefGoogle Scholar
  52. 52.
    Chan CK, Peng H, Liu G et al (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35CrossRefGoogle Scholar
  53. 53.
    Pan C, Wu H, Wang C et al (2008) Nanowire-based high performance “micro fuel cells”: one nanowire, one fuel cell. Adv Mater 20:1644–1648CrossRefGoogle Scholar
  54. 54.
    Peng KQ, Yan YJ, Gao SP et al (2002) Synthesis of large-area silicon nanowire array via self-assembling nanoelectrochemistry. Adv Mater 14:1164–1167CrossRefGoogle Scholar
  55. 55.
    Huang Z, Fang H, Zhu J (2007) Fabrication of silicon nanowire array with controlled diameter, length, and density. Adv Mater 19:744–748CrossRefGoogle Scholar
  56. 56.
    Wang Y, Schmidt V, Senz S et al (2006) Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat Nanotechnol 1:186–189CrossRefGoogle Scholar
  57. 57.
    Shimizu T, Xie T, Nishikawa J et al (2007) Synthesis of vertical high-density epitaxial Si (100) nanowire array on a Si (100) substrate using an anodic aluminum oxide template. Adv Mater 19:917–920CrossRefGoogle Scholar
  58. 58.
    Wagner RS, Ellis WC (1964) Vapor–liquid–solid mechanism of single crystal growth. Appl Phys Lett 4:89–90CrossRefGoogle Scholar
  59. 59.
    Westwater J, Gosain DP, Usui S (1998) Si nanowires grown via the vapor–liquid–solid reaction. Phys Stat Sol (a) 165:37–42CrossRefGoogle Scholar
  60. 60.
    Yao Y, Fan S (2007) Si nanowires synthesized with Cu catalyst. Mater Lett 61:177–181CrossRefGoogle Scholar
  61. 61.
    Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208–211CrossRefGoogle Scholar
  62. 62.
    Ke Y, Weng X, Redwing JM et al (2009) Fabrication and electrical properties of Si nanowires synthesized by Al catalyzed vapor–liquid–solid growth. Nano Lett 9:4494–4499CrossRefGoogle Scholar
  63. 63.
    Chen W, Ahmed H (1993) Fabrication of high aspect ratio silicon pillars of <10 nm diameter. Appl Phys Lett 63:1116–1118CrossRefGoogle Scholar
  64. 64.
    Hadobás K, Kirsch S, Carl A et al (2000) Reflection properties of nanostructure-array silicon surfaces. Nanotechnology 11:161–164CrossRefGoogle Scholar
  65. 65.
    Bullis WM (1966) Properties of gold in silicon. Solid-State Electron 9:143–168CrossRefGoogle Scholar
  66. 66.
    Dabbousi BO, Murray CB, Rubner MF et al (1994) Langmuir–Blodgett manipulation of size-selected CdSe nanocrystallites. Chem Mater 6:216–219CrossRefGoogle Scholar
  67. 67.
    Peng K, Zhang M, Lu A et al (2007) Ordered silicon nanowire array via nanosphere lithography and metal induced etching. Appl Phys Lett 90:163123-3Google Scholar
  68. 68.
    Lu Y, Xiong H, Jiang X et al (2003) Asymmetric dimers can be formed by dewetting half-shells of gold deposited on the surfaces of spherical oxide colloids. J Am Chem Soc 125:12724–12725CrossRefGoogle Scholar
  69. 69.
    Li X, Bohn PW (2000) Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77:2572–2574CrossRefGoogle Scholar
  70. 70.
    Fuhrmann B, Leipner HS, Höche HR et al (2005) Ordered array of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett 5:2524–2527CrossRefGoogle Scholar
  71. 71.
    Masuda H, Fukuda K (1995) Ordered metal nanohole array made by a two-step replication of honeycomb structures of anodic alumina. Science 268:1466–1468CrossRefGoogle Scholar
  72. 72.
    Che G, Lakshmi BB, Fisher ER et al (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349CrossRefGoogle Scholar
  73. 73.
    Choi J, Sauer G, Nielsch K et al (2003) Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio. Chem Mater 15:776–779CrossRefGoogle Scholar
  74. 74.
    Mei X, Kim D, Ruda HE et al (2002) Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot array using anodic Al2O3 nanohole array template masks. Appl Phys Lett 81:361–363CrossRefGoogle Scholar
  75. 75.
    Nasir ME, Allsopp DWE, Bowen CR et al (2010) The fabrication of mono-domain highly ordered nanoporous alumina on a wafer scale by a guided electric field. Nanotechnology 21:105303-6CrossRefGoogle Scholar
  76. 76.
    Jessensky O, Müller F, Gösele U (1998) Self-organized formation of hexagonal pore array in anodic alumina. Appl Phys Lett 72:1173–1175CrossRefGoogle Scholar
  77. 77.
    Lombardi I, Hochbaum AI, Yang P et al (2006) Synthesis of high density, size-controlled Si nanowire array by porous anodic alumina mask. Chem Mater 18:988–991CrossRefGoogle Scholar
  78. 78.
    Guo LJ (2007) Nanoimprint lithography: methods and material requirements. Adv Mater 19:495–513CrossRefGoogle Scholar
  79. 79.
    Plass KE, Filler MA, Spurgeon JM et al (2008) Flexible polymer-embedded Si wire array. Adv Mater 21:325–328CrossRefGoogle Scholar
  80. 80.
    Tsakalakos L, Balch J, Fronheiser J et al (2007) Silicon nanowire solar cells. Appl Phys Lett 91:233117-3CrossRefGoogle Scholar
  81. 81.
    Garnett EC, Yang P (2008) Silicon nanowire radial p–n junction solar cells. J Am Chem Soc 130:9224–9225CrossRefGoogle Scholar
  82. 82.
    Kalita G, Adhikari S, Aryal HR et al (2009) Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes. J Phys D Appl Phys 42:115104-5Google Scholar
  83. 83.
    Street RA, Qi P, Lujan R et al (2008) Reflectivity of disordered silicon nanowires. Appl Phys Lett 93:163109-3Google Scholar
  84. 84.
    Hu L, Chen G (2007) Analysis of optical absorption in silicon nanowire array for photovoltaic applications. Nano Lett 7:3249–3252CrossRefGoogle Scholar
  85. 85.
    Air Mass 1.5 Spectra (2010) American society for testing and materials. http://rredc.nrel.gov/solar/spectra/am1.5/#1962. Accessed 9 March 2010
  86. 86.
    Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys 32:510–519CrossRefGoogle Scholar
  87. 87.
    Li JS, Yu HY, Wong SM et al (2009) Design guidelines of periodic Si nanowire array for solar cell application. Appl Phys Lett 95:243113-3Google Scholar
  88. 88.
    Putnam MC, Turner-Evans DB, Kelzenberg MD et al (2009) 10 μm minority-carrier diffusion lengths in Si wires synthesized by Cu-catalyzed vapour–liquid–solid growth. Appl Phys Lett 95:163116-3CrossRefGoogle Scholar
  89. 89.
    Maiolo JR III, Kayes BM, Filler MA et al (2007) High aspect ratio silicon wire array photoelectrochemical cells. J Am Chem Soc 129:12346–12347CrossRefGoogle Scholar
  90. 90.
    Sivakov V, Andrä G, Gawlik A et al (2009) Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett 9:1549–1554CrossRefGoogle Scholar
  91. 91.
    van den Donker MN, Gordijn A, Stiebig H et al (2007) Flexible amorphous and microcrystalline silicon tandem solar modules in the temporary superstrate concept. Sol Energy Mater Sol Cells 91:572–580CrossRefGoogle Scholar
  92. 92.
    Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10:1082–1087CrossRefGoogle Scholar
  93. 93.
    Yoon J, Baca AJ, Park SI et al (2008) Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat Mater 7:907–915CrossRefGoogle Scholar
  94. 94.
    Campbell P, Green MA (1987) Light trapping properties of pyramidally textured surfaces. J Appl Phys 62:243–249CrossRefGoogle Scholar
  95. 95.
    Gray JL (2003) The physics of the solar cell. In: Luque A, Hegedus S (eds) Handbook of photovoltaic science and engineering. Wiley, ChichesterGoogle Scholar
  96. 96.
    Kelzenberg MD, Turner-Evans DB, Kayes BM et al (2008) Single-nanowire Si solar cells. In: Proceedings of the 33rd IEEE photovoltaic specialists conference, pp 144–149Google Scholar
  97. 97.
    Bai XD, Zhi CY, Liu S et al (2003) High-density uniformly aligned silicon nanotip array and their enhanced field emission characteristics. Solid State Commun 125:185–188CrossRefGoogle Scholar
  98. 98.
    Wang Q, Li JJ, Bai XD et al (2005) Field emission properties of carbon coated Si nanocone array on porous silicon. Nanotechnology 15:2919–2922CrossRefGoogle Scholar
  99. 99.
    Hsu CH, Huang YF, Chen LC et al (2006) Morphology control of silicon nanotips fabricated by electron cyclotron resonance plasma etching. J Vac Sci Technol B 24:308–311CrossRefGoogle Scholar
  100. 100.
    Li LP, Lu YF, Doerr DW et al (2004) Parametric investigation of laser nanoimprinting of hemispherical cavity array. J Appl Phys 96:5144–5151CrossRefGoogle Scholar
  101. 101.
    Huang SM, Hong MH, Luk’yanchuk BS et al (2002) Pulsed laser-assisted surface structuring with optical and near-field enhanced effects. J Appl Phys 92:2495–2500CrossRefGoogle Scholar
  102. 102.
    Tsujino K, Matsumura M, Nishimoto Y (2006) Texturization of multicrystalline silicon wafers for solar cells by chemical treatment using metallic catalyst. Sol Energy Mater Sol Cells 90:100–110CrossRefGoogle Scholar
  103. 103.
    Gorostiza P, Díaz R, Servat J et al (1997) Atomic force microscopy study of the silicon doping influence on the first stages of platinum electroless deposition. J Electrochem Soc 144:909–914CrossRefGoogle Scholar
  104. 104.
    Wang F, Yu HY, Wang XC et al (2010) Maskless fabrication of large scale Si nanohole array via laser annealed metal nanoparticles catalytic etching for photovoltaic application. J Appl Phys 108:024301-3Google Scholar
  105. 105.
    Li JS, Yu HY, Wong SM et al (2010) Si nanocone array optimization on crystalline Si thin films for solar energy harvesting. J Phys D Appl Phys 43:255101-7Google Scholar
  106. 106.
    Wang F, Yu HY, Li JS et al (2010) Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application. Opt Lett 35:40–42CrossRefGoogle Scholar
  107. 107.
    Wong SM, Yu HY, Li JS et al (2010) Design high-efficiency Si nanopillar-array-textured thin film solar cell. IEEE Electron Device Lett 31:335–337CrossRefGoogle Scholar
  108. 108.
    Shockley W, Read WT (1952) Statistics of the recombinations of holes and electrons. Phys Rev 87:835–842MATHCrossRefGoogle Scholar
  109. 109.
    Shibib MA, Lindholm FA, Fossum JG (1979) Auger recombination in heavily doped shallow-emitter silicon p–n-junction solar cells, diodes and transistors. IEEE Trans Electron Devices ED 26:1104–1106CrossRefGoogle Scholar
  110. 110.
    Kelzenberg MD, Putnam MC, Turner-Evans DB et al (2009) Predicted efficiency of Si wire array solar cells. In: Proceedings of the 34th IEEE photovoltaic specialists conference, pp 391–396Google Scholar
  111. 111.
    Li JS, Wong SM, Li YL et al (2010) High-efficiency crystalline Si thin film solar cells with Si nanopillar array textured surfaces. In: Proceedings of the 35th IEEE photovoltaic specialists conferenceGoogle Scholar
  112. 112.
    Zhu J, Hsu CM, Yu Z et al (2010) Nanodome solar cells with efficient light management and self-cleaning. Nano Lett 10:1979–1984CrossRefGoogle Scholar
  113. 113.
    Green MA, Emery K, Hishikawa Y et al (2009) Solar cell efficiency tables (version 34). Prog Photovolt Res Appl 17:320–326CrossRefGoogle Scholar
  114. 114.
    Nishioka K, Sueto T, Saito N (2009) Formation of antireflection nanostructure for silicon solar cells using catalysis of single nano-sized silver particle. Appl Surf Sci 255:9504–9507CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.School of EEENanyang Technological UniversitySingaporeSingapore

Personalised recommendations