Skip to main content

Enhancement of Si-Based Solar Cell Efficiency via Nanostructure Integration

  • Chapter
  • First Online:
Energy Efficiency and Renewable Energy Through Nanotechnology

Part of the book series: Green Energy and Technology ((GREEN))

  • 4433 Accesses

Abstract

Solar cells are considered one of the most promising clean and renewable energy sources. Si wafer-based solar cells currently dominate the photovoltaic (PV) market with over 80% of the market share, largely owing to the available and rich manufacturing processes developed for the integrated circuit industry. However, the relatively high cost of the PV modules using Si wafer solar cells compared to conventional fossil fuels-based energy restricts its wide adoption for the civil electricity supply. How to effectively lower the costs of PV modules becomes one of the most important scientific and technical topics, especially considering the current world-wide efforts to combat climate change due to the “greenhouse” gas emissions when consuming carbon-based fossil energy. Two methodologies are generally pursued to realize this goal: one is to utilize low-grade raw materials and the other is by increasing the power conversion efficiency (PCE). In this chapter, the approaches to lower the costs and enhance the PCE of the Si-based solar cells by incorporating various Si nanostructures (e.g., nanodots, nanowires, nanocones and nanoholes) are presented, with details on the preparation techniques and their optical and electrical characteristics. The possible mechanisms of PCE improvement using these Si nanostructures are discussed in terms of enhanced light absorption and photogenerated carrier collection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Würfel P (2005) Physics of solar cells: from principles to new concepts. Wiley-VCH, Weinheim

    Google Scholar 

  2. Pagliaro M, Palmisano G, Ciriminna R (2008) Flexible solar cells. Wiley-VCH, Weinheim

    Book  Google Scholar 

  3. Green MA (2001) Third generation photovoltaics: ultra-high conversion efficiency at low cost. Prog Photovolt Res Appl 9:123–135

    Article  Google Scholar 

  4. Green MA (2003) Third generation photovoltaics: advanced solar energy conversion. Springer, Berlin

    Google Scholar 

  5. Green MA (2002) Third generation photovoltaics: solar cells for 2020 and beyond. Physica E 14:65–70

    Article  Google Scholar 

  6. Conibeer G, Green MA, Corkish R et al (2006) Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511:654–662

    Article  Google Scholar 

  7. Conibeer G, Green MA, Cho EC et al (2008) Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films 516:6748–6756

    Article  Google Scholar 

  8. Kayes BM, Atwater HA, Lewis NS (2005) Comparison of the device physics principles of planar and radial p–n junction nanorod solar cells. J Appl Phys 97:114302-11

    Article  Google Scholar 

  9. Zhu J, Yu Z, Burkhard GF et al (2009) Optical absorption enhancement in amorphous silicon nanowire and nanocone array. Nano Lett 9:279–282

    Article  Google Scholar 

  10. Yuan HC, Yost VE, Page MR et al (2009) Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules. Appl Phys Lett 95:123501-3

    Google Scholar 

  11. Kim TW, Cho CH, Kim BH et al (2006) Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3. Appl Phys Lett 88:123102-3

    Google Scholar 

  12. van Buuren T, Dinh LN, Chase LL et al (1998) Changes in the electronic properties of Si nanocrystals as a function of particle size. Phys Rev Lett 80:3803–3806

    Article  Google Scholar 

  13. Tian B, Zheng X, Kempa TJ et al (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885–890

    Article  Google Scholar 

  14. Zacharias M, Heitmann J, Scholz R et al (2002) Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach. Appl Phys Lett 80:661–663

    Article  Google Scholar 

  15. Scardera G, Puzzer T, Conibeer G et al (2008) Fourier transform infrared spectroscopy of annealed silicon-rich silicon nitride films. J Appl Phys 104:104310-7

    Article  Google Scholar 

  16. Song D, Cho EC, Conibeer G et al (2007) Fabrication and electrical characteristics of Si nanocrystal/c-Si heterojunctions. Appl Phys Lett 91:123510-3

    Google Scholar 

  17. Kayes BM, Filler MA, Putnam MC et al (2007) Growth of vertically aligned Si wire array over large areas (>1 cm2) with Au and Cu catalysts. Appl Phys Lett 91:103110-3

    Article  Google Scholar 

  18. Stelzner T, Pietsch M, Andrä G et al (2008) Silicon nanowire-based solar cells. Nanotechnology 19:295203-4

    Article  Google Scholar 

  19. Hsu CM, Connor ST, Tang MX et al (2008) Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching. Appl Phys Lett 93:133109-3

    Google Scholar 

  20. Hsu CH, Lo HC, Chen CF et al (2004) Generally applicable self-masked dry etching technique for nanotip array fabrication. Nano Lett 4:471–475

    Article  Google Scholar 

  21. Huang MJ, Yang CR, Chiou YC et al (2008) Fabrication of nanoporous antireflection surfaces on silicon. Sol Energy Mater Sol Cells 92:1352–1357

    Article  Google Scholar 

  22. Branz HM, Yost VE, Ward S et al (2009) Nanostructured black silicon and the optical reflectance of graded-density surfaces. Appl Phys Lett 94:231121-3

    Article  Google Scholar 

  23. Conibeer G (2007) Third-generation photovoltaics. Mater Today 10:42–50

    Article  Google Scholar 

  24. Conibeer G, Ekins-Daukes N, Guillemoles JF et al (2009) Progress on hot carrier cells. Sol Energy Mater Sol Cells 93:713–719

    Article  Google Scholar 

  25. Boutry GA (1948) Augustin Fresnel: his time, life and work 1788–1827. Sci Prog 36:587–604

    Google Scholar 

  26. Xi JQ, Schubert MF, Kim JK et al (2007) Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat Photon 1:176–179

    Google Scholar 

  27. Arndt RA, Allison JF, Haynos JG et al (1975) Optical properties of the COMSAT non-reflective cell. In: Proceedings of 11th IEEE photovoltaic specialists conference, Scottsdale, May, pp 40–43

    Google Scholar 

  28. Zhao J, Wang A, Green MA et al (1998) 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl Phys Lett 73:1991–1993

    Article  Google Scholar 

  29. Green MA (2009) The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog Photovolt Res Appl 17:183–189

    Article  Google Scholar 

  30. Li JS, Yu HY, Wong SM et al (2009) Si nanopillar array optimization on Si thin films for solar energy harvesting. Appl Phys Lett 95:033102-3

    Google Scholar 

  31. Li JS, Yu HY, Wong SM et al (2009) Surface nanostructure optimization for solar energy harvesting in Si thin film based solar cells. In: IEEE technical digest, international electron devices meeting, pp 547–550

    Google Scholar 

  32. Iacona F, Franzò G, Spinella C (2000) Correlation between luminescence and structural properties of Si nanocrystals. J Appl Phys 87:1295–1303

    Article  Google Scholar 

  33. Tsybeskov L, Hirschman KD, Duttagupta SP et al (1998) Nanocrystalline-silicon superlattice produced by controlled recrystallization. Appl Phys Lett 72:43–45

    Article  Google Scholar 

  34. Zhang RJ, Chen YM, Lu WJ (2009) Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix. Appl Phys Lett 95:161109-3

    Google Scholar 

  35. Kim TY, Park NM, Kim KH et al (2004) Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Appl Phys Lett 85:5355–5357

    Article  Google Scholar 

  36. Park NM, Choi CJ, Seong TY et al (2001) Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride. Phys Rev Lett 86:1355–1357

    Article  Google Scholar 

  37. Boer KW (1990) Survey of semiconductor physics. van Nostrand Reinhold, New York

    Google Scholar 

  38. Jiang CW, Green MA (2006) Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J Appl Phys 99:114902-7

    Google Scholar 

  39. Meillaud F, Shah A, Droz C et al (2006) Efficiency limits for single-junction and tandem solar cells. Sol Energy Mater Sol Cells 90:2952–2959

    Article  Google Scholar 

  40. Song D, Cho EC, Conibeer G et al (2008) Structural, electrical and photovoltaic characterization of Si nanocrystals embedded SiC matrix and Si nanocrystals/c-Si heterojunction devices. Sol Energy Mater Sol Cells 92:474–481

    Article  Google Scholar 

  41. Cho EC, Park S, Hao X et al (2008) Silicon quantum dot/crystalline silicon solar cells. Nanotechnology 19:245201-5

    Article  Google Scholar 

  42. Stupca M, Alsalhi M, Saud TA et al (2007) Enhancement of polycrystalline silicon solar cells using ultrathin films of silicon nanoparticle. Appl Phys Lett 91:063107-3

    Article  Google Scholar 

  43. Kim SK, Cho CH, Kim BH et al (2009) Electrical and optical characteristics of silicon nanocrystal solar cells. Appl Phys Lett 95:143120-3

    Google Scholar 

  44. Perez-Wurfl I, Hao X, Gentle A et al (2009) Si nanocrystal p–i–n diodes fabricated on quartz substrates for third generation solar cell applications. Appl Phys Lett 95:153506-3

    Article  Google Scholar 

  45. Cantele G, Degoli E, Luppi E et al (2005) First-principles study of n- and p-doped silicon nanoclusters. Phys Rev B 72:113303-4

    Article  Google Scholar 

  46. Erwin SC, Zu L, Haftel MI et al (2005) Doping semiconductor nanocrystals. Nature 436:91–94

    Article  Google Scholar 

  47. Westwater J, Gosain DP, Tomiya S et al (1997) Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. J Vac Sci Technol B 15:554–557

    Article  Google Scholar 

  48. Hochbaum AI, Fan R, He R et al (2005) Controlled growth of Si nanowire array for device integration. Nano Lett 5:457–460

    Article  Google Scholar 

  49. Schmidt V, Senz S, Gösele U (2005) Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett 5:931–935

    Article  Google Scholar 

  50. Tsakalakos L, Balch J, Fronheiser J et al (2007) Strong broadband optical absorption in silicon nanowire films. J. Nanophoton 1:013552-10

    Article  Google Scholar 

  51. Hochbaum AI, Chen R, Delgado RD et al (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163–168

    Article  Google Scholar 

  52. Chan CK, Peng H, Liu G et al (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35

    Article  Google Scholar 

  53. Pan C, Wu H, Wang C et al (2008) Nanowire-based high performance “micro fuel cells”: one nanowire, one fuel cell. Adv Mater 20:1644–1648

    Article  Google Scholar 

  54. Peng KQ, Yan YJ, Gao SP et al (2002) Synthesis of large-area silicon nanowire array via self-assembling nanoelectrochemistry. Adv Mater 14:1164–1167

    Article  Google Scholar 

  55. Huang Z, Fang H, Zhu J (2007) Fabrication of silicon nanowire array with controlled diameter, length, and density. Adv Mater 19:744–748

    Article  Google Scholar 

  56. Wang Y, Schmidt V, Senz S et al (2006) Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat Nanotechnol 1:186–189

    Article  Google Scholar 

  57. Shimizu T, Xie T, Nishikawa J et al (2007) Synthesis of vertical high-density epitaxial Si (100) nanowire array on a Si (100) substrate using an anodic aluminum oxide template. Adv Mater 19:917–920

    Article  Google Scholar 

  58. Wagner RS, Ellis WC (1964) Vapor–liquid–solid mechanism of single crystal growth. Appl Phys Lett 4:89–90

    Article  Google Scholar 

  59. Westwater J, Gosain DP, Usui S (1998) Si nanowires grown via the vapor–liquid–solid reaction. Phys Stat Sol (a) 165:37–42

    Article  Google Scholar 

  60. Yao Y, Fan S (2007) Si nanowires synthesized with Cu catalyst. Mater Lett 61:177–181

    Article  Google Scholar 

  61. Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208–211

    Article  Google Scholar 

  62. Ke Y, Weng X, Redwing JM et al (2009) Fabrication and electrical properties of Si nanowires synthesized by Al catalyzed vapor–liquid–solid growth. Nano Lett 9:4494–4499

    Article  Google Scholar 

  63. Chen W, Ahmed H (1993) Fabrication of high aspect ratio silicon pillars of <10 nm diameter. Appl Phys Lett 63:1116–1118

    Article  Google Scholar 

  64. Hadobás K, Kirsch S, Carl A et al (2000) Reflection properties of nanostructure-array silicon surfaces. Nanotechnology 11:161–164

    Article  Google Scholar 

  65. Bullis WM (1966) Properties of gold in silicon. Solid-State Electron 9:143–168

    Article  Google Scholar 

  66. Dabbousi BO, Murray CB, Rubner MF et al (1994) Langmuir–Blodgett manipulation of size-selected CdSe nanocrystallites. Chem Mater 6:216–219

    Article  Google Scholar 

  67. Peng K, Zhang M, Lu A et al (2007) Ordered silicon nanowire array via nanosphere lithography and metal induced etching. Appl Phys Lett 90:163123-3

    Google Scholar 

  68. Lu Y, Xiong H, Jiang X et al (2003) Asymmetric dimers can be formed by dewetting half-shells of gold deposited on the surfaces of spherical oxide colloids. J Am Chem Soc 125:12724–12725

    Article  Google Scholar 

  69. Li X, Bohn PW (2000) Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77:2572–2574

    Article  Google Scholar 

  70. Fuhrmann B, Leipner HS, Höche HR et al (2005) Ordered array of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett 5:2524–2527

    Article  Google Scholar 

  71. Masuda H, Fukuda K (1995) Ordered metal nanohole array made by a two-step replication of honeycomb structures of anodic alumina. Science 268:1466–1468

    Article  Google Scholar 

  72. Che G, Lakshmi BB, Fisher ER et al (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349

    Article  Google Scholar 

  73. Choi J, Sauer G, Nielsch K et al (2003) Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio. Chem Mater 15:776–779

    Article  Google Scholar 

  74. Mei X, Kim D, Ruda HE et al (2002) Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot array using anodic Al2O3 nanohole array template masks. Appl Phys Lett 81:361–363

    Article  Google Scholar 

  75. Nasir ME, Allsopp DWE, Bowen CR et al (2010) The fabrication of mono-domain highly ordered nanoporous alumina on a wafer scale by a guided electric field. Nanotechnology 21:105303-6

    Article  Google Scholar 

  76. Jessensky O, Müller F, Gösele U (1998) Self-organized formation of hexagonal pore array in anodic alumina. Appl Phys Lett 72:1173–1175

    Article  Google Scholar 

  77. Lombardi I, Hochbaum AI, Yang P et al (2006) Synthesis of high density, size-controlled Si nanowire array by porous anodic alumina mask. Chem Mater 18:988–991

    Article  Google Scholar 

  78. Guo LJ (2007) Nanoimprint lithography: methods and material requirements. Adv Mater 19:495–513

    Article  Google Scholar 

  79. Plass KE, Filler MA, Spurgeon JM et al (2008) Flexible polymer-embedded Si wire array. Adv Mater 21:325–328

    Article  Google Scholar 

  80. Tsakalakos L, Balch J, Fronheiser J et al (2007) Silicon nanowire solar cells. Appl Phys Lett 91:233117-3

    Article  Google Scholar 

  81. Garnett EC, Yang P (2008) Silicon nanowire radial p–n junction solar cells. J Am Chem Soc 130:9224–9225

    Article  Google Scholar 

  82. Kalita G, Adhikari S, Aryal HR et al (2009) Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes. J Phys D Appl Phys 42:115104-5

    Google Scholar 

  83. Street RA, Qi P, Lujan R et al (2008) Reflectivity of disordered silicon nanowires. Appl Phys Lett 93:163109-3

    Google Scholar 

  84. Hu L, Chen G (2007) Analysis of optical absorption in silicon nanowire array for photovoltaic applications. Nano Lett 7:3249–3252

    Article  Google Scholar 

  85. Air Mass 1.5 Spectra (2010) American society for testing and materials. http://rredc.nrel.gov/solar/spectra/am1.5/#1962. Accessed 9 March 2010

  86. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys 32:510–519

    Article  Google Scholar 

  87. Li JS, Yu HY, Wong SM et al (2009) Design guidelines of periodic Si nanowire array for solar cell application. Appl Phys Lett 95:243113-3

    Google Scholar 

  88. Putnam MC, Turner-Evans DB, Kelzenberg MD et al (2009) 10 μm minority-carrier diffusion lengths in Si wires synthesized by Cu-catalyzed vapour–liquid–solid growth. Appl Phys Lett 95:163116-3

    Article  Google Scholar 

  89. Maiolo JR III, Kayes BM, Filler MA et al (2007) High aspect ratio silicon wire array photoelectrochemical cells. J Am Chem Soc 129:12346–12347

    Article  Google Scholar 

  90. Sivakov V, Andrä G, Gawlik A et al (2009) Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett 9:1549–1554

    Article  Google Scholar 

  91. van den Donker MN, Gordijn A, Stiebig H et al (2007) Flexible amorphous and microcrystalline silicon tandem solar modules in the temporary superstrate concept. Sol Energy Mater Sol Cells 91:572–580

    Article  Google Scholar 

  92. Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10:1082–1087

    Article  Google Scholar 

  93. Yoon J, Baca AJ, Park SI et al (2008) Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat Mater 7:907–915

    Article  Google Scholar 

  94. Campbell P, Green MA (1987) Light trapping properties of pyramidally textured surfaces. J Appl Phys 62:243–249

    Article  Google Scholar 

  95. Gray JL (2003) The physics of the solar cell. In: Luque A, Hegedus S (eds) Handbook of photovoltaic science and engineering. Wiley, Chichester

    Google Scholar 

  96. Kelzenberg MD, Turner-Evans DB, Kayes BM et al (2008) Single-nanowire Si solar cells. In: Proceedings of the 33rd IEEE photovoltaic specialists conference, pp 144–149

    Google Scholar 

  97. Bai XD, Zhi CY, Liu S et al (2003) High-density uniformly aligned silicon nanotip array and their enhanced field emission characteristics. Solid State Commun 125:185–188

    Article  Google Scholar 

  98. Wang Q, Li JJ, Bai XD et al (2005) Field emission properties of carbon coated Si nanocone array on porous silicon. Nanotechnology 15:2919–2922

    Article  Google Scholar 

  99. Hsu CH, Huang YF, Chen LC et al (2006) Morphology control of silicon nanotips fabricated by electron cyclotron resonance plasma etching. J Vac Sci Technol B 24:308–311

    Article  Google Scholar 

  100. Li LP, Lu YF, Doerr DW et al (2004) Parametric investigation of laser nanoimprinting of hemispherical cavity array. J Appl Phys 96:5144–5151

    Article  Google Scholar 

  101. Huang SM, Hong MH, Luk’yanchuk BS et al (2002) Pulsed laser-assisted surface structuring with optical and near-field enhanced effects. J Appl Phys 92:2495–2500

    Article  Google Scholar 

  102. Tsujino K, Matsumura M, Nishimoto Y (2006) Texturization of multicrystalline silicon wafers for solar cells by chemical treatment using metallic catalyst. Sol Energy Mater Sol Cells 90:100–110

    Article  Google Scholar 

  103. Gorostiza P, Díaz R, Servat J et al (1997) Atomic force microscopy study of the silicon doping influence on the first stages of platinum electroless deposition. J Electrochem Soc 144:909–914

    Article  Google Scholar 

  104. Wang F, Yu HY, Wang XC et al (2010) Maskless fabrication of large scale Si nanohole array via laser annealed metal nanoparticles catalytic etching for photovoltaic application. J Appl Phys 108:024301-3

    Google Scholar 

  105. Li JS, Yu HY, Wong SM et al (2010) Si nanocone array optimization on crystalline Si thin films for solar energy harvesting. J Phys D Appl Phys 43:255101-7

    Google Scholar 

  106. Wang F, Yu HY, Li JS et al (2010) Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application. Opt Lett 35:40–42

    Article  Google Scholar 

  107. Wong SM, Yu HY, Li JS et al (2010) Design high-efficiency Si nanopillar-array-textured thin film solar cell. IEEE Electron Device Lett 31:335–337

    Article  Google Scholar 

  108. Shockley W, Read WT (1952) Statistics of the recombinations of holes and electrons. Phys Rev 87:835–842

    Article  MATH  Google Scholar 

  109. Shibib MA, Lindholm FA, Fossum JG (1979) Auger recombination in heavily doped shallow-emitter silicon p–n-junction solar cells, diodes and transistors. IEEE Trans Electron Devices ED 26:1104–1106

    Article  Google Scholar 

  110. Kelzenberg MD, Putnam MC, Turner-Evans DB et al (2009) Predicted efficiency of Si wire array solar cells. In: Proceedings of the 34th IEEE photovoltaic specialists conference, pp 391–396

    Google Scholar 

  111. Li JS, Wong SM, Li YL et al (2010) High-efficiency crystalline Si thin film solar cells with Si nanopillar array textured surfaces. In: Proceedings of the 35th IEEE photovoltaic specialists conference

    Google Scholar 

  112. Zhu J, Hsu CM, Yu Z et al (2010) Nanodome solar cells with efficient light management and self-cleaning. Nano Lett 10:1979–1984

    Article  Google Scholar 

  113. Green MA, Emery K, Hishikawa Y et al (2009) Solar cell efficiency tables (version 34). Prog Photovolt Res Appl 17:320–326

    Article  Google Scholar 

  114. Nishioka K, Sueto T, Saito N (2009) Formation of antireflection nanostructure for silicon solar cells using catalysis of single nano-sized silver particle. Appl Surf Sci 255:9504–9507

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Yu Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Li, J., Yu, HY. (2011). Enhancement of Si-Based Solar Cell Efficiency via Nanostructure Integration. In: Zang, L. (eds) Energy Efficiency and Renewable Energy Through Nanotechnology. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-0-85729-638-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-638-2_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-637-5

  • Online ISBN: 978-0-85729-638-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics