Skip to main content

Flight Simulation and Experiment

  • Chapter
Unmanned Rotorcraft Systems

Part of the book series: Advances in Industrial Control ((AIC))

  • 3881 Accesses

Abstract

In Chap. 9, we present a fairly comprehensive evaluation of the overall flight control system designed in Chaps. 7 and 8 through hardware-in-the-loop simulations and actual flight tests. We aim to evaluate its performance and robustness by a careful selection of mission-task-elements (MTEs) adopted from ADS-33D-PRF, which is set for military rotorcraft by US army aviation. The selected mission-task-elements for test include depart/abort (forward flight), hover, depart/abort (backward flight), hovering turn, vertical maneuver, lateral reposition, turn-to-target, slalom, and pirouette. The results obtained clearly indicate that our design is very successful. The unmanned rotorcraft system is capable of achieving the desired performance in accordance with the military standard under examination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ADS-33D-PRF. Aeronautical design standard performance specification handling qualities requirements for military rotorcraft. U.S. Army Aviation and Troop Command; 1996.

    Google Scholar 

  2. Tischler MB, Colbourne JD, Morel MR, Biezad DJ. A multidisciplinary flight control development environment and its application to a helicopter. IEEE Control Syst Mag. 1999;19:22–33.

    Article  Google Scholar 

  3. Tischler MB, Colbourne JD, Morel MR, et al. CONDUIT—a new multidisciplinary integration environment for flight control development. Presented at AIAA guid, nav, contr conf, New Orleans, LA; 1997. AIAA-1997-3773.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben M. Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Cai, G., Chen, B.M., Lee, T.H. (2011). Flight Simulation and Experiment. In: Unmanned Rotorcraft Systems. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-0-85729-635-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-635-1_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-634-4

  • Online ISBN: 978-0-85729-635-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics