Advertisement

The Case for Context-Aware Resources Management in Mobile Operating Systems

  • Narseo Vallina-Rodriguez
  • Jon Crowcroft

Abstract

Efficient management of mobile resources from an energy perspective in modern smart-phones is paramount nowadays. Today’s mobile phones are equipped with a wide range of sensing, computational, storage and communication resources. The diverse range of sensors such as microphones, cameras, accelerometers, gyroscopes, GPS, digital compass and proximity sensors allow mobile apps to be context-aware whereas the ability to have connectivity almost everywhere has bootstrapped the birth of rich and interactive mobile applications and the integration of cloud services. However, the intense use of those resources can easily be translated into power-hungry applications. The way users interact with their mobile handsets and the availability of mobile resources is context dependent. Consequently, understanding how users interact with their applications and integrating context-aware resources management techniques in the core features of a mobile operating system can provide benefits such as energy savings and usability. This chapter describes how context drives the way users interact with their handsets and how it determines the availability and state of hardware resources in order to explain different context-aware resources management systems and the different attempts to incorporate this feature in mobile operating systems.

Keywords

Contextual Information Cellular Network Mobile User Power Mode Hardware Resource 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Balasubramanian, N., Balasubramanian, A., & Venkataramani, A. (2009). Energy consumption in mobile phones: a measurement study and implications for network applications. In Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference, IMC ’09, New York, NY, USA (pp. 280–293). New York: ACM. CrossRefGoogle Scholar
  2. 2.
    Vallina-Rodriguez, N., Hui, P., Crowcroft, J., & Rice, A. (2010). Exhausting battery statistics: understanding the energy demands on mobile handsets. In Proceedings of the second ACM SIGCOMM workshop on networking, systems, and applications on mobile handhelds, MobiHeld ’10, New York, NY, USA (pp. 9–14). New York: ACM. CrossRefGoogle Scholar
  3. 3.
    Trestian, I., Ranjan, S., Kuzmanovic, A., & Nucci, A. (2009). Measuring serendipity: connecting people, locations and interests in a mobile 3G network. In Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference, IMC ’09, New York, NY, USA (pp. 267–279). New York: ACM. CrossRefGoogle Scholar
  4. 4.
    Xu, Q., Gerber, A., Mao, Z. M., & Pang, J. (2011). AccuLoc: practical localization of performance measurements in 3G networks. In Proceedings of the 9th international conference on mobile systems, applications, and services, MobiSys ’11, New York, NY, USA (pp. 183–196). New York: ACM. CrossRefGoogle Scholar
  5. 5.
    Chu, D., Kansal, A., Liu, J., & Zhao, F. (2011). Mobile apps: It’s time to move up to CondOS. In USENIX HotOS. Google Scholar
  6. 6.
    Vallina-Rodriguez, N., & Crowcroft, J. (2011). Erdos: achieving energy savings in mobile OS. In Proceedings of the 6th ACM international workshop on mobility in the evolving Internet architectures, MobiArch’11. Google Scholar
  7. 7.
    Shepard, C., Rahmati, A., Tossell, C., Zhong, L., & Kortum, P. (2011). LiveLab: measuring wireless networks and smartphone users in the field. ACM SIGMETRICS Performance Evaluation Review, 38, 15–20. CrossRefGoogle Scholar
  8. 8.
    Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., & Estrin, D. (2010). Diversity in smartphone usage. In Proceedings of the 8th international conference on mobile systems, applications, and services, MobiSys ’10, New York, NY, USA (pp. 179–194). New York: ACM. CrossRefGoogle Scholar
  9. 9.
    Oliver, E. (2010). Diversity in smartphone energy consumption. In ACM workshop on wireless of the students, by the students, for the students. Google Scholar
  10. 10.
    Banerjee, N., Rahmati, A., Corner, M. D., Rollins, S., & Zhong, L. (2007). Users and batteries: interactions and adaptive energy management in mobile systems. In Proceedings of the 9th international conference on ubiquitous computing, UbiComp ’07 (pp. 217–234). Berlin: Springer. CrossRefGoogle Scholar
  11. 11.
    Ravi, N., Scott, J., Han, L., & Iftode, L. (2008). Context-aware battery management for mobile phones. In PERCOM ’08: Proceedings of the 2008 sixth annual IEEE international conference on pervasive computing and communications, Washington, DC, USA (pp. 224–233). Washington: IEEE Computer Society. CrossRefGoogle Scholar
  12. 12.
    Dong, M., & Zhong, L. (2011). Self-constructive high-rate system energy modeling for battery-powered mobile systems. In Proceedings of the 9th international conference on mobile systems, applications, and services, MobiSys ’11, New York, NY, USA (pp. 335–348). New York: ACM. CrossRefGoogle Scholar
  13. 13.
    Wing, M., Eklund, A., & Kellogs, L. (2005). Consumer-grade global positioning system (GPS) accuracy and reliability. Journal of Forestry, 103, 169–173. Google Scholar
  14. 14.
    Djuknic, G. M., & Richton, R. E. (2001). Geolocation and assisted GPS. Computer, 34, 123–125. CrossRefGoogle Scholar
  15. 15.
    Chakravorty, R., Katti, S., Crowcroft, J., & Pratt, I. (2003). Flow aggregation for enhanced TCP over wide-area wireless. In Proc. IEEE INFOCOM (pp. 1754–1764). Google Scholar
  16. 16.
    Chen, X., Zhai, H., Wang, J., & Fang, Y. (2005). A survey on improving TCP performance over wireless networks. In M. Cardei, I. Cardei, & D.-Z. Du (Eds.), Resource management in wireless networking (pp. 657–695). Dordrecht: Kluwer Academic. CrossRefGoogle Scholar
  17. 17.
    Ra, M.-R., Paek, J., Sharma, A. B., Govindan, R., Krieger, M. H., & Neely, M. J. (2010). Energy-delay tradeoffs in smartphone applications. In Proceedings of the 8th international conference on mobile systems, applications, and services, MobiSys ’10, New York, NY, USA (pp. 255–270). New York: ACM. CrossRefGoogle Scholar
  18. 18.
    Pluntke, C., Eggert, L., & Kiukkonen, N. (2011). Saving mobile device energy with multipath TCP. In Proceedings of the sixth international workshop on MobiArch ’11, New York, NY, USA (pp. 1–6). New York: ACM. CrossRefGoogle Scholar
  19. 19.
    Location-Api. http://location-api.com/.
  20. 20.
    OpenSignalMap. http://opensignalmap.com/.
  21. 21.
    Huang, J., Xu, Q., Tiwana, B., Mao, Z. M., Zhang, M., & Bahl, P. (2010). Anatomizing application performance differences on smartphones. In Proceedings of the 8th international conference on mobile systems, applications, and services, MobiSys ’10, New York, NY, USA (pp. 165–178). New York: ACM. CrossRefGoogle Scholar
  22. 22.
    Tan, W. L., Lam, F., & Lau, W. C. (2008). An empirical study on the capacity and performance of 3G networks. IEEE Transactions on Mobile Computing, 7, 737–750. CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Agarwal, Y., Schurgers, C., & Gupta, R. (2005). Dynamic power management using on demand paging for networked embedded systems. In Proceedings of the 2005 Asia and South Pacific design automation conference, ASP-DAC ’05, New York, NY, USA (pp. 755–759). New York: ACM. CrossRefGoogle Scholar
  25. 25.
    Ananthanarayanan, G., & Stoica, I. (2009). Blue-Fi: enhancing Wi-Fi performance using bluetooth signals. In Proceedings of the 7th international conference on mobile systems, applications, and services, MobiSys ’09, New York, NY, USA (pp. 249–262). New York: ACM. CrossRefGoogle Scholar
  26. 26.
    Rahmati, A., & Zhong, L. (2007). Context-for-wireless: context-sensitive energy-efficient wireless data transfer. In Proceedings of the 5th international conference on mobile systems, applications and services, MobiSys ’07, New York, NY, USA (pp. 165–178). New York: ACM. CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Tarzia, S. P., Dinda, P. A., Dick, R. P., & Memik, G. (2011). Indoor localization without infrastructure using the acoustic background spectrum. In Proceedings of the 9th international conference on mobile systems, applications, and services, MobiSys ’11, New York, NY, USA, (pp. 155–168). New York: ACM. CrossRefGoogle Scholar
  29. 29.
    You, C.-W., Huang, P., Chu, H.-h., Chen, Y.-C., Chiang, J.-R., & Lau, S.-Y. (2008). Impact of sensor-enhanced mobility prediction on the design of energy-efficient localization. Ad Hoc Networks, 6, 1221–1237. CrossRefGoogle Scholar
  30. 30.
    Chung, J., Donahoe, M., Schmandt, C., Kim, I.-J., Razavai, P., & Wiseman, M. (2011). Indoor location sensing using geo-magnetism. In Proceedings of the 9th international conference on mobile systems, applications, and services, MobiSys ’11, New York, NY, USA (pp. 141–154). New York: ACM. CrossRefGoogle Scholar
  31. 31.
    Constandache, I., Bao, X., Azizyan, M., & Choudhury, R. R. (2010). Did you see Bob?: human localization using mobile phones. In Proceedings of the sixteenth annual international conference on mobile computing and networking, MobiCom ’10, New York, NY, USA (pp. 149–160). New York: ACM. CrossRefGoogle Scholar
  32. 32.
    SkyHook Wireless. http://www.skyhookwireless.com/.
  33. 33.
    Zhuang, Z., Kim, K.-H., & Singh, J. P. (2010). Improving energy efficiency of location sensing on smartphones. In Proceedings of the 8th international conference on mobile systems, applications, and services, MobiSys ’10, New York, NY, USA (pp. 315–330). New York: ACM. CrossRefGoogle Scholar
  34. 34.
  35. 35.
    Constandache, I., Gaonkar, S., Sayler, M., Choudhury, R. R., & Cox, L. (2009). EnLoc: energy-efficient localization for mobile phones. In IEEE INFOCOM 2009—The 28th conference on computer communications (Vol. 4, pp. 2716–2720). New York: IEEE. CrossRefGoogle Scholar
  36. 36.
    Kjaergaard, M. B., Langdal, J., Godsk, T., & Toftkjaer, T. (2009). Entracked: energy-efficient robust position tracking for mobile devices. In Proceedings of the 7th international conference on mobile systems, applications, and services, MobiSys ’09, New York, NY, USA (pp. 221–234). New York: ACM. CrossRefGoogle Scholar
  37. 37.
    Farrell, T., Cheng, R., & Rothermel, K. (2007). Energy-efficient monitoring of mobile objects with uncertainty-aware tolerances. In Proceedings of the 11th international database engineering and applications symposium, Washington, DC, USA (pp. 129–140). Washington: IEEE Computer Society. Google Scholar
  38. 38.
    Kjaergaard, M. B., Bhattacharya, S., Blunck, H., & Nurmi, P. (2011). Energy-efficient trajectory tracking for mobile devices. In Proceedings of the 9th international conference on mobile systems, applications, and services, MobiSys ’11, New York, NY, USA (pp. 307–320). New York: ACM. CrossRefGoogle Scholar
  39. 39.
    Lin, K., Kansal, A., Lymberopoulos, D., & Zhao, F. (2010). Energy-accuracy trade-off for continuous mobile device location. In Proceedings of the 8th international conference on mobile systems, applications, and services, MobiSys ’10, New York, NY, USA (pp. 285–298). New York: ACM. CrossRefGoogle Scholar
  40. 40.
    Paek, J., Kim, J., & Govindan, R. (2010). Energy-efficient rate-adaptive GPS-based positioning for smartphones. In Proceedings of the 8th international conference on mobile systems, applications, and services, MobiSys ’10, New York, NY, USA (pp. 299–314). New York: ACM. CrossRefGoogle Scholar
  41. 41.
    Paek, J., Kim, K.-H., Singh, J. P., & Govindan, R. (2011). Energy-efficient positioning for smartphones using Cell-ID sequence matching. In Proceedings of the 9th international conference on mobile systems, applications, and services, MobiSys ’11, New York, NY, USA (pp. 293–306). New York: ACM. CrossRefGoogle Scholar
  42. 42.
    Ellis, C. S., & Watt, M. (2000). Every joule is precious energy in computing. In ACM SIGOPS. Google Scholar
  43. 43.
    Roy, A., Rumble, S. M., Stutsman, R., Levis, P., Mazières, D., & Zeldovich, N. (2011). Energy management in mobile devices with the cinder operating system. In Proceedings of the sixth conference on computer systems, EuroSys ’11, New York, NY, USA (pp. 139–152). New York: ACM. CrossRefGoogle Scholar
  44. 44.
    Ellis, C. S. (1999). The case for higher-level power management. In Proceedings of the seventh workshop on hot topics in operating systems, HOTOS ’99, Washington, DC, USA (p.162). New York: IEEE Computer Society. CrossRefGoogle Scholar
  45. 45.
    Noble, B., Price, M., & Satyanarayanan, M. (1995). A programming interface for application-aware adaptation in mobile computing. In 2nd USENIX symposium on mobile and location-independent computing (Vol. 8, No. 4, pp. 345–363). Google Scholar
  46. 46.
    Vallina-Rodriguez, N., Efstratiou, C., Xie, G., & Crowcroft, J. (2011). Enabling opportunistic resources sharing on mobile operating systems: Benefits and challenges. In ACM S3 workshop. Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Computer LabUniversity of CambridgeCambridgeUK

Personalised recommendations