Skip to main content

The Case for Context-Aware Resources Management in Mobile Operating Systems

  • Chapter

Abstract

Efficient management of mobile resources from an energy perspective in modern smart-phones is paramount nowadays. Today’s mobile phones are equipped with a wide range of sensing, computational, storage and communication resources. The diverse range of sensors such as microphones, cameras, accelerometers, gyroscopes, GPS, digital compass and proximity sensors allow mobile apps to be context-aware whereas the ability to have connectivity almost everywhere has bootstrapped the birth of rich and interactive mobile applications and the integration of cloud services. However, the intense use of those resources can easily be translated into power-hungry applications. The way users interact with their mobile handsets and the availability of mobile resources is context dependent. Consequently, understanding how users interact with their applications and integrating context-aware resources management techniques in the core features of a mobile operating system can provide benefits such as energy savings and usability. This chapter describes how context drives the way users interact with their handsets and how it determines the availability and state of hardware resources in order to explain different context-aware resources management systems and the different attempts to incorporate this feature in mobile operating systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Battery discharging rate might arguably not be the best indicator to measure energy consumption in mobile handsets. This signal is very noisy since it depends on hardware and users’ habits and requires complex methods to be properly calibrated [12].

  2. 2.

    If the GPS chip has not been used in a long time, then the Time To First Fix (TTFF) can be longer because it needs to download the satellites ephemeris and almanac before it can make the calculations. Usually, the GPS-receiver also needs 4 satellites to accurately fix its location. This is usually referred to as cold start. In cases when the chip was recently used (in the order of minutes or even few hours), the time to fix would be even faster (i.e. warm start and hot start phases).

  3. 3.

    The energy consumption becomes even more significant if multiple applications are requesting location reads independently. Zhuang et al. [33] are the only ones who applie this technique. Android OS Location Providers follow a similar philosophy [34].

  4. 4.

    The system only supports pedestrians as possible movement model and uses accelerometer to infer users’ mobility.

  5. 5.

    ErdOS is conceived as an Android OS extension.

References

  1. Balasubramanian, N., Balasubramanian, A., & Venkataramani, A. (2009). Energy consumption in mobile phones: a measurement study and implications for network applications. In Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference, IMC ’09, New York, NY, USA (pp. 280–293). New York: ACM.

    Chapter  Google Scholar 

  2. Vallina-Rodriguez, N., Hui, P., Crowcroft, J., & Rice, A. (2010). Exhausting battery statistics: understanding the energy demands on mobile handsets. In Proceedings of the second ACM SIGCOMM workshop on networking, systems, and applications on mobile handhelds, MobiHeld ’10, New York, NY, USA (pp. 9–14). New York: ACM.

    Chapter  Google Scholar 

  3. Trestian, I., Ranjan, S., Kuzmanovic, A., & Nucci, A. (2009). Measuring serendipity: connecting people, locations and interests in a mobile 3G network. In Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference, IMC ’09, New York, NY, USA (pp. 267–279). New York: ACM.

    Chapter  Google Scholar 

  4. Xu, Q., Gerber, A., Mao, Z. M., & Pang, J. (2011). AccuLoc: practical localization of performance measurements in 3G networks. In Proceedings of the 9th international conference on mobile systems, applications, and services, MobiSys ’11, New York, NY, USA (pp. 183–196). New York: ACM.

    Chapter  Google Scholar 

  5. Chu, D., Kansal, A., Liu, J., & Zhao, F. (2011). Mobile apps: It’s time to move up to CondOS. In USENIX HotOS.

    Google Scholar 

  6. Vallina-Rodriguez, N., & Crowcroft, J. (2011). Erdos: achieving energy savings in mobile OS. In Proceedings of the 6th ACM international workshop on mobility in the evolving Internet architectures, MobiArch’11.

    Google Scholar 

  7. Shepard, C., Rahmati, A., Tossell, C., Zhong, L., & Kortum, P. (2011). LiveLab: measuring wireless networks and smartphone users in the field. ACM SIGMETRICS Performance Evaluation Review, 38, 15–20.

    Article  Google Scholar 

  8. Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., & Estrin, D. (2010). Diversity in smartphone usage. In Proceedings of the 8th international conference on mobile systems, applications, and services, MobiSys ’10, New York, NY, USA (pp. 179–194). New York: ACM.

    Chapter  Google Scholar 

  9. Oliver, E. (2010). Diversity in smartphone energy consumption. In ACM workshop on wireless of the students, by the students, for the students.

    Google Scholar 

  10. Banerjee, N., Rahmati, A., Corner, M. D., Rollins, S., & Zhong, L. (2007). Users and batteries: interactions and adaptive energy management in mobile systems. In Proceedings of the 9th international conference on ubiquitous computing, UbiComp ’07 (pp. 217–234). Berlin: Springer.

    Chapter  Google Scholar 

  11. Ravi, N., Scott, J., Han, L., & Iftode, L. (2008). Context-aware battery management for mobile phones. In PERCOM ’08: Proceedings of the 2008 sixth annual IEEE international conference on pervasive computing and communications, Washington, DC, USA (pp. 224–233). Washington: IEEE Computer Society.

    Chapter  Google Scholar 

  12. Dong, M., & Zhong, L. (2011). Self-constructive high-rate system energy modeling for battery-powered mobile systems. In Proceedings of the 9th international conference on mobile systems, applications, and services, MobiSys ’11, New York, NY, USA (pp. 335–348). New York: ACM.

    Chapter  Google Scholar 

  13. Wing, M., Eklund, A., & Kellogs, L. (2005). Consumer-grade global positioning system (GPS) accuracy and reliability. Journal of Forestry, 103, 169–173.

    Google Scholar 

  14. Djuknic, G. M., & Richton, R. E. (2001). Geolocation and assisted GPS. Computer, 34, 123–125.

    Article  Google Scholar 

  15. Chakravorty, R., Katti, S., Crowcroft, J., & Pratt, I. (2003). Flow aggregation for enhanced TCP over wide-area wireless. In Proc. IEEE INFOCOM (pp. 1754–1764).

    Google Scholar 

  16. Chen, X., Zhai, H., Wang, J., & Fang, Y. (2005). A survey on improving TCP performance over wireless networks. In M. Cardei, I. Cardei, & D.-Z. Du (Eds.), Resource management in wireless networking (pp. 657–695). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  17. Ra, M.-R., Paek, J., Sharma, A. B., Govindan, R., Krieger, M. H., & Neely, M. J. (2010). Energy-delay tradeoffs in smartphone applications. In Proceedings of the 8th international conference on mobile systems, applications, and services, MobiSys ’10, New York, NY, USA (pp. 255–270). New York: ACM.

    Chapter  Google Scholar 

  18. Pluntke, C., Eggert, L., & Kiukkonen, N. (2011). Saving mobile device energy with multipath TCP. In Proceedings of the sixth international workshop on MobiArch ’11, New York, NY, USA (pp. 1–6). New York: ACM.

    Chapter  Google Scholar 

  19. Location-Api. http://location-api.com/.

  20. OpenSignalMap. http://opensignalmap.com/.

  21. Huang, J., Xu, Q., Tiwana, B., Mao, Z. M., Zhang, M., & Bahl, P. (2010). Anatomizing application performance differences on smartphones. In Proceedings of the 8th international conference on mobile systems, applications, and services, MobiSys ’10, New York, NY, USA (pp. 165–178). New York: ACM.

    Chapter  Google Scholar 

  22. Tan, W. L., Lam, F., & Lau, W. C. (2008). An empirical study on the capacity and performance of 3G networks. IEEE Transactions on Mobile Computing, 7, 737–750.

    Article  Google Scholar 

  23. Wifi Map UK. http://www.wifimapuk.com/home/.

  24. Agarwal, Y., Schurgers, C., & Gupta, R. (2005). Dynamic power management using on demand paging for networked embedded systems. In Proceedings of the 2005 Asia and South Pacific design automation conference, ASP-DAC ’05, New York, NY, USA (pp. 755–759). New York: ACM.

    Chapter  Google Scholar 

  25. Ananthanarayanan, G., & Stoica, I. (2009). Blue-Fi: enhancing Wi-Fi performance using bluetooth signals. In Proceedings of the 7th international conference on mobile systems, applications, and services, MobiSys ’09, New York, NY, USA (pp. 249–262). New York: ACM.

    Chapter  Google Scholar 

  26. Rahmati, A., & Zhong, L. (2007). Context-for-wireless: context-sensitive energy-efficient wireless data transfer. In Proceedings of the 5th international conference on mobile systems, applications and services, MobiSys ’07, New York, NY, USA (pp. 165–178). New York: ACM.

    Chapter  Google Scholar 

  27. FourSquare. https://foursquare.com/.

  28. Tarzia, S. P., Dinda, P. A., Dick, R. P., & Memik, G. (2011). Indoor localization without infrastructure using the acoustic background spectrum. In Proceedings of the 9th international conference on mobile systems, applications, and services, MobiSys ’11, New York, NY, USA, (pp. 155–168). New York: ACM.

    Chapter  Google Scholar 

  29. You, C.-W., Huang, P., Chu, H.-h., Chen, Y.-C., Chiang, J.-R., & Lau, S.-Y. (2008). Impact of sensor-enhanced mobility prediction on the design of energy-efficient localization. Ad Hoc Networks, 6, 1221–1237.

    Article  Google Scholar 

  30. Chung, J., Donahoe, M., Schmandt, C., Kim, I.-J., Razavai, P., & Wiseman, M. (2011). Indoor location sensing using geo-magnetism. In Proceedings of the 9th international conference on mobile systems, applications, and services, MobiSys ’11, New York, NY, USA (pp. 141–154). New York: ACM.

    Chapter  Google Scholar 

  31. Constandache, I., Bao, X., Azizyan, M., & Choudhury, R. R. (2010). Did you see Bob?: human localization using mobile phones. In Proceedings of the sixteenth annual international conference on mobile computing and networking, MobiCom ’10, New York, NY, USA (pp. 149–160). New York: ACM.

    Chapter  Google Scholar 

  32. SkyHook Wireless. http://www.skyhookwireless.com/.

  33. Zhuang, Z., Kim, K.-H., & Singh, J. P. (2010). Improving energy efficiency of location sensing on smartphones. In Proceedings of the 8th international conference on mobile systems, applications, and services, MobiSys ’10, New York, NY, USA (pp. 315–330). New York: ACM.

    Chapter  Google Scholar 

  34. Android Developers. http://developer.android.com/reference/android/location/LocationManager.html.

  35. Constandache, I., Gaonkar, S., Sayler, M., Choudhury, R. R., & Cox, L. (2009). EnLoc: energy-efficient localization for mobile phones. In IEEE INFOCOM 2009—The 28th conference on computer communications (Vol. 4, pp. 2716–2720). New York: IEEE.

    Chapter  Google Scholar 

  36. Kjaergaard, M. B., Langdal, J., Godsk, T., & Toftkjaer, T. (2009). Entracked: energy-efficient robust position tracking for mobile devices. In Proceedings of the 7th international conference on mobile systems, applications, and services, MobiSys ’09, New York, NY, USA (pp. 221–234). New York: ACM.

    Chapter  Google Scholar 

  37. Farrell, T., Cheng, R., & Rothermel, K. (2007). Energy-efficient monitoring of mobile objects with uncertainty-aware tolerances. In Proceedings of the 11th international database engineering and applications symposium, Washington, DC, USA (pp. 129–140). Washington: IEEE Computer Society.

    Google Scholar 

  38. Kjaergaard, M. B., Bhattacharya, S., Blunck, H., & Nurmi, P. (2011). Energy-efficient trajectory tracking for mobile devices. In Proceedings of the 9th international conference on mobile systems, applications, and services, MobiSys ’11, New York, NY, USA (pp. 307–320). New York: ACM.

    Chapter  Google Scholar 

  39. Lin, K., Kansal, A., Lymberopoulos, D., & Zhao, F. (2010). Energy-accuracy trade-off for continuous mobile device location. In Proceedings of the 8th international conference on mobile systems, applications, and services, MobiSys ’10, New York, NY, USA (pp. 285–298). New York: ACM.

    Chapter  Google Scholar 

  40. Paek, J., Kim, J., & Govindan, R. (2010). Energy-efficient rate-adaptive GPS-based positioning for smartphones. In Proceedings of the 8th international conference on mobile systems, applications, and services, MobiSys ’10, New York, NY, USA (pp. 299–314). New York: ACM.

    Chapter  Google Scholar 

  41. Paek, J., Kim, K.-H., Singh, J. P., & Govindan, R. (2011). Energy-efficient positioning for smartphones using Cell-ID sequence matching. In Proceedings of the 9th international conference on mobile systems, applications, and services, MobiSys ’11, New York, NY, USA (pp. 293–306). New York: ACM.

    Chapter  Google Scholar 

  42. Ellis, C. S., & Watt, M. (2000). Every joule is precious energy in computing. In ACM SIGOPS.

    Google Scholar 

  43. Roy, A., Rumble, S. M., Stutsman, R., Levis, P., Mazières, D., & Zeldovich, N. (2011). Energy management in mobile devices with the cinder operating system. In Proceedings of the sixth conference on computer systems, EuroSys ’11, New York, NY, USA (pp. 139–152). New York: ACM.

    Chapter  Google Scholar 

  44. Ellis, C. S. (1999). The case for higher-level power management. In Proceedings of the seventh workshop on hot topics in operating systems, HOTOS ’99, Washington, DC, USA (p.162). New York: IEEE Computer Society.

    Chapter  Google Scholar 

  45. Noble, B., Price, M., & Satyanarayanan, M. (1995). A programming interface for application-aware adaptation in mobile computing. In 2nd USENIX symposium on mobile and location-independent computing (Vol. 8, No. 4, pp. 345–363).

    Google Scholar 

  46. Vallina-Rodriguez, N., Efstratiou, C., Xie, G., & Crowcroft, J. (2011). Enabling opportunistic resources sharing on mobile operating systems: Benefits and challenges. In ACM S3 workshop.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narseo Vallina-Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Vallina-Rodriguez, N., Crowcroft, J. (2012). The Case for Context-Aware Resources Management in Mobile Operating Systems. In: Lovett, T., O'Neill, E. (eds) Mobile Context Awareness. Springer, London. https://doi.org/10.1007/978-0-85729-625-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-625-2_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-624-5

  • Online ISBN: 978-0-85729-625-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics