Antiarrhythmic medications are used in the prevention and treatment of numerous cardiac diseases in the intensive care unit. Additionally, the critical care practitioner is often faced with the dilemma of patients who are admitted to the intensive care unit on antiarrhythmic medications as an outpatient. Due to the tendency of these agents to cause harm when used in error, the Institute for Safe Medication Practices considers intravenous antiarrhythmics to be high-risk medications. Intravenous antiarrhythmics have a propensity for adverse drug events such as causing arrhythmias, organ dysfunction and hypotension. Therapeutic drug monitoring is important for some of the antiarrhythmics, and most are susceptible to multiple drug interactions. This chapter discusses commonly encountered IV antiarrhythmic agents as well as provides practical considerations on dosing, safety and adverse reactions.


Renal Replacement Therapy Dosage Adjustment Liver Dysfunction Therapeutic Drug Monitoring Antiarrhythmic Medication 


  1. 1.
    Mader TJ, Smithline HA, Durkin L, Scriver G. A randomized controlled trial of intravenous aminophylline for atropine-resistant out-of-hospital asystolic cardiac arrest. Acad Emerg Med. 2003;10:192-197.PubMedCrossRefGoogle Scholar
  2. 2.
    Tisdale JE. Supraventricular arrhythmias. In: Tisdale JE, Miller DA, eds. Drug Induced Diseases: Prevention, Detection and Management. 2nd ed. Bethesda: American Society of Health-System Pharmacists; 2010:445-884.Google Scholar
  3. 3.
    Chang M, Wrenn K. Adenosine dose should be less when administered through a central line. J Emerg Med. 2002;22:195-198.PubMedCrossRefGoogle Scholar
  4. 4.
    diMarco JP, Sellers TD, Lerman BB, Greenberg ML, Berne RM, Belardinelli L. Diagnostic and therapeutic use of adenosine in patients with supraventricular tachyarrhythmias. J Am Coll Cardiol. 1985;6:417-425.PubMedCrossRefGoogle Scholar
  5. 5.
    Ellenbogen KA, Thames MD, DiMarco JP, Sheehan H, Lerman BB. Electrophysiological effects of adenosine in the transplanted human heart. Evidence of supersensitivity. Circulation. 1990;81:821-828.PubMedCrossRefGoogle Scholar
  6. 6.
    Emergency Cardiovascular Care Committee, Subcommittees and Task Forces of the American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2005;112:IV1-IV203.Google Scholar
  7. 7.
    German DC, Kredich NM, Bjornsson TD. Oral dipyridamole increases plasma adenosine levels in human beings. Clin Pharmacol Ther. 1989;45:80-84.PubMedCrossRefGoogle Scholar
  8. 8.
    Evoniuk G, von Borstel RW, Wurtman RJ. Antagonism of the cardiovascular effects of adenosine by caffeine or 8-(p-sulfophenyl)theophylline. J Pharmacol Exp Ther. 1987;240:428-432.PubMedGoogle Scholar
  9. 9.
    Roden DM. Pharmacokinetics of amiodarone: implications for drug therapy. Am J Cardiol. 1993;72:45F-50F.PubMedCrossRefGoogle Scholar
  10. 10.
    Ujhelyi MR, Klamerus KJ, Vadiei K, et al. Disposition of intravenous amiodarone in subjects with normal and impaired renal function. J Clin Pharmacol. 1996;36:122-130.PubMedGoogle Scholar
  11. 11.
    Klotz U. Antiarrhythmics: elimination and dosage considerations in hepatic impairment. Clin Pharmacokinet. 2007;46:985-996.PubMedCrossRefGoogle Scholar
  12. 12.
    Tortorici MA, Kochanek PM, Poloyac SM. Effects of hypothermia on drug disposition, metabolism, and response: a focus of hypothermia-mediated alterations on the cytochrome P450 enzyme system. Crit Care Med. 2007;35:2196-2204.PubMedCrossRefGoogle Scholar
  13. 13.
    Drew BJ, Ackerman MJ, Funk M, et al. Prevention of Torsade de Pointes in hospital settings: a scientific statement from the American Heart Association and the American College of Cardiology Foundation endorsed by the American Association of Critical-Care Nurses and the International Society for Computerized Electrocardiology. J Am Coll Cardiol. 2010;55:934-947.PubMedCrossRefGoogle Scholar
  14. 14.
    Scheinman MM, Levine JH, Cannom DS, et al. Dose-ranging study of intravenous amiodarone in patients with life-threatening ventricular tachyarrhythmias. The intravenous amiodarone Multicenter Investigators Group. Circulation. 1995;92:3264-3272.PubMedCrossRefGoogle Scholar
  15. 15.
    Munoz A, Karila P, Gallay P, et al. A randomized hemodynamic comparison of intravenous amiodarone with and without Tween 80. Eur Heart J. 1988;9:142-148.PubMedGoogle Scholar
  16. 16.
    Kaushik S, Hussain A, Clarke P, Lazar HL. Acute pulmonary toxicity after low-dose amiodarone therapy. Ann Thorac Surg. 2001;72:1760-1761.PubMedCrossRefGoogle Scholar
  17. 17.
    Skroubis G, Galiatsou E, Metafratzi Z, Karahaliou A, Kitsakos A, Nakos G. Amiodarone-induced acute lung toxicity in an ICU setting. Acta Anaesthesiol Scand. 2005;49:569-571.PubMedCrossRefGoogle Scholar
  18. 18.
    Ashrafian H, Davey P. Is amiodarone an underrecognized cause of acute respiratory failure in the ICU? Chest. 2001;120:275-282.PubMedCrossRefGoogle Scholar
  19. 19.
    Van Mieghem W, Coolen L, Malysse I, Lacquet LM, Deneffe GJ, Demedts MG. Amiodarone and the development of ARDS after lung surgery. Chest. 1994;105:1642-1645.PubMedCrossRefGoogle Scholar
  20. 20.
    Loke YK, Derry S, Aronson JK. A comparison of three different sources of data in assessing the frequencies of adverse reactions to amiodarone. Br J Clin Pharmacol. 2004;57:616-621.PubMedCrossRefGoogle Scholar
  21. 21.
    Giannattasio F, Salvio A, Varriale M, Picciotto FP, Di Costanzo GG, Visconti M. Three cases of severe acute hepatitis after parenteral administration of amiodarone: the active ingredient is not the only agent responsible for hepatotoxicity. Ann Ital Med Int. 2002;17:180-184.PubMedGoogle Scholar
  22. 22.
    Ratz Bravo AE, Drewe J, Schlienger RG, Krahenbuhl S, Pargger H, Ummenhofer W. Hepatotoxicity during rapid intravenous loading with amiodarone: description of three cases and review of the literature. Crit Care Med. 2005;33:128-134; discussion 245–246.PubMedCrossRefGoogle Scholar
  23. 23.
    Rhodes A, Eastwood JB, Smith SA. Early acute hepatitis with parenteral amiodarone: a toxic effect of the vehicle? Gut. 1993;34:565-566.PubMedCrossRefGoogle Scholar
  24. 24.
    Fenster PE, White NW Jr, Hanson CD. Pharmacokinetic evaluation of the digoxin-amiodarone interaction. J Am Coll Cardiol. 1985;5:108-112.PubMedCrossRefGoogle Scholar
  25. 25.
    Nolan PE Jr, Erstad BL, Hoyer GL, Bliss M, Gear K, Marcus FI. Steady-state interaction between amiodarone and phenytoin in normal subjects. Am J Cardiol. 1990;65:1252-1257.PubMedCrossRefGoogle Scholar
  26. 26.
    Martinowitz U, Rabinovich J, Goldfarb D, Many A, Bank H. Interaction between warfarin sodium and amiodarone. N Engl J Med. 1981;304:671-672.PubMedCrossRefGoogle Scholar
  27. 27.
    Nicolau DP, Uber WE, Crumbley AJ III, Strange C. Amiodarone-cyclosporine interaction in a heart transplant patient. J Heart Lung Transplant. 1992;11:564-568.PubMedGoogle Scholar
  28. 28.
    Dopp AL, Miller JM, Tisdale JE. Effect of drugs on defibrillation capacity. Drugs. 2008;68:607-630.PubMedCrossRefGoogle Scholar
  29. 29.
    Leong-Sit P, Gula LJ, Diamantouros P, et al. Effect of defibrillation testing on management during implantable cardioverter-defibrillator implantation. Am Heart J. 2006;152:1104-1108.PubMedCrossRefGoogle Scholar
  30. 30.
    Ma G, Brady WJ, Pollack M, Chan TC. Electrocardiographic manifestations: digitalis toxicity. J Emerg Med. 2001;20:145-152.PubMedCrossRefGoogle Scholar
  31. 31.
    Rathore SS, Curtis JP, Wang Y, Bristow MR, Krumholz HM. Association of serum digoxin concentration and outcomes in patients with heart failure. JAMA. 2003;289:871-878.PubMedCrossRefGoogle Scholar
  32. 32.
    Fuster V, Ryden LE, Cannom DS, et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the European Society of Cardiology Committee for practice guidelines (Writing Committee to revise the 2001 guidelines for the management of patients with atrial fibrillation): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation. 2006;114:e257-e354.PubMedCrossRefGoogle Scholar
  33. 33.
    The Digitalis in Acute Atrial Fibrillation (DAAF) Trial Group. Intravenous digoxin in acute atrial fibrillation. Results of a randomized, placebo-controlled multicentre trial in 239 patients. Eur Heart J. 1997;18:649-54.CrossRefGoogle Scholar
  34. 34.
    Falk RH, Knowlton AA, Bernard SA, Gotlieb NE, Battinelli NJ. Digoxin for converting recent-onset atrial fibrillation to sinus rhythm. A randomized, double-blinded trial. Ann Intern Med. 1987;106:503-506.PubMedGoogle Scholar
  35. 35.
    Valdes R Jr, Jortani SA, Gheorghiade M. Standards of laboratory practice: cardiac drug monitoring. National Academy of Clinical Biochemistry. Clin Chem. 1998;44:1096-1109.PubMedGoogle Scholar
  36. 36.
    Tamargo J, Delpon E, Caballero R. The safety of digoxin as a pharmacological treatment of atrial fibrillation. Expert Opin Drug Saf. 2006;5:453-467.PubMedCrossRefGoogle Scholar
  37. 37.
    Kowey PR, VanderLugt JT, Luderer JR. Safety and risk/benefit analysis of ibutilide for acute conversion of atrial fibrillation/flutter. Am J Cardiol. 1996;78:46-52.PubMedCrossRefGoogle Scholar
  38. 38.
    Product Information: Corvert (ibutilide). New York, NY: Pharmacia & Upjohn Company; 2006.Google Scholar
  39. 39.
    Stambler BS, Wood MA, Ellenbogen KA. Antiarrhythmic actions of intravenous ibutilide compared with procainamide during human atrial flutter and fibrillation: electrophysiological determinants of enhanced conversion efficacy. Circulation. 1997;96:4298-4306.PubMedCrossRefGoogle Scholar
  40. 40.
    Stambler BS, Wood MA, Ellenbogen KA, Perry KT, Wakefield LK, VanderLugt JT. Efficacy and safety of repeated intravenous doses of ibutilide for rapid conversion of atrial flutter or fibrillation. Ibutilide Repeat Dose Study Investigators. Circulation. 1996;94:1613-1621.PubMedCrossRefGoogle Scholar
  41. 41.
    Volgman AS, Carberry PA, Stambler B, et al. Conversion efficacy and safety of intravenous ibutilide compared with intravenous procainamide in patients with atrial flutter or fibrillation. J Am Coll Cardiol. 1998;31:1414-1419.PubMedCrossRefGoogle Scholar
  42. 42.
    Vos MA, Golitsyn SR, Stangl K, et al. Superiority of ibutilide (a new class III agent) over DL-sotalol in converting atrial flutter and atrial fibrillation. The Ibutilide/Sotalol Comparator Study Group. Heart. 1998;79:568-575.PubMedGoogle Scholar
  43. 43.
    DeToledo JC. Lidocaine and seizures. Ther Drug Monit. 2000;22:320-322.PubMedCrossRefGoogle Scholar
  44. 44.
    Waller ES. Pharmacokinetic principles of lidocaine dosing in relation to disease state. J Clin Pharmacol. 1981;21:181-194.PubMedGoogle Scholar
  45. 45.
    Jacobi J, McGory RW, McCoy H, Matzke GR. Hemodialysis clearance of total and unbound lidocaine. Clin Pharm. 1983;2:54-57.PubMedGoogle Scholar
  46. 46.
    Hine LK, Laird N, Hewitt P, Chalmers TC. Meta-analytic evidence against prophylactic use of lidocaine in acute myocardial infarction. Arch Intern Med. 1989;149:2694-2698.PubMedCrossRefGoogle Scholar
  47. 47.
    MacMahon S, Collins R, Peto R, Koster RW, Yusuf S. Effects of prophylactic lidocaine in suspected acute myocardial infarction. An overview of results from the randomized, controlled trials. JAMA. 1988;260:1910-1916.PubMedCrossRefGoogle Scholar
  48. 48.
    Trujillo TC, Nolan PE. Antiarrhythmic agents: drug interactions of clinical significance. Drug Saf. 2000;23:509-532.PubMedCrossRefGoogle Scholar
  49. 49.
    Rodighiero V. Effects of cardiovascular disease on pharmacokinetics. Cardiovasc Drugs Ther. 1989;3:711-730.PubMedCrossRefGoogle Scholar
  50. 50.
    Christoff PB, Conti DR, Naylor C, Jusko WJ. Procainamide disposition in obesity. Drug Intell Clin Pharm. 1983;17:516-522.PubMedGoogle Scholar
  51. 51.
    Bauer LA, Black D, Gensler A, Sprinkle J. Influence of age, renal function and heart failure on procainamide clearance and n-acetylprocainamide serum concentrations. Int J Clin Pharmacol Ther Toxicol. 1989;27:213-216.PubMedGoogle Scholar
  52. 52.
    Gibson TP, Lowenthal DT, Nelson HA, Briggs WA. Elimination of procainamide in end stage renal failure. Clin Pharmacol Ther. 1975;17:321-329.PubMedGoogle Scholar
  53. 53.
    Gonzalez ER, Ornato JP. Procainamide-induced hypotension during CPR. Clin Pharm. 1985;4:504-505.PubMedGoogle Scholar
  54. 54.
    Tan EM, Rubin RL. Autoallergic reactions induced by procainamide. J Allergy Clin Immunol. 1984;74:631-634.PubMedCrossRefGoogle Scholar
  55. 55.
    Kim SY, Benowitz NL. Poisoning due to class IA antiarrhythmic drugs. Quinidine, procainamide and disopyramide. Drug Saf. 1990;5:393-420.PubMedCrossRefGoogle Scholar
  56. 56.
    Giardina EG. Procainamide: clinical pharmacology and efficacy against ventricular arrhythmias. Ann NY Acad Sci. 1984;432:177-188.PubMedCrossRefGoogle Scholar
  57. 57.
    Windle J, Prystowsky EN, Miles WM, Heger JJ. Pharmacokinetic and electrophysiologic interactions of amiodarone and procainamide. Clin Pharmacol Ther. 1987;41:603-610.PubMedCrossRefGoogle Scholar
  58. 58.
    Kosoglou T, Rocci ML Jr, Vlasses PH. Trimethoprim alters the disposition of procainamide and N-acetylprocainamide. Clin Pharmacol Ther. 1988;44:467-477.PubMedCrossRefGoogle Scholar
  59. 59.
    Christian CD Jr, Meredith CG, Speeg KV Jr. Cimetidine inhibits renal procainamide clearance. Clin Pharmacol Ther. 1984;36:221-227.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Pharmaceutical ServicesEmory University HospitalAtlantaUSA

Personalised recommendations