• Zachariah Thomas
  • Dorothy McCoy


Anti-infectives have been credited with much of the improvement seen in the mortality rates due to infectious diseases over the last 100 years. Anti-infectives include antibiotics, antifungals, antivirals, and immunomodulating therapies such as drotrecogin alpha (activated). Although the benefits of most anti-infectives have been clearly established, certain agents have significant toxicities associated with their use. The risk of toxicity is likely higher in critically ill patients. An in-depth knowledge of the safety profile of these anti-infectives can help the clinician better balance the risks and benefits of treatment. In some cases, the risk may be alleviated by dose adjusting for renal or liver dysfunction or in anticipation of a drug–drug interaction. Measures such as providing adjunctive medications before, during, or after each dose may also be necessary to decrease the risk associated with a particular antimicrobial agent. The focus of this chapter is to review high-risk intravenous anti-infectives; however, we also discuss the oral anti-infectives flucytosine and voriconazole due to the difficulties in dosing these medications in the critically ill.


Peritoneal Dialysis Renal Replacement Therapy Dose Adjustment Total Body Weight Continuous Ambulatory Peritoneal Dialysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hernandez JO, Norstrom J, Wysock G. Acyclovir-induced renal failure in an obese patient. Am J Health Syst Pharm. 2009;66:1288-1291.PubMedGoogle Scholar
  2. 2.
    Naranjo CA, Busto U, Sellers EM, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther. 1981;30:239-245.PubMedGoogle Scholar
  3. 3.
    Davis RL, Quenzer RW, Weller S, et al. Acyclovir pharmacokinetics in morbid obesity. In: Programs and abstracts of the 31st Interscience Conference on antimicrobial agents and chemotherapy. American Society for Microbiology; 1991; Washington, DC.Google Scholar
  4. 4.
    Acyclovir for injection (package insert). Bedford, OH: Bedford Laboratories; June 2005.Google Scholar
  5. 5.
    McEvoy GK, ed. Acyclovir. American hospital formulary service drug information. American Society of Health-System Pharmacists; Bethesda, MD; 2010:812–822.Google Scholar
  6. 6.
    Krasny HC, Liao SH, de Miranda P, Laskin OL, Whelton A, Lietman PS. Influence of hemodialysis on acyclovir pharmacokinetics in patients with chronic renal failure. Am J Med. 1982;73:202-204.PubMedGoogle Scholar
  7. 7.
    Heintz BH, Matzke GR, Dager WE. Antimicrobial dosing concepts and recommendations for critically ill adult patients receiving continuous renal replacement therapy or intermittent hemodialysis. Pharmacotherapy. 2009;29:562-577.PubMedGoogle Scholar
  8. 8.
    Seth SK, Visconti JA, Hebert LA, Krasny HC. Acyclovir pharmacokinetics in a patient on continuous ambulatory peritoneal dialysis. Clin Pharm. 1985;4:320-322.PubMedGoogle Scholar
  9. 9.
    Boelaert J, Schurgers M, Daneels R, Van Landuyt HW, Weatherley BC. Multiple dose pharmacokinetics of intravenous acyclovir in patients on continuous ambulatory peritoneal dialysis. J Antimicrob Chemother. 1987;20:69-76.PubMedGoogle Scholar
  10. 10.
    Sigaloff KC, de Fijter CW. Herpes zoster-associated encephalitis in a patient undergoing continuous ambulatory peritoneal dialysis: case report and literature review. Perit Dial Int. 2007;27:391-394.PubMedGoogle Scholar
  11. 11.
    Boulieu R, Bastien O, Gaillard S, Flamens C. Pharmacokinetics of acyclovir in patients undergoing continuous venovenous hemodialysis. Ther Drug Monit. 1997;19:701-704.PubMedGoogle Scholar
  12. 12.
    Khajehdehi P, Jamal JA, Bastani B. Removal of acyclovir during continuous venovenous hemodialysis and hemodiafiltration with high-efficiency membranes. Clin Nephrol. 2000;54:351-355.PubMedGoogle Scholar
  13. 13.
    Pai MP, Bearden DT. Antimicrobial dosing considerations in obese adult patients. Pharmacotherapy. 2007;27:1081-1091.PubMedGoogle Scholar
  14. 14.
    Erstad BL. Dosing of medications in morbidly obese patients in the intensive care unit setting. Intensive Care Med. 2004;30:18-32.PubMedGoogle Scholar
  15. 15.
    Nicolau DP, Freeman CD, Belliveau PP, Nightingale CH, Ross JW, Quintiliani R. Experience with a once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob Agents Chemother. 1995;39:650-655.PubMedGoogle Scholar
  16. 16.
    Traynor AM, Nafziger AN, Bertino JS Jr. Aminoglycoside dosing weight correction factors for patients of various body sizes. Antimicrob Agents Chemother. 1995;39:545-548.PubMedGoogle Scholar
  17. 17.
    Hull JH, Sarubbi FA Jr. Gentamicin serum concentrations: pharmacokinetic predictions. Ann Intern Med. 1976;85:183-189.PubMedGoogle Scholar
  18. 18.
    Lesar TS, Rotschafer JC, Strand LM, et al. Gentamicin dosing errors with four commonly used nomograms. JAMA. 1982;248:1190-1193.PubMedGoogle Scholar
  19. 19.
    Fish DN. Extended-interval dosing of aminoglycoside antibiotics in critically ill patients. J Pharm Pract. 2002;15:85-95.Google Scholar
  20. 20.
    Teigen MM, Duffull S, Dang L, et al. Dosing of gentamicin in patients with end-stage renal disease receiving hemodialysis. J Clin Pharmacol. 2006;46:1259-1267.PubMedGoogle Scholar
  21. 21.
    O’Shea S, Duffull S, Johnson DW. Aminoglycosides in hemodialysis patients: is the current practice of post dialysis dosing appropriate? Semin Dial. 2009;22:225-230.PubMedGoogle Scholar
  22. 22.
    Dang L, Duffull S. Development of a semimechanistic model to describe the pharmacokinetics of gentamicin in patients receiving hemodialysis. J Clin Pharmacol. 2006;46:662-673.PubMedGoogle Scholar
  23. 23.
    Kamel Mohamed OH, Wahba IM, Watnick S, et al. Administration of tobramycin in the beginning of the hemodialysis session: a novel intradialytic dosing regimen. Clin J Am Soc Nephrol. 2007;2:694-699.PubMedGoogle Scholar
  24. 24.
    Sowinski KM, Magner SJ, Lucksiri A, et al. Influence of hemodialysis on gentamicin pharmacokinetics, removal during hemodialysis, and recommended dosing. Clin J Am Soc Nephrol. 2008;3:355-361.PubMedGoogle Scholar
  25. 25.
    Sampliner R, Perrier D, Powell R, et al. Influence of ascites on tobramycin pharmacokinetics. J Clin Pharmacol. 1984;24:43-46.PubMedGoogle Scholar
  26. 26.
    Hampel H, Bynum GD, Zamora E, et al. Risk factors for the development of renal dysfunction in hospitalized patients with cirrhosis. Am J Gastroenterol. 2001;96:2206-2210.PubMedGoogle Scholar
  27. 27.
    McCormick PA, Greenslade L, Kibbler CC, et al. A prospective randomized trial of ceftazidime versus netilmicin plus mezlocillin in the empirical therapy of presumed sepsis in cirrhotic patients. Hepatology. 1997;25:833-836.PubMedGoogle Scholar
  28. 28.
    Mercer JM, Neyens RR. Aminoglycoside pharmacokinetic parameters in neurocritical care patients undergoing induced hypothermia. Pharmacotherapy. 2010;30:654-660.PubMedGoogle Scholar
  29. 29.
    Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987;155:93-99.PubMedGoogle Scholar
  30. 30.
    Drusano GL, Ambrose PG, Bhavnani SM, et al. Back to the future: using aminoglycosides again and how to dose them optimally. Clin Infect Dis. 2007;45:753-760.PubMedGoogle Scholar
  31. 31.
    Taccone FS, Laterre PF, Spapen H, et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit Care. 2010;14:R53.PubMedGoogle Scholar
  32. 32.
    Bailey JA, Virgo KS, DiPiro JT, Nathens AB, Sawyer RG, Mazuski JE. Aminoglycosides for intra-abdominal infection: equal to the challenge? Surg Infect (Larchmt). 2002;3:315-335.Google Scholar
  33. 33.
    Simmen HP, Battaglia H, Kossmann T, et al. Effect of peritoneal fluid pH on outcome of aminoglycoside treatment of intraabdominal infections. World J Surg. 1993;17:393-397.PubMedGoogle Scholar
  34. 34.
    Wong PF, Gilliam AD, Kumar S, et al. Antibiotic regimens for secondary peritonitis of gastrointestinal origin in adults. Cochrane Database Syst Rev. 2005:CD004539.Google Scholar
  35. 35.
    Mingeot-Leclercq MP, Tulkens PM. Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother. 1999;43:1003-1012.PubMedGoogle Scholar
  36. 36.
    Schentag JJ, Meagher AK, Jelliffe RW. Aminoglycosides. In: Burton ME, Shaw LM, Schentag JJ, Evans WE, eds. Applied Pharmacokinetics & Pharmacodynamics: Principles of Therapeutic Drug Monitoring. 4th ed. Baltimore: Lippincott Williams & Wilkins; 2006:286-319.Google Scholar
  37. 37.
    Rybak MJ, Albrecht LM, Boike SC, Chandrasekar PH. Nephrotoxicity of vancomycin, alone and with an aminoglycoside. J Antimicrob Chemother. 1990;25:679-687.PubMedGoogle Scholar
  38. 38.
    Cosgrove SE, Vigliani GA, Fowler VG Jr, et al. Initial low-dose gentamicin for Staphylococcus aureus bacteremia and endocarditis is nephrotoxic. Clin Infect Dis. 2009;48:713-721.PubMedGoogle Scholar
  39. 39.
    Olsen KM, Rudis MI, Rebuck JA, et al. Effect of once-daily dosing vs. multiple daily dosing of tobramycin on enzyme markers of nephrotoxicity. Crit Care Med. 2004;32:1678-1682.PubMedGoogle Scholar
  40. 40.
    ter Braak EW, de Vries PJ, et al. Once-daily dosing regimen for aminoglycoside plus beta-lactam combination therapy of serious bacterial infections: comparative trial with netilmicin plus ceftriaxone. Am J Med. 1990;89:58-66.PubMedGoogle Scholar
  41. 41.
    Rybak MJ, Abate BJ, Kang SL, Ruffing MJ, Lerner SA, Drusano GL. Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity. Antimicrob Agents Chemother. 1999;43:1549-1555.PubMedGoogle Scholar
  42. 42.
    Selimoglu E. Aminoglycoside-induced ototoxicity. Curr Pharm Des. 2007;13:119-126.PubMedGoogle Scholar
  43. 43.
    Tablan OC, Reyes MP, Rintelmann WF, et al. Renal and auditory toxicity of high-dose, prolonged therapy with gentamicin and tobramycin in pseudomonas endocarditis. J Infect Dis. 1984;149:257-263.PubMedGoogle Scholar
  44. 44.
    Pavlidis P, Nikolaidis V, Gouveris H, et al. Ototoxicity caused by once- and twice-daily administration of amikacin in rabbits. Int J Pediatr Otorhinolaryngol. 2010;74:361-364.PubMedGoogle Scholar
  45. 45.
    Takumida M, Nishida I, Nikaido M, Hirakawa K, Harada Y, Bagger-Sjöbäck D. Effect of dosing schedule on aminoglycoside ototoxicity: comparative cochlear ototoxicity of amikacin and isepamicin. ORL J Otorhinolaryngol Relat Spec. 1990;52:341-349.PubMedGoogle Scholar
  46. 46.
    Ali MZ, Goetz MB. A meta-analysis of the relative efficacy and toxicity of single daily dosing versus multiple daily dosing of aminoglycosides. Clin Infect Dis. 1997;24:796-809.PubMedGoogle Scholar
  47. 47.
    Bailey TC, Little JR, Littenberg B, Reichley RM, Dunagan WC. A meta-analysis of extended-interval dosing versus multiple daily dosing of aminoglycosides. Clin Infect Dis. 1997;24:786-795.PubMedGoogle Scholar
  48. 48.
    Munckhof WJ, Grayson ML, Turnidge JD. A meta-analysis of studies on the safety and efficacy of aminoglycosides given either once daily or as divided doses. J Antimicrob Chemother. 1996;37:645-663.PubMedGoogle Scholar
  49. 49.
    Tice AD, Rehm SJ, Dalovisio JR, et al. Practice guidelines for outpatient parenteral antimicrobial therapy. IDSA guidelines. Clin Infect Dis. 2004;38:1651-1672.PubMedGoogle Scholar
  50. 50.
    Sha SH, Qiu JH, Schacht J. Aspirin to prevent gentamicin-induced hearing loss. N Engl J Med. 2006;354:1856-1857.PubMedGoogle Scholar
  51. 51.
    Feldman L, Efrati S, Eviatar E, et al. Gentamicin-induced ototoxicity in hemodialysis patients is ameliorated by N-acetylcysteine. Kidney Int. 2007;7:359-363.Google Scholar
  52. 52.
    Finnell DL, Davis GA, Cropp CD, et al. Validation of the Hartford nomogram in trauma surgery patients. Ann Pharmacother. 1998;32:417-421.PubMedGoogle Scholar
  53. 53.
    Toschlog EA, Blount KP, Rotondo MF, et al. Clinical predictors of subtherapeutic aminoglycoside levels in trauma patients undergoing once-daily dosing. J Trauma. 2003;55:255-260.PubMedGoogle Scholar
  54. 54.
    Barletta JF, Johnson SB, Nix DE, Nix LC, Erstad BL. Population pharmacokinetics of aminoglycosides in critically ill trauma patients on once-daily regimens. J Trauma. 2000;49:869-872.PubMedGoogle Scholar
  55. 55.
    Buijk SE, Mouton JW, Gyssens IC, Verbrugh HA, Bruining HA. Experience with a once-daily dosing program of aminoglycosides in critically ill patients. Intensive Care Med. 2002;28:936-942.PubMedGoogle Scholar
  56. 56.
    Bond CA, Raehl CL. Clinical and economic outcomes of pharmacist-managed aminoglycoside or vancomycin therapy. Am J Health Syst Pharm. 2005;62:1596-1605.PubMedGoogle Scholar
  57. 57.
    Amphotericin B for injection (package insert). Big Flats, NY: X-GEN Pharmaceuticals, Inc.; April 2010.Google Scholar
  58. 58.
    Amphotericin B cholesteryl sulfate complex (Amphotec®) for injection (package insert). Warrendale, PA: Three Rivers Pharmaceuticals, LLC; January 2009.Google Scholar
  59. 59.
    Amphotericin B lipid complex (Abelcet®) injection (package insert). Bridgewater, NJ: Enzon Pharmaceuticals, Inc.; February 2009.Google Scholar
  60. 60.
    Amphotericin B liposome (Ambisome®) for injection (package insert). Deerfield, IL: Astellas Pharma US, Inc.; October 2008.Google Scholar
  61. 61.
    Morgan DJ, Ching MS, Raymond K, et al. Elimination of amphotericin B in impaired renal function. Clin Pharmacol Ther. 1983;34:248-253.PubMedGoogle Scholar
  62. 62.
    Block ER, Bennet JE, Livoti LG, Klein WJ, MacGregor RR, Henderson L. Flucytosine and amphotericin B: hemodialysis effects on the plasma concentration and clearance. Studies in man. Ann Intern Med. 1974;80:613-617.PubMedGoogle Scholar
  63. 63.
    Heinemann V, Bosse D, Jehn U, et al. Pharmacokinetics of liposomal amphotericin B (AmBisome®) in critically ill patients. Antimicrob Agents Chemother. 1997;41:1275-1280.PubMedGoogle Scholar
  64. 64.
    Wong PN, Lo KY, Tong GM, et al. Treatment of fungal peritonitis with a combination of intravenous amphotericin B and oral flucytosine, and delayed catheter replacement in continuous ambulatory peritoneal dialysis. Perit Dial Int. 2008;28:155-162.PubMedGoogle Scholar
  65. 65.
    Muther RS, Bennett WM. Peritoneal clearance of amphotericin B and 5-fluorocytosine. West J Med. 1980;133:157-160.PubMedGoogle Scholar
  66. 66.
    Bellmann R, Egger P, Gritsch W, et al. Amphotericin B lipid formulations in critically ill patients on continuous veno-venous haemofiltration. J Antimicrob Chemother. 2003;51:671-681.PubMedGoogle Scholar
  67. 67.
    Humphreys H, Oliver DA, Winter R, Warnock DW. Liposomal amphotericin B and continuous venous-venous haemofiltration. J Antimicrob Chemother. 1994;33:1070-1071.PubMedGoogle Scholar
  68. 68.
    McEvoy GK, ed. Amphotericin B. American Hospital Formulary Service Drug Information. American Society of Health-System Pharmacists; Bethesda, MD; 2010:555–566.Google Scholar
  69. 69.
    Rex JH, Steven DA. Systemic antifungal agents: amphotericin B–based preparations. In: Mandell GL, Bennett JE, Dolin R, eds. Mandell, Douglas, and Bennett’s: Principles and Practice of Infectious Diseases, vol. 1. 7th ed. Philadelphia: Churchill Livingstone Elsevier; 2010:549-553.Google Scholar
  70. 70.
    Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26:223-227.PubMedGoogle Scholar
  71. 71.
    Anidulafungin (Eraxis) for injection (package insert). New York, NY: Roerig, Division of Pfizer, Inc.; November 2010.Google Scholar
  72. 72.
    Mazzei T, Novelli A. Pharmacological properties of antifungal drugs with a focus on anidulafungin. Drugs. 2009;69(Suppl 1):79-90.PubMedGoogle Scholar
  73. 73.
    Sucher AJ, Chahine EB, Balcer HE. Echinocandins: the newest class of antifungals. Ann Pharmacother. 2009;43:1647-1657.PubMedGoogle Scholar
  74. 74.
    Menichetti F. Anidulafungin, a new echinocandin: effectiveness and tolerability. Drugs. 2009;69(Suppl 1):95-97.PubMedGoogle Scholar
  75. 75.
    McEvoy GK, ed. Anidulafungin. American Hospital Formulary Service Drug Information. American Society of Health-System Pharmacists; Bethesda, MD; 2010:545–547.Google Scholar
  76. 76.
    Caspofungin acetate (Cancidas®) for injection (package insert). Whitehouse Station, NJ: Merck & Co., Inc.; June 2010.Google Scholar
  77. 77.
    Caspofungin summary of product characteristics. Electronic Medicines Compendium (eMC), United Kingdom. July 2009. Accessed June 13, 2010.
  78. 78.
    Nguyen TH, Hoppe-Tichy T, Geiss HK, et al. Factors influencing caspofungin plasma concentrations in patients of a surgical intensive care unit. J Antimicrob Chemother. 2007;60:100-106.PubMedGoogle Scholar
  79. 79.
    Kubiak DW, Bryar JM, McDonnell AM, et al. Evaluation of caspofungin or micafungin as empiric antifungal therapy in adult patients with persistent febrile neutropenia: a retrospective, observational, sequential cohort analysis. Clin Ther. 2010;32:637-648.PubMedGoogle Scholar
  80. 80.
    Dodds Ashley ES, Lewis R, Lewis JS, Martin C, Andes D. Pharmacology of systemic antifungal agents. Clin Infect Dis. 2006;43(Suppl 1):28-39.Google Scholar
  81. 81.
    Lee MC, Ni YW, Wang CH, Lee CH, Wu TW. Caspofungin-induced severe toxic epidermal necrolysis. Ann Pharmacother. 2010;44:1116-1118.PubMedGoogle Scholar
  82. 82.
    Lalezari JP, Drew WL, Glutzer E, et al. (S)-1-[3-hydroxy-2-(phosphonylmethoxy)propyl]cytosine (cidofovir): results of a phase I/II study of a novel antiviral nucleotide analogue. J Infect Dis. 1995;171:788-796.PubMedGoogle Scholar
  83. 83.
    Cundy KC, Petty BG, Flaherty J, et al. Clinical pharmacokinetics of cidofovir in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 1995;39:1247-1252.PubMedGoogle Scholar
  84. 84.
    Cidofovir (Vistide®) injection (package insert). Foster City, CA: Gilead Sciences, Inc.; September 2000.Google Scholar
  85. 85.
    Brody SR, Humphreys MH, Gambertoglio JG, Schoenfeld P, Cundy KC, Aweeka FT. Pharmacokinetics of cidofovir in renal insufficiency and in continuous ambulatory peritoneal dialysis or high-flux hemodialysis. Clin Pharmacol Ther. 1999;65:21-28.PubMedGoogle Scholar
  86. 86.
    Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344:699-709.PubMedGoogle Scholar
  87. 87.
    Loveland SM, Lewin JJ III, Amabile CM, et al. Obese man treated with drotrecogin alfa (activated). Ann Pharmacother. 2003;37:918-919.PubMedGoogle Scholar
  88. 88.
    Levy H, Small D, Heiselman DE, et al. Obesity does not alter the pharmacokinetics of drotrecogin alfa (activated) in severe sepsis. Ann Pharmacother. 2005;39:262-267.PubMedGoogle Scholar
  89. 89.
    Macias WL, Dhainaut JF, Yan SC, et al. Pharmacokinetic-pharmacodynamic analysis of drotrecogin alfa (activated) in patients with severe sepsis. Clin Pharmacol Ther. 2002;72:391-402.PubMedGoogle Scholar
  90. 90.
    Xigris® (package insert). Indianapolis, IN: Eli Lilly and Company. October 2008.Google Scholar
  91. 91.
    Böhler J, Donauer J, Keller F. Pharmacokinetic principles during continuous renal replacement therapy: drugs and dosage. Kidney Int. 1999;72:S24-S28.Google Scholar
  92. 92.
    Pastores SM. Drotrecogin alfa (activated): a novel therapeutic strategy for severe sepsis. Postgrad Med J. 2003;79:5-10.PubMedGoogle Scholar
  93. 93.
    Dhainaut JF, Yan SB, Margolis BD, et al. Drotrecogin alfa (activated) (recombinant human activated protein C) reduces host coagulopathy response in patients with severe sepsis. Thromb Haemost. 2003;90:642-653.PubMedGoogle Scholar
  94. 94.
    Martí-Carvajal A, Salanti G, Cardona AF. Human recombinant activated protein C for severe sepsis. Cochrane Database Syst Rev. 2008:CD004388.Google Scholar
  95. 95.
    Bernard GR, Macias WL, Joyce DE, et al. Safety assessment of drotrecogin alfa (activated) in the treatment of adult patients with severe sepsis. Crit Care. 2003;7:155-163.PubMedGoogle Scholar
  96. 96.
    Camporota L, Wyncoll D. Practical aspects of treatment with drotrecogin alfa (activated). Crit Care. 2007;11:S7.PubMedGoogle Scholar
  97. 97.
    Gentry CA, Gross KB, Sud B, et al. Adverse outcomes associated with the use of drotrecogin alfa (activated) in patients with severe sepsis and baseline bleeding precautions. Crit Care Med. 2009;37:19-25.PubMedGoogle Scholar
  98. 98.
    Sweeney DA, Natanson C, Eichacker PQ. Recombinant human activated protein C, package labeling, and hemorrhage risks. Crit Care Med. 2009;37:327-329.PubMedGoogle Scholar
  99. 99.
    Fry DE, Beilman G, Johnson S, et al. Safety of drotrecogin alfa (activated) in surgical patients with severe sepsis. Surg Infect (Larchmt). 2004;5:253-259.Google Scholar
  100. 100.
    Barie PS, Williams MD, McCollam JS, et al. Benefit/risk profile of drotrecogin alfa (activated) in surgical patients with severe sepsis. Am J Surg. 2004;188:212-220.PubMedGoogle Scholar
  101. 101.
    Abraham E, Laterre PF, Garg R, et al. Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med. 2005;353:1332-1341.PubMedGoogle Scholar
  102. 102.
    Payen D, Sablotzki A, Barie PS, et al. International integrated database for the evaluation of severe sepsis and drotrecogin alfa (activated) therapy: analysis of efficacy and safety data in a large surgical cohort. Surgery. 2007;141:548-561.PubMedGoogle Scholar
  103. 103.
    Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296-327.PubMedGoogle Scholar
  104. 104.
    Levi M, Levy M, Williams MD, et al. Prophylactic heparin in patients with severe sepsis treated with drotrecogin alfa (activated). Am J Respir Crit Care Med. 2007;176:483-490.PubMedGoogle Scholar
  105. 105.
    Bijsterveld NR, Moons AH, Meijers JC, et al. Rebound thrombin generation after heparin therapy in unstable angina: a randomized comparison between unfractionated and low-molecular-weight heparin. J Am Coll Cardiol. 2002;39:811-817.PubMedGoogle Scholar
  106. 106.
    Vincent JL, Bernard GR, Beale R, et al. Drotrecogin alfa (activated) treatment in severe sepsis from the global open-label trial ENHANCE: further evidence for survival and safety and implications for early treatment. Crit Care Med. 2005;33:2266-2277.PubMedGoogle Scholar
  107. 107.
    Wheeler A, Steingrub J, Schmidt GA, et al. A retrospective observational study of drotrecogin alfa (activated) in adults with severe sepsis: comparison with a controlled clinical trial. Crit Care Med. 2008;36:14-23.PubMedGoogle Scholar
  108. 108.
    European Medicines Agency; Xigris (Drotrecogin alfa activated) Prescribing Information; Available from: Accessed December 2, 2010.
  109. 109.
    Gillum JG, Johnson M, Lavoie S, Venitz J. Flucytosine dosing in an obese patient with extrameningeal cryptococcal infection. Pharmacotherapy. 1995;15(2):251-253.PubMedGoogle Scholar
  110. 110.
    Flucytosine (Ancobon®) (package insert). Aliso Viejo, CA: Valeant™ Pharmaceuticals North America; January 2008.Google Scholar
  111. 111.
    Vermes A, Guchelaar HJ, Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother. 2000;46:171-179.PubMedGoogle Scholar
  112. 112.
    McEvoy GK, ed. Flucytosine. American hospital formulary service drug information. American Society of Health-System Pharmacists; Bethesda, MD; 2010:567–570.Google Scholar
  113. 113.
    Cutler RE, Blair AD, Kelly MR. Flucytosine kinetics in subjects with normal and impaired renal function. Clin Pharmacol Ther. 1978;24:333-342.PubMedGoogle Scholar
  114. 114.
    Lau AH, Kronfol NO. Elimination of flucytosine by continuous hemofiltration. Am J Nephrol. 1995;15:327-331.PubMedGoogle Scholar
  115. 115.
    Thomson AH, Shankland G, Clareburt C, Binning S. Flucytosine dose requirements in a patient receiving continuous veno-venous haemofiltration. Intensive Care Med. 2002;28:999.PubMedGoogle Scholar
  116. 116.
    Block ER. Effect of hepatic insufficiency on 5-fluorocytosine concentrations in serum. Antimicrob Agents Chemother. 1973;3:141-142.PubMedGoogle Scholar
  117. 117.
    Foscarnet for injection (package insert). Lake Forest, IL: Hospira, Inc; February 2008.Google Scholar
  118. 118.
    Aweeka FT, Jacobson MA, Martin-Munley S, et al. Effect of renal disease and hemodialysis on foscarnet pharmacokinetics and dosing recommendations. J Acquir Immune Defic Syndr Hum Retrovirol. 1999;20:350-357.PubMedGoogle Scholar
  119. 119.
    MacGregor RR, Graziani AL, Weiss R, Grunwald JE, Gambertoglio JG. Successful foscarnet therapy for cytomegalovirus retinitis in an AIDS patient undergoing hemodialysis: rationale for empiric dosing and plasma level monitoring. J Infect Dis. 1991;164:785-787.PubMedGoogle Scholar
  120. 120.
    Sam R, Patel SB, Popli A, Leehey DJ, Gambertoglio JG, Ing TS. Removal of foscarnet by hemodialysis using dialysate-side values. Int J Artif Organs. 2000;23:165-167.PubMedGoogle Scholar
  121. 121.
    Alexander AC, Akers A, Matzke GR, Aweeka FT, Fraley DS. Disposition of foscarnet during peritoneal dialysis. Ann Pharmacother. 1996;30:1106-1109.PubMedGoogle Scholar
  122. 122.
    Deray G, Martinez F, Katlama C, et al. Foscarnet nephrotoxicity; mechanism, incidence, and prevention. Am J Nephrol. 1989;9:316-321.PubMedGoogle Scholar
  123. 123.
    Nyberg G, Blohmé I, Persson H, Svalander C. Foscarnet-induced tubulointerstitial nephritis in renal transplant patients. Transplant Proc. 1990;22:241.PubMedGoogle Scholar
  124. 124.
    Cacoub P, Deray G, Baumelou A, et al. Acute renal failure induced by foscarnet: 4 cases. Clin Nephrol. 1988;29:315-318.PubMedGoogle Scholar
  125. 125.
    Jacobson MA, Crowe S, Levy J, et al. Effect of foscarnet therapy on infection with immunodeficiency virus in patients with AIDS. J Infect Dis. 1988;158:862-865.PubMedGoogle Scholar
  126. 126.
    Wagstaff AJ, Bryson HM. Foscarnet. A reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic use in immunocompromised patients with viral infections. Drugs. 1994;48:199-226.PubMedGoogle Scholar
  127. 127.
    Fletcher C, Sawchuk R, Chinnock B, de Miranda P, Balfour HH Jr. Human pharmacokinetics of the antiviral drug DHPG. Clin Pharmacol Ther. 1986;40:281-286.PubMedGoogle Scholar
  128. 128.
    Ganciclovir sodium (Cytovene®) for injection (package insert). South San Francisco, CA: Genentech USA, Inc.; February 2010.Google Scholar
  129. 129.
    Czock D, Scholle C, Rasche FM, Schaarschmidt D, Keller F. Pharmacokinetics of valganciclovir and ganciclovir in renal impairment. Clin Pharmacol Ther. 2002;72:142-150.PubMedGoogle Scholar
  130. 130.
    Lake KD, Fletcher CV, Love KR, Brown DC, Joyce LD, Pritzker MR. Ganciclovir pharmacokinetics during renal impairment. Antimicrob Agents Chemother. 1988;32:1899-1900.PubMedGoogle Scholar
  131. 131.
    Sommadossi JP, Bevan R, Ling T, et al. Clinical pharmacokinetics of ganciclovir in patients with normal and impaired renal function. Rev Infect Dis. 1988;10(Suppl 3):S507-S514.PubMedGoogle Scholar
  132. 132.
    Swan SK, Munar MY, Wigger MA, Bennett WM. Pharmacokinetics of ganciclovir in a patient undergoing hemodialysis. Am J Kidney Dis. 1991;17:69-72.PubMedGoogle Scholar
  133. 133.
    Gando S, Kameue T, Nanzaki S, Hayakawa T, Nakanishi Y. Pharmacokinetics and clearance of ganciclovir during continuous hemodiafiltration. Crit Care Med. 1998;26:184-187.PubMedGoogle Scholar
  134. 134.
    Boulieu R, Bastien O, Bleyzac N. Pharmacokinetics of ganciclovir in heart transplant patients undergoing continuous venovenous hemodialysis. Ther Drug Monit. 1993;15:105-107.PubMedGoogle Scholar
  135. 135.
    Bastien O, Boulieu R, Bleyzac N, Estanove S. Clinical use of ganciclovir during renal failure and continuous hemodialysis. Intensive Care Med. 1994;20:47-48.PubMedGoogle Scholar
  136. 136.
    Gumbo T, Hiemenz J, Ma L, Keirns JJ, Buell DN, Drusano GL. Population pharmacokinetics of micafungin in adult patients. Diagn Microbiol Infect Dis. 2008;60:329-331.PubMedGoogle Scholar
  137. 137.
    Micafungin sodium (Mycamine®) for injection (package insert). Deerfield, IL: Astellas Pharma US, Inc.; January 2008.Google Scholar
  138. 138.
    McEvoy GK, ed. Micafungin. American Hospital Formulary Service Drug Information. American Society of Health-System Pharmacists; Bethesda, MD; 2010:552–555.Google Scholar
  139. 139.
    Yoshizawa S, Gotoh M, Kitahara T, et al. Micafungin-induced hemolysis attack due to drug-dependent antibody persisting for more than 6 weeks. Leuk Res. 2010;34:e60-e61.PubMedGoogle Scholar
  140. 140.
    Nanri T, Iwanaga E, Fujie S, et al. Micafungin-induced immune hemolysis attacks. Int J Hematol. 2009;89:139-141.PubMedGoogle Scholar
  141. 141.
    Kauffman CA, Carver PL. Update on echinocandin antifungals. Semin Respir Crit Care Med. 2008;29:211-219.PubMedGoogle Scholar
  142. 142.
    Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2009;66:82-98.PubMedGoogle Scholar
  143. 143.
    Bauer LA, Black DJ, Lill JS. Vancomycin dosing in morbidly obese patients. Eur J Clin Pharmacol. 1998;54:621-625.PubMedGoogle Scholar
  144. 144.
    Blouin RA, Bauer LA, Miller DD, et al. Vancomycin pharmacokinetics in normal and morbidly obese subjects. Antimicrob Agents Chemother. 1982;21:575-580.PubMedGoogle Scholar
  145. 145.
    Vance-Bryan K, Guay DR, Gilliland SS, et al. Effect of obesity on vancomycin pharmacokinetic parameters as determined by using a Bayesian forecasting technique. Antimicrob Agents Chemother. 1993;37:436-440.PubMedGoogle Scholar
  146. 146.
    Matzke GR, Zhanel GG, Guay DR. Clinical pharmacokinetics of vancomycin. Clin Pharmacokinet. 1986;11:257-282.PubMedGoogle Scholar
  147. 147.
    Moellering RC Jr, Krogstad DJ, Greenblatt DJ. Vancomycin therapy in patients with impaired renal function: a nomogram for dosage. Ann Intern Med. 1981;94:343-346.PubMedGoogle Scholar
  148. 148.
    Matzke GR, McGory RW, Halstenson CE, et al. Pharmacokinetics of vancomycin in patients with various degrees of renal function. Antimicrob Agents Chemother. 1984;25:433-437.PubMedGoogle Scholar
  149. 149.
    Brown DL, Mauro LS. Vancomycin dosing chart for use in patients with renal impairment. Am J Kidney Dis. 1988;11:15-19.PubMedGoogle Scholar
  150. 150.
    Thomson AH, Staatz CE, Tobin CM, et al. Development and evaluation of vancomycin dosage guidelines designed to achieve new target concentrations. J Antimicrob Chemother. 2009;63:1050-1057.PubMedGoogle Scholar
  151. 151.
    Pea F, Furlanut M, Negri C, et al. Prospectively validated dosing nomograms for maximizing the pharmacodynamics of vancomycin administered by continuous infusion in critically ill patients. Antimicrob Agents Chemother. 2009;53:1863-1867.PubMedGoogle Scholar
  152. 152.
    Polk RE, Espinel-Ingroff A, Lockridge R. In vitro evaluation of a vancomycin radioimmunoassay and observations on vancomycin pharmacokinetics in dialysis patients. Drug Intell Clin Pharm. 1981;15:15-20.PubMedGoogle Scholar
  153. 153.
    Launay-Vacher V, Izzedine H, Mercadal L, et al. Clinical review: use of vancomycin in haemodialysis patients. Crit Care. 2002;6:313-316.PubMedGoogle Scholar
  154. 154.
    Pallotta KE, Manley HJ. Vancomycin use in patients requiring hemodialysis: a literature review. Semin Dial. 2008;21:63-70.PubMedGoogle Scholar
  155. 155.
    Welage LS, Mason NA, Hoffman EJ, et al. Influence of cellulose triacetate hemodialyzers on vancomycin pharmacokinetics. J Am Soc Nephrol. 1995;6:1284-1290.PubMedGoogle Scholar
  156. 156.
    Pai AB, Pai MP. Vancomycin dosing in high flux hemodialysis: a limited-sampling algorithm. Am J Health Syst Pharm. 2004;61:1812-1816.PubMedGoogle Scholar
  157. 157.
    Ariano RE, Fine A, Sitar DS, et al. Adequacy of a vancomycin dosing regimen in patients receiving high-flux hemodialysis. Am J Kidney Dis. 2005;46:681-687.PubMedGoogle Scholar
  158. 158.
    Brown N, Ho DH, Fong KL, et al. Effects of hepatic function on vancomycin clinical pharmacology. Antimicrob Agents Chemother. 1983;23:603-609.PubMedGoogle Scholar
  159. 159.
    Aldaz A, Ortega A, Idoate A, et al. Effects of hepatic function on vancomycin pharmacokinetics in patients with cancer. Ther Drug Monit. 2000;22:250-257.PubMedGoogle Scholar
  160. 160.
    Forouzesh A, Moise PA, Sakoulas G. Vancomycin ototoxicity: a reevaluation in an era of increasing doses. Antimicrob Agents Chemother. 2009;53:483-486.PubMedGoogle Scholar
  161. 161.
    Brummett RE, Fox KE. Vancomycin- and erythromycin-induced hearing loss in humans. Antimicrob Agents Chemother. 1989;33:791-796.PubMedGoogle Scholar
  162. 162.
    Wood CA, Kohlhepp SJ, Kohnen PW, et al. Vancomycin enhancement of experimental tobramycin nephrotoxicity. Antimicrob Agents Chemother. 1986;30:20-24.PubMedGoogle Scholar
  163. 163.
    King DW, Smith MA. Proliferative responses observed following vancomycin treatment in renal proximal tubule epithelial cells. Toxicol In Vitro. 2004;18:797-803.PubMedGoogle Scholar
  164. 164.
    Nishino Y, Takemura S, Minamiyama Y, et al. Inhibition of vancomycin-induced nephrotoxicity by targeting superoxide dismutase to renal proximal tubule cells in the rat. Redox Rep. 2002;7:317-319.PubMedGoogle Scholar
  165. 165.
    Bailie GR, Neal D. Vancomycin ototoxicity and nephrotoxicity. A review. Med Toxicol Adverse Drug Exp. 1988;3:376-386.PubMedGoogle Scholar
  166. 166.
    Jeffres MN, Isakow W, Doherty JA, et al. A retrospective analysis of possible renal toxicity associated with vancomycin in patients with health care-associated methicillin-resistant Staphylococcus aureus pneumonia. Clin Ther. 2007;29:1107-1115.PubMedGoogle Scholar
  167. 167.
    Hidayat LK, Hsu DI, Quist R, et al. High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch Intern Med. 2006;166:2138-2144.PubMedGoogle Scholar
  168. 168.
    Lodise TP, Lomaestro B, Graves J, Drusano GL. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother. 2008;52:1330-1336.PubMedGoogle Scholar
  169. 169.
    Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet. 2004;43(13):925-942.PubMedGoogle Scholar
  170. 170.
    Haque NZ, Cahuayme Zuniga L, et al. Relationship of vancomycin MIC to mortality in patients with methicillin-resistant Staphylococcus aureus hospital-acquired, ventilator-associated and healthcare-associated pneumonia. Chest. 2010;138:1356-1362.PubMedGoogle Scholar
  171. 171.
    Sakoulas G, Moise-Broder PA, Schentag J, et al. Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol. 2004;42:2398-2402.PubMedGoogle Scholar
  172. 172.
    Soriano A, Marco F, Martínez JA, et al. Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis. 2008;46:193-200.PubMedGoogle Scholar
  173. 173.
    Wang JL, Wang JT, Sheng WH, et al. Nosocomial methicillin-resistant Staphylococcus aureus (MRSA) bacteremia in Taiwan: mortality analyses and the impact of vancomycin, MIC  =  2 mg/L, by the broth microdilution method. BMC Infect Dis. 2010;10:159.PubMedGoogle Scholar
  174. 174.
    Lodise TP, Graves J, Evans A, et al. Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrob Agents Chemother. 2008;52:3315-3320.PubMedGoogle Scholar
  175. 175.
    Polk RE. Red man syndrome. Ann Pharmacother. 1998;32:840.PubMedGoogle Scholar
  176. 176.
    Polk RE, Healy DP, Schwartz LB, et al. Vancomycin and the red-man syndrome: pharmacodynamics of histamine release. J Infect Dis. 1988;157:502-507.PubMedGoogle Scholar
  177. 177.
    Sivagnanam S, Deleu D. Red man syndrome. Crit Care. 2003;7:119-120.PubMedGoogle Scholar
  178. 178.
    Healy DP, Sahai JV, Fuller SH, et al. Vancomycin-induced histamine release and “red man syndrome”: comparison of 1- and 2-hour infusions. Antimicrob Agents Chemother. 1990;34:550-554.PubMedGoogle Scholar
  179. 179.
    Von Drygalski A, Curtis BR, Bougie DW, et al. Vancomycin-induced immune thrombocytopenia. N Engl J Med. 2007;356:904-910.Google Scholar
  180. 180.
    Pea F, Porreca L, Baraldo M, et al. High vancomycin dosage regimens required by intensive care unit patients cotreated with drugs to improve haemodynamics following cardiac surgical procedures. J Antimicrob Chemother. 2000;45:329-335.PubMedGoogle Scholar
  181. 181.
    Voriconazole (Vfend®) (package insert). New York, NY: Roerig, Division of Pfizer, Inc.; June 2010.Google Scholar
  182. 182.
    Luke DR, Tomaszewski K, Damle B, Schlamm HT. Review of the basic and clinical pharmacology of sulfobutylether-beta-cyclodextrin (SBECD). J Pharm Sci. 2010;99:3291-3301.PubMedGoogle Scholar
  183. 183.
    Hafner V, Czock D, Burhenne J, et al. Pharmacokinetics of sulfobutylether-beta-cyclodextrin and voriconazole in patients with end-stage renal failure during treatment with two hemodialysis systems and hemodiafiltration. Antimicrob Agents Chemother. 2010;54:2596-2602.PubMedGoogle Scholar
  184. 184.
    Robatel C, Rusca M, Padoin C, Marchetti O, Liaudet L, Buclin T. Disposition of voriconazole during continuous veno-venous hemodiafiltration (CVVHDF) in a single patient. J Antimicrob Chemother. 2004;54:269-270.PubMedGoogle Scholar
  185. 185.
    Etravirine (Intelence®) (package insert). Raritan, NJ: Tibotec Therapeutics, Division of Centocor Ortho Biotech Products, L.P.; July 2010.Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Pharmacy Practice and AdministrationErnest Mario School of PharmacyPiscatawayUSA

Personalised recommendations