Skip to main content
  • 920 Accesses

Abstract

Anti-infectives have been credited with much of the improvement seen in the mortality rates due to infectious diseases over the last 100 years. Anti-infectives include antibiotics, antifungals, antivirals, and immunomodulating therapies such as drotrecogin alpha (activated). Although the benefits of most anti-infectives have been clearly established, certain agents have significant toxicities associated with their use. The risk of toxicity is likely higher in critically ill patients. An in-depth knowledge of the safety profile of these anti-infectives can help the clinician better balance the risks and benefits of treatment. In some cases, the risk may be alleviated by dose adjusting for renal or liver dysfunction or in anticipation of a drug–drug interaction. Measures such as providing adjunctive medications before, during, or after each dose may also be necessary to decrease the risk associated with a particular antimicrobial agent. The focus of this chapter is to review high-risk intravenous anti-infectives; however, we also discuss the oral anti-infectives flucytosine and voriconazole due to the difficulties in dosing these medications in the critically ill.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hernandez JO, Norstrom J, Wysock G. Acyclovir-induced renal failure in an obese patient. Am J Health Syst Pharm. 2009;66:1288-1291.

    PubMed  Google Scholar 

  2. Naranjo CA, Busto U, Sellers EM, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther. 1981;30:239-245.

    PubMed  CAS  Google Scholar 

  3. Davis RL, Quenzer RW, Weller S, et al. Acyclovir pharmacokinetics in morbid obesity. In: Programs and abstracts of the 31st Interscience Conference on antimicrobial agents and chemotherapy. American Society for Microbiology; 1991; Washington, DC.

    Google Scholar 

  4. Acyclovir for injection (package insert). Bedford, OH: Bedford Laboratories; June 2005.

    Google Scholar 

  5. McEvoy GK, ed. Acyclovir. American hospital formulary service drug information. American Society of Health-System Pharmacists; Bethesda, MD; 2010:812–822.

    Google Scholar 

  6. Krasny HC, Liao SH, de Miranda P, Laskin OL, Whelton A, Lietman PS. Influence of hemodialysis on acyclovir pharmacokinetics in patients with chronic renal failure. Am J Med. 1982;73:202-204.

    PubMed  CAS  Google Scholar 

  7. Heintz BH, Matzke GR, Dager WE. Antimicrobial dosing concepts and recommendations for critically ill adult patients receiving continuous renal replacement therapy or intermittent hemodialysis. Pharmacotherapy. 2009;29:562-577.

    PubMed  CAS  Google Scholar 

  8. Seth SK, Visconti JA, Hebert LA, Krasny HC. Acyclovir pharmacokinetics in a patient on continuous ambulatory peritoneal dialysis. Clin Pharm. 1985;4:320-322.

    PubMed  CAS  Google Scholar 

  9. Boelaert J, Schurgers M, Daneels R, Van Landuyt HW, Weatherley BC. Multiple dose pharmacokinetics of intravenous acyclovir in patients on continuous ambulatory peritoneal dialysis. J Antimicrob Chemother. 1987;20:69-76.

    PubMed  CAS  Google Scholar 

  10. Sigaloff KC, de Fijter CW. Herpes zoster-associated encephalitis in a patient undergoing continuous ambulatory peritoneal dialysis: case report and literature review. Perit Dial Int. 2007;27:391-394.

    PubMed  CAS  Google Scholar 

  11. Boulieu R, Bastien O, Gaillard S, Flamens C. Pharmacokinetics of acyclovir in patients undergoing continuous venovenous hemodialysis. Ther Drug Monit. 1997;19:701-704.

    PubMed  CAS  Google Scholar 

  12. Khajehdehi P, Jamal JA, Bastani B. Removal of acyclovir during continuous venovenous hemodialysis and hemodiafiltration with high-efficiency membranes. Clin Nephrol. 2000;54:351-355.

    PubMed  CAS  Google Scholar 

  13. Pai MP, Bearden DT. Antimicrobial dosing considerations in obese adult patients. Pharmacotherapy. 2007;27:1081-1091.

    PubMed  CAS  Google Scholar 

  14. Erstad BL. Dosing of medications in morbidly obese patients in the intensive care unit setting. Intensive Care Med. 2004;30:18-32.

    PubMed  Google Scholar 

  15. Nicolau DP, Freeman CD, Belliveau PP, Nightingale CH, Ross JW, Quintiliani R. Experience with a once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob Agents Chemother. 1995;39:650-655.

    PubMed  CAS  Google Scholar 

  16. Traynor AM, Nafziger AN, Bertino JS Jr. Aminoglycoside dosing weight correction factors for patients of various body sizes. Antimicrob Agents Chemother. 1995;39:545-548.

    PubMed  CAS  Google Scholar 

  17. Hull JH, Sarubbi FA Jr. Gentamicin serum concentrations: pharmacokinetic predictions. Ann Intern Med. 1976;85:183-189.

    PubMed  CAS  Google Scholar 

  18. Lesar TS, Rotschafer JC, Strand LM, et al. Gentamicin dosing errors with four commonly used nomograms. JAMA. 1982;248:1190-1193.

    PubMed  CAS  Google Scholar 

  19. Fish DN. Extended-interval dosing of aminoglycoside antibiotics in critically ill patients. J Pharm Pract. 2002;15:85-95.

    Google Scholar 

  20. Teigen MM, Duffull S, Dang L, et al. Dosing of gentamicin in patients with end-stage renal disease receiving hemodialysis. J Clin Pharmacol. 2006;46:1259-1267.

    PubMed  CAS  Google Scholar 

  21. O’Shea S, Duffull S, Johnson DW. Aminoglycosides in hemodialysis patients: is the current practice of post dialysis dosing appropriate? Semin Dial. 2009;22:225-230.

    PubMed  Google Scholar 

  22. Dang L, Duffull S. Development of a semimechanistic model to describe the pharmacokinetics of gentamicin in patients receiving hemodialysis. J Clin Pharmacol. 2006;46:662-673.

    PubMed  CAS  Google Scholar 

  23. Kamel Mohamed OH, Wahba IM, Watnick S, et al. Administration of tobramycin in the beginning of the hemodialysis session: a novel intradialytic dosing regimen. Clin J Am Soc Nephrol. 2007;2:694-699.

    PubMed  Google Scholar 

  24. Sowinski KM, Magner SJ, Lucksiri A, et al. Influence of hemodialysis on gentamicin pharmacokinetics, removal during hemodialysis, and recommended dosing. Clin J Am Soc Nephrol. 2008;3:355-361.

    PubMed  CAS  Google Scholar 

  25. Sampliner R, Perrier D, Powell R, et al. Influence of ascites on tobramycin pharmacokinetics. J Clin Pharmacol. 1984;24:43-46.

    PubMed  CAS  Google Scholar 

  26. Hampel H, Bynum GD, Zamora E, et al. Risk factors for the development of renal dysfunction in hospitalized patients with cirrhosis. Am J Gastroenterol. 2001;96:2206-2210.

    PubMed  CAS  Google Scholar 

  27. McCormick PA, Greenslade L, Kibbler CC, et al. A prospective randomized trial of ceftazidime versus netilmicin plus mezlocillin in the empirical therapy of presumed sepsis in cirrhotic patients. Hepatology. 1997;25:833-836.

    PubMed  CAS  Google Scholar 

  28. Mercer JM, Neyens RR. Aminoglycoside pharmacokinetic parameters in neurocritical care patients undergoing induced hypothermia. Pharmacotherapy. 2010;30:654-660.

    PubMed  CAS  Google Scholar 

  29. Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987;155:93-99.

    PubMed  CAS  Google Scholar 

  30. Drusano GL, Ambrose PG, Bhavnani SM, et al. Back to the future: using aminoglycosides again and how to dose them optimally. Clin Infect Dis. 2007;45:753-760.

    PubMed  CAS  Google Scholar 

  31. Taccone FS, Laterre PF, Spapen H, et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit Care. 2010;14:R53.

    PubMed  Google Scholar 

  32. Bailey JA, Virgo KS, DiPiro JT, Nathens AB, Sawyer RG, Mazuski JE. Aminoglycosides for intra-abdominal infection: equal to the challenge? Surg Infect (Larchmt). 2002;3:315-335.

    Google Scholar 

  33. Simmen HP, Battaglia H, Kossmann T, et al. Effect of peritoneal fluid pH on outcome of aminoglycoside treatment of intraabdominal infections. World J Surg. 1993;17:393-397.

    PubMed  CAS  Google Scholar 

  34. Wong PF, Gilliam AD, Kumar S, et al. Antibiotic regimens for secondary peritonitis of gastrointestinal origin in adults. Cochrane Database Syst Rev. 2005:CD004539.

    Google Scholar 

  35. Mingeot-Leclercq MP, Tulkens PM. Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother. 1999;43:1003-1012.

    PubMed  CAS  Google Scholar 

  36. Schentag JJ, Meagher AK, Jelliffe RW. Aminoglycosides. In: Burton ME, Shaw LM, Schentag JJ, Evans WE, eds. Applied Pharmacokinetics & Pharmacodynamics: Principles of Therapeutic Drug Monitoring. 4th ed. Baltimore: Lippincott Williams & Wilkins; 2006:286-319.

    Google Scholar 

  37. Rybak MJ, Albrecht LM, Boike SC, Chandrasekar PH. Nephrotoxicity of vancomycin, alone and with an aminoglycoside. J Antimicrob Chemother. 1990;25:679-687.

    PubMed  CAS  Google Scholar 

  38. Cosgrove SE, Vigliani GA, Fowler VG Jr, et al. Initial low-dose gentamicin for Staphylococcus aureus bacteremia and endocarditis is nephrotoxic. Clin Infect Dis. 2009;48:713-721.

    PubMed  Google Scholar 

  39. Olsen KM, Rudis MI, Rebuck JA, et al. Effect of once-daily dosing vs. multiple daily dosing of tobramycin on enzyme markers of nephrotoxicity. Crit Care Med. 2004;32:1678-1682.

    PubMed  CAS  Google Scholar 

  40. ter Braak EW, de Vries PJ, et al. Once-daily dosing regimen for aminoglycoside plus beta-lactam combination therapy of serious bacterial infections: comparative trial with netilmicin plus ceftriaxone. Am J Med. 1990;89:58-66.

    PubMed  Google Scholar 

  41. Rybak MJ, Abate BJ, Kang SL, Ruffing MJ, Lerner SA, Drusano GL. Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity. Antimicrob Agents Chemother. 1999;43:1549-1555.

    PubMed  CAS  Google Scholar 

  42. Selimoglu E. Aminoglycoside-induced ototoxicity. Curr Pharm Des. 2007;13:119-126.

    PubMed  CAS  Google Scholar 

  43. Tablan OC, Reyes MP, Rintelmann WF, et al. Renal and auditory toxicity of high-dose, prolonged therapy with gentamicin and tobramycin in pseudomonas endocarditis. J Infect Dis. 1984;149:257-263.

    PubMed  CAS  Google Scholar 

  44. Pavlidis P, Nikolaidis V, Gouveris H, et al. Ototoxicity caused by once- and twice-daily administration of amikacin in rabbits. Int J Pediatr Otorhinolaryngol. 2010;74:361-364.

    PubMed  Google Scholar 

  45. Takumida M, Nishida I, Nikaido M, Hirakawa K, Harada Y, Bagger-Sjöbäck D. Effect of dosing schedule on aminoglycoside ototoxicity: comparative cochlear ototoxicity of amikacin and isepamicin. ORL J Otorhinolaryngol Relat Spec. 1990;52:341-349.

    PubMed  CAS  Google Scholar 

  46. Ali MZ, Goetz MB. A meta-analysis of the relative efficacy and toxicity of single daily dosing versus multiple daily dosing of aminoglycosides. Clin Infect Dis. 1997;24:796-809.

    PubMed  CAS  Google Scholar 

  47. Bailey TC, Little JR, Littenberg B, Reichley RM, Dunagan WC. A meta-analysis of extended-interval dosing versus multiple daily dosing of aminoglycosides. Clin Infect Dis. 1997;24:786-795.

    PubMed  CAS  Google Scholar 

  48. Munckhof WJ, Grayson ML, Turnidge JD. A meta-analysis of studies on the safety and efficacy of aminoglycosides given either once daily or as divided doses. J Antimicrob Chemother. 1996;37:645-663.

    PubMed  CAS  Google Scholar 

  49. Tice AD, Rehm SJ, Dalovisio JR, et al. Practice guidelines for outpatient parenteral antimicrobial therapy. IDSA guidelines. Clin Infect Dis. 2004;38:1651-1672.

    PubMed  Google Scholar 

  50. Sha SH, Qiu JH, Schacht J. Aspirin to prevent gentamicin-induced hearing loss. N Engl J Med. 2006;354:1856-1857.

    PubMed  CAS  Google Scholar 

  51. Feldman L, Efrati S, Eviatar E, et al. Gentamicin-induced ototoxicity in hemodialysis patients is ameliorated by N-acetylcysteine. Kidney Int. 2007;7:359-363.

    Google Scholar 

  52. Finnell DL, Davis GA, Cropp CD, et al. Validation of the Hartford nomogram in trauma surgery patients. Ann Pharmacother. 1998;32:417-421.

    PubMed  CAS  Google Scholar 

  53. Toschlog EA, Blount KP, Rotondo MF, et al. Clinical predictors of subtherapeutic aminoglycoside levels in trauma patients undergoing once-daily dosing. J Trauma. 2003;55:255-260.

    PubMed  Google Scholar 

  54. Barletta JF, Johnson SB, Nix DE, Nix LC, Erstad BL. Population pharmacokinetics of aminoglycosides in critically ill trauma patients on once-daily regimens. J Trauma. 2000;49:869-872.

    PubMed  CAS  Google Scholar 

  55. Buijk SE, Mouton JW, Gyssens IC, Verbrugh HA, Bruining HA. Experience with a once-daily dosing program of aminoglycosides in critically ill patients. Intensive Care Med. 2002;28:936-942.

    PubMed  CAS  Google Scholar 

  56. Bond CA, Raehl CL. Clinical and economic outcomes of pharmacist-managed aminoglycoside or vancomycin therapy. Am J Health Syst Pharm. 2005;62:1596-1605.

    PubMed  Google Scholar 

  57. Amphotericin B for injection (package insert). Big Flats, NY: X-GEN Pharmaceuticals, Inc.; April 2010.

    Google Scholar 

  58. Amphotericin B cholesteryl sulfate complex (Amphotec®) for injection (package insert). Warrendale, PA: Three Rivers Pharmaceuticals, LLC; January 2009.

    Google Scholar 

  59. Amphotericin B lipid complex (Abelcet®) injection (package insert). Bridgewater, NJ: Enzon Pharmaceuticals, Inc.; February 2009.

    Google Scholar 

  60. Amphotericin B liposome (Ambisome®) for injection (package insert). Deerfield, IL: Astellas Pharma US, Inc.; October 2008.

    Google Scholar 

  61. Morgan DJ, Ching MS, Raymond K, et al. Elimination of amphotericin B in impaired renal function. Clin Pharmacol Ther. 1983;34:248-253.

    PubMed  CAS  Google Scholar 

  62. Block ER, Bennet JE, Livoti LG, Klein WJ, MacGregor RR, Henderson L. Flucytosine and amphotericin B: hemodialysis effects on the plasma concentration and clearance. Studies in man. Ann Intern Med. 1974;80:613-617.

    PubMed  CAS  Google Scholar 

  63. Heinemann V, Bosse D, Jehn U, et al. Pharmacokinetics of liposomal amphotericin B (AmBisome®) in critically ill patients. Antimicrob Agents Chemother. 1997;41:1275-1280.

    PubMed  CAS  Google Scholar 

  64. Wong PN, Lo KY, Tong GM, et al. Treatment of fungal peritonitis with a combination of intravenous amphotericin B and oral flucytosine, and delayed catheter replacement in continuous ambulatory peritoneal dialysis. Perit Dial Int. 2008;28:155-162.

    PubMed  CAS  Google Scholar 

  65. Muther RS, Bennett WM. Peritoneal clearance of amphotericin B and 5-fluorocytosine. West J Med. 1980;133:157-160.

    PubMed  CAS  Google Scholar 

  66. Bellmann R, Egger P, Gritsch W, et al. Amphotericin B lipid formulations in critically ill patients on continuous veno-venous haemofiltration. J Antimicrob Chemother. 2003;51:671-681.

    PubMed  CAS  Google Scholar 

  67. Humphreys H, Oliver DA, Winter R, Warnock DW. Liposomal amphotericin B and continuous venous-venous haemofiltration. J Antimicrob Chemother. 1994;33:1070-1071.

    PubMed  CAS  Google Scholar 

  68. McEvoy GK, ed. Amphotericin B. American Hospital Formulary Service Drug Information. American Society of Health-System Pharmacists; Bethesda, MD; 2010:555–566.

    Google Scholar 

  69. Rex JH, Steven DA. Systemic antifungal agents: amphotericin B–based preparations. In: Mandell GL, Bennett JE, Dolin R, eds. Mandell, Douglas, and Bennett’s: Principles and Practice of Infectious Diseases, vol. 1. 7th ed. Philadelphia: Churchill Livingstone Elsevier; 2010:549-553.

    Google Scholar 

  70. Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26:223-227.

    PubMed  Google Scholar 

  71. Anidulafungin (Eraxis) for injection (package insert). New York, NY: Roerig, Division of Pfizer, Inc.; November 2010.

    Google Scholar 

  72. Mazzei T, Novelli A. Pharmacological properties of antifungal drugs with a focus on anidulafungin. Drugs. 2009;69(Suppl 1):79-90.

    PubMed  CAS  Google Scholar 

  73. Sucher AJ, Chahine EB, Balcer HE. Echinocandins: the newest class of antifungals. Ann Pharmacother. 2009;43:1647-1657.

    PubMed  CAS  Google Scholar 

  74. Menichetti F. Anidulafungin, a new echinocandin: effectiveness and tolerability. Drugs. 2009;69(Suppl 1):95-97.

    PubMed  CAS  Google Scholar 

  75. McEvoy GK, ed. Anidulafungin. American Hospital Formulary Service Drug Information. American Society of Health-System Pharmacists; Bethesda, MD; 2010:545–547.

    Google Scholar 

  76. Caspofungin acetate (Cancidas®) for injection (package insert). Whitehouse Station, NJ: Merck & Co., Inc.; June 2010.

    Google Scholar 

  77. Caspofungin summary of product characteristics. Electronic Medicines Compendium (eMC), United Kingdom. http://www.medicines.org.uk/emc/document.aspx?documentId=12843#PRODUCTINFO. July 2009. Accessed June 13, 2010.

  78. Nguyen TH, Hoppe-Tichy T, Geiss HK, et al. Factors influencing caspofungin plasma concentrations in patients of a surgical intensive care unit. J Antimicrob Chemother. 2007;60:100-106.

    PubMed  CAS  Google Scholar 

  79. Kubiak DW, Bryar JM, McDonnell AM, et al. Evaluation of caspofungin or micafungin as empiric antifungal therapy in adult patients with persistent febrile neutropenia: a retrospective, observational, sequential cohort analysis. Clin Ther. 2010;32:637-648.

    PubMed  CAS  Google Scholar 

  80. Dodds Ashley ES, Lewis R, Lewis JS, Martin C, Andes D. Pharmacology of systemic antifungal agents. Clin Infect Dis. 2006;43(Suppl 1):28-39.

    Google Scholar 

  81. Lee MC, Ni YW, Wang CH, Lee CH, Wu TW. Caspofungin-induced severe toxic epidermal necrolysis. Ann Pharmacother. 2010;44:1116-1118.

    PubMed  Google Scholar 

  82. Lalezari JP, Drew WL, Glutzer E, et al. (S)-1-[3-hydroxy-2-(phosphonylmethoxy)propyl]cytosine (cidofovir): results of a phase I/II study of a novel antiviral nucleotide analogue. J Infect Dis. 1995;171:788-796.

    PubMed  CAS  Google Scholar 

  83. Cundy KC, Petty BG, Flaherty J, et al. Clinical pharmacokinetics of cidofovir in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 1995;39:1247-1252.

    PubMed  CAS  Google Scholar 

  84. Cidofovir (Vistide®) injection (package insert). Foster City, CA: Gilead Sciences, Inc.; September 2000.

    Google Scholar 

  85. Brody SR, Humphreys MH, Gambertoglio JG, Schoenfeld P, Cundy KC, Aweeka FT. Pharmacokinetics of cidofovir in renal insufficiency and in continuous ambulatory peritoneal dialysis or high-flux hemodialysis. Clin Pharmacol Ther. 1999;65:21-28.

    PubMed  CAS  Google Scholar 

  86. Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344:699-709.

    PubMed  CAS  Google Scholar 

  87. Loveland SM, Lewin JJ III, Amabile CM, et al. Obese man treated with drotrecogin alfa (activated). Ann Pharmacother. 2003;37:918-919.

    PubMed  Google Scholar 

  88. Levy H, Small D, Heiselman DE, et al. Obesity does not alter the pharmacokinetics of drotrecogin alfa (activated) in severe sepsis. Ann Pharmacother. 2005;39:262-267.

    PubMed  CAS  Google Scholar 

  89. Macias WL, Dhainaut JF, Yan SC, et al. Pharmacokinetic-pharmacodynamic analysis of drotrecogin alfa (activated) in patients with severe sepsis. Clin Pharmacol Ther. 2002;72:391-402.

    PubMed  CAS  Google Scholar 

  90. Xigris® (package insert). Indianapolis, IN: Eli Lilly and Company. October 2008.

    Google Scholar 

  91. Böhler J, Donauer J, Keller F. Pharmacokinetic principles during continuous renal replacement therapy: drugs and dosage. Kidney Int. 1999;72:S24-S28.

    Google Scholar 

  92. Pastores SM. Drotrecogin alfa (activated): a novel therapeutic strategy for severe sepsis. Postgrad Med J. 2003;79:5-10.

    PubMed  CAS  Google Scholar 

  93. Dhainaut JF, Yan SB, Margolis BD, et al. Drotrecogin alfa (activated) (recombinant human activated protein C) reduces host coagulopathy response in patients with severe sepsis. Thromb Haemost. 2003;90:642-653.

    PubMed  CAS  Google Scholar 

  94. Martí-Carvajal A, Salanti G, Cardona AF. Human recombinant activated protein C for severe sepsis. Cochrane Database Syst Rev. 2008:CD004388.

    Google Scholar 

  95. Bernard GR, Macias WL, Joyce DE, et al. Safety assessment of drotrecogin alfa (activated) in the treatment of adult patients with severe sepsis. Crit Care. 2003;7:155-163.

    PubMed  Google Scholar 

  96. Camporota L, Wyncoll D. Practical aspects of treatment with drotrecogin alfa (activated). Crit Care. 2007;11:S7.

    PubMed  Google Scholar 

  97. Gentry CA, Gross KB, Sud B, et al. Adverse outcomes associated with the use of drotrecogin alfa (activated) in patients with severe sepsis and baseline bleeding precautions. Crit Care Med. 2009;37:19-25.

    PubMed  CAS  Google Scholar 

  98. Sweeney DA, Natanson C, Eichacker PQ. Recombinant human activated protein C, package labeling, and hemorrhage risks. Crit Care Med. 2009;37:327-329.

    PubMed  Google Scholar 

  99. Fry DE, Beilman G, Johnson S, et al. Safety of drotrecogin alfa (activated) in surgical patients with severe sepsis. Surg Infect (Larchmt). 2004;5:253-259.

    Google Scholar 

  100. Barie PS, Williams MD, McCollam JS, et al. Benefit/risk profile of drotrecogin alfa (activated) in surgical patients with severe sepsis. Am J Surg. 2004;188:212-220.

    PubMed  CAS  Google Scholar 

  101. Abraham E, Laterre PF, Garg R, et al. Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med. 2005;353:1332-1341.

    PubMed  CAS  Google Scholar 

  102. Payen D, Sablotzki A, Barie PS, et al. International integrated database for the evaluation of severe sepsis and drotrecogin alfa (activated) therapy: analysis of efficacy and safety data in a large surgical cohort. Surgery. 2007;141:548-561.

    PubMed  Google Scholar 

  103. Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296-327.

    PubMed  Google Scholar 

  104. Levi M, Levy M, Williams MD, et al. Prophylactic heparin in patients with severe sepsis treated with drotrecogin alfa (activated). Am J Respir Crit Care Med. 2007;176:483-490.

    PubMed  CAS  Google Scholar 

  105. Bijsterveld NR, Moons AH, Meijers JC, et al. Rebound thrombin generation after heparin therapy in unstable angina: a randomized comparison between unfractionated and low-molecular-weight heparin. J Am Coll Cardiol. 2002;39:811-817.

    PubMed  CAS  Google Scholar 

  106. Vincent JL, Bernard GR, Beale R, et al. Drotrecogin alfa (activated) treatment in severe sepsis from the global open-label trial ENHANCE: further evidence for survival and safety and implications for early treatment. Crit Care Med. 2005;33:2266-2277.

    PubMed  CAS  Google Scholar 

  107. Wheeler A, Steingrub J, Schmidt GA, et al. A retrospective observational study of drotrecogin alfa (activated) in adults with severe sepsis: comparison with a controlled clinical trial. Crit Care Med. 2008;36:14-23.

    PubMed  CAS  Google Scholar 

  108. European Medicines Agency; Xigris (Drotrecogin alfa activated) Prescribing Information; Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000396/WC500058067.pdf. Accessed December 2, 2010.

  109. Gillum JG, Johnson M, Lavoie S, Venitz J. Flucytosine dosing in an obese patient with extrameningeal cryptococcal infection. Pharmacotherapy. 1995;15(2):251-253.

    PubMed  CAS  Google Scholar 

  110. Flucytosine (Ancobon®) (package insert). Aliso Viejo, CA: Valeant™ Pharmaceuticals North America; January 2008.

    Google Scholar 

  111. Vermes A, Guchelaar HJ, Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother. 2000;46:171-179.

    PubMed  CAS  Google Scholar 

  112. McEvoy GK, ed. Flucytosine. American hospital formulary service drug information. American Society of Health-System Pharmacists; Bethesda, MD; 2010:567–570.

    Google Scholar 

  113. Cutler RE, Blair AD, Kelly MR. Flucytosine kinetics in subjects with normal and impaired renal function. Clin Pharmacol Ther. 1978;24:333-342.

    PubMed  CAS  Google Scholar 

  114. Lau AH, Kronfol NO. Elimination of flucytosine by continuous hemofiltration. Am J Nephrol. 1995;15:327-331.

    PubMed  CAS  Google Scholar 

  115. Thomson AH, Shankland G, Clareburt C, Binning S. Flucytosine dose requirements in a patient receiving continuous veno-venous haemofiltration. Intensive Care Med. 2002;28:999.

    PubMed  CAS  Google Scholar 

  116. Block ER. Effect of hepatic insufficiency on 5-fluorocytosine concentrations in serum. Antimicrob Agents Chemother. 1973;3:141-142.

    PubMed  CAS  Google Scholar 

  117. Foscarnet for injection (package insert). Lake Forest, IL: Hospira, Inc; February 2008.

    Google Scholar 

  118. Aweeka FT, Jacobson MA, Martin-Munley S, et al. Effect of renal disease and hemodialysis on foscarnet pharmacokinetics and dosing recommendations. J Acquir Immune Defic Syndr Hum Retrovirol. 1999;20:350-357.

    PubMed  CAS  Google Scholar 

  119. MacGregor RR, Graziani AL, Weiss R, Grunwald JE, Gambertoglio JG. Successful foscarnet therapy for cytomegalovirus retinitis in an AIDS patient undergoing hemodialysis: rationale for empiric dosing and plasma level monitoring. J Infect Dis. 1991;164:785-787.

    PubMed  CAS  Google Scholar 

  120. Sam R, Patel SB, Popli A, Leehey DJ, Gambertoglio JG, Ing TS. Removal of foscarnet by hemodialysis using dialysate-side values. Int J Artif Organs. 2000;23:165-167.

    PubMed  CAS  Google Scholar 

  121. Alexander AC, Akers A, Matzke GR, Aweeka FT, Fraley DS. Disposition of foscarnet during peritoneal dialysis. Ann Pharmacother. 1996;30:1106-1109.

    PubMed  CAS  Google Scholar 

  122. Deray G, Martinez F, Katlama C, et al. Foscarnet nephrotoxicity; mechanism, incidence, and prevention. Am J Nephrol. 1989;9:316-321.

    PubMed  CAS  Google Scholar 

  123. Nyberg G, Blohmé I, Persson H, Svalander C. Foscarnet-induced tubulointerstitial nephritis in renal transplant patients. Transplant Proc. 1990;22:241.

    PubMed  CAS  Google Scholar 

  124. Cacoub P, Deray G, Baumelou A, et al. Acute renal failure induced by foscarnet: 4 cases. Clin Nephrol. 1988;29:315-318.

    PubMed  CAS  Google Scholar 

  125. Jacobson MA, Crowe S, Levy J, et al. Effect of foscarnet therapy on infection with immunodeficiency virus in patients with AIDS. J Infect Dis. 1988;158:862-865.

    PubMed  CAS  Google Scholar 

  126. Wagstaff AJ, Bryson HM. Foscarnet. A reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic use in immunocompromised patients with viral infections. Drugs. 1994;48:199-226.

    PubMed  CAS  Google Scholar 

  127. Fletcher C, Sawchuk R, Chinnock B, de Miranda P, Balfour HH Jr. Human pharmacokinetics of the antiviral drug DHPG. Clin Pharmacol Ther. 1986;40:281-286.

    PubMed  CAS  Google Scholar 

  128. Ganciclovir sodium (Cytovene®) for injection (package insert). South San Francisco, CA: Genentech USA, Inc.; February 2010.

    Google Scholar 

  129. Czock D, Scholle C, Rasche FM, Schaarschmidt D, Keller F. Pharmacokinetics of valganciclovir and ganciclovir in renal impairment. Clin Pharmacol Ther. 2002;72:142-150.

    PubMed  CAS  Google Scholar 

  130. Lake KD, Fletcher CV, Love KR, Brown DC, Joyce LD, Pritzker MR. Ganciclovir pharmacokinetics during renal impairment. Antimicrob Agents Chemother. 1988;32:1899-1900.

    PubMed  CAS  Google Scholar 

  131. Sommadossi JP, Bevan R, Ling T, et al. Clinical pharmacokinetics of ganciclovir in patients with normal and impaired renal function. Rev Infect Dis. 1988;10(Suppl 3):S507-S514.

    PubMed  Google Scholar 

  132. Swan SK, Munar MY, Wigger MA, Bennett WM. Pharmacokinetics of ganciclovir in a patient undergoing hemodialysis. Am J Kidney Dis. 1991;17:69-72.

    PubMed  CAS  Google Scholar 

  133. Gando S, Kameue T, Nanzaki S, Hayakawa T, Nakanishi Y. Pharmacokinetics and clearance of ganciclovir during continuous hemodiafiltration. Crit Care Med. 1998;26:184-187.

    PubMed  CAS  Google Scholar 

  134. Boulieu R, Bastien O, Bleyzac N. Pharmacokinetics of ganciclovir in heart transplant patients undergoing continuous venovenous hemodialysis. Ther Drug Monit. 1993;15:105-107.

    PubMed  CAS  Google Scholar 

  135. Bastien O, Boulieu R, Bleyzac N, Estanove S. Clinical use of ganciclovir during renal failure and continuous hemodialysis. Intensive Care Med. 1994;20:47-48.

    PubMed  CAS  Google Scholar 

  136. Gumbo T, Hiemenz J, Ma L, Keirns JJ, Buell DN, Drusano GL. Population pharmacokinetics of micafungin in adult patients. Diagn Microbiol Infect Dis. 2008;60:329-331.

    PubMed  CAS  Google Scholar 

  137. Micafungin sodium (Mycamine®) for injection (package insert). Deerfield, IL: Astellas Pharma US, Inc.; January 2008.

    Google Scholar 

  138. McEvoy GK, ed. Micafungin. American Hospital Formulary Service Drug Information. American Society of Health-System Pharmacists; Bethesda, MD; 2010:552–555.

    Google Scholar 

  139. Yoshizawa S, Gotoh M, Kitahara T, et al. Micafungin-induced hemolysis attack due to drug-dependent antibody persisting for more than 6 weeks. Leuk Res. 2010;34:e60-e61.

    PubMed  Google Scholar 

  140. Nanri T, Iwanaga E, Fujie S, et al. Micafungin-induced immune hemolysis attacks. Int J Hematol. 2009;89:139-141.

    PubMed  Google Scholar 

  141. Kauffman CA, Carver PL. Update on echinocandin antifungals. Semin Respir Crit Care Med. 2008;29:211-219.

    PubMed  Google Scholar 

  142. Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2009;66:82-98.

    PubMed  CAS  Google Scholar 

  143. Bauer LA, Black DJ, Lill JS. Vancomycin dosing in morbidly obese patients. Eur J Clin Pharmacol. 1998;54:621-625.

    PubMed  CAS  Google Scholar 

  144. Blouin RA, Bauer LA, Miller DD, et al. Vancomycin pharmacokinetics in normal and morbidly obese subjects. Antimicrob Agents Chemother. 1982;21:575-580.

    PubMed  CAS  Google Scholar 

  145. Vance-Bryan K, Guay DR, Gilliland SS, et al. Effect of obesity on vancomycin pharmacokinetic parameters as determined by using a Bayesian forecasting technique. Antimicrob Agents Chemother. 1993;37:436-440.

    PubMed  CAS  Google Scholar 

  146. Matzke GR, Zhanel GG, Guay DR. Clinical pharmacokinetics of vancomycin. Clin Pharmacokinet. 1986;11:257-282.

    PubMed  CAS  Google Scholar 

  147. Moellering RC Jr, Krogstad DJ, Greenblatt DJ. Vancomycin therapy in patients with impaired renal function: a nomogram for dosage. Ann Intern Med. 1981;94:343-346.

    PubMed  Google Scholar 

  148. Matzke GR, McGory RW, Halstenson CE, et al. Pharmacokinetics of vancomycin in patients with various degrees of renal function. Antimicrob Agents Chemother. 1984;25:433-437.

    PubMed  CAS  Google Scholar 

  149. Brown DL, Mauro LS. Vancomycin dosing chart for use in patients with renal impairment. Am J Kidney Dis. 1988;11:15-19.

    PubMed  CAS  Google Scholar 

  150. Thomson AH, Staatz CE, Tobin CM, et al. Development and evaluation of vancomycin dosage guidelines designed to achieve new target concentrations. J Antimicrob Chemother. 2009;63:1050-1057.

    PubMed  CAS  Google Scholar 

  151. Pea F, Furlanut M, Negri C, et al. Prospectively validated dosing nomograms for maximizing the pharmacodynamics of vancomycin administered by continuous infusion in critically ill patients. Antimicrob Agents Chemother. 2009;53:1863-1867.

    PubMed  CAS  Google Scholar 

  152. Polk RE, Espinel-Ingroff A, Lockridge R. In vitro evaluation of a vancomycin radioimmunoassay and observations on vancomycin pharmacokinetics in dialysis patients. Drug Intell Clin Pharm. 1981;15:15-20.

    PubMed  CAS  Google Scholar 

  153. Launay-Vacher V, Izzedine H, Mercadal L, et al. Clinical review: use of vancomycin in haemodialysis patients. Crit Care. 2002;6:313-316.

    PubMed  Google Scholar 

  154. Pallotta KE, Manley HJ. Vancomycin use in patients requiring hemodialysis: a literature review. Semin Dial. 2008;21:63-70.

    PubMed  Google Scholar 

  155. Welage LS, Mason NA, Hoffman EJ, et al. Influence of cellulose triacetate hemodialyzers on vancomycin pharmacokinetics. J Am Soc Nephrol. 1995;6:1284-1290.

    PubMed  CAS  Google Scholar 

  156. Pai AB, Pai MP. Vancomycin dosing in high flux hemodialysis: a limited-sampling algorithm. Am J Health Syst Pharm. 2004;61:1812-1816.

    PubMed  CAS  Google Scholar 

  157. Ariano RE, Fine A, Sitar DS, et al. Adequacy of a vancomycin dosing regimen in patients receiving high-flux hemodialysis. Am J Kidney Dis. 2005;46:681-687.

    PubMed  CAS  Google Scholar 

  158. Brown N, Ho DH, Fong KL, et al. Effects of hepatic function on vancomycin clinical pharmacology. Antimicrob Agents Chemother. 1983;23:603-609.

    PubMed  CAS  Google Scholar 

  159. Aldaz A, Ortega A, Idoate A, et al. Effects of hepatic function on vancomycin pharmacokinetics in patients with cancer. Ther Drug Monit. 2000;22:250-257.

    PubMed  CAS  Google Scholar 

  160. Forouzesh A, Moise PA, Sakoulas G. Vancomycin ototoxicity: a reevaluation in an era of increasing doses. Antimicrob Agents Chemother. 2009;53:483-486.

    PubMed  CAS  Google Scholar 

  161. Brummett RE, Fox KE. Vancomycin- and erythromycin-induced hearing loss in humans. Antimicrob Agents Chemother. 1989;33:791-796.

    PubMed  CAS  Google Scholar 

  162. Wood CA, Kohlhepp SJ, Kohnen PW, et al. Vancomycin enhancement of experimental tobramycin nephrotoxicity. Antimicrob Agents Chemother. 1986;30:20-24.

    PubMed  CAS  Google Scholar 

  163. King DW, Smith MA. Proliferative responses observed following vancomycin treatment in renal proximal tubule epithelial cells. Toxicol In Vitro. 2004;18:797-803.

    PubMed  CAS  Google Scholar 

  164. Nishino Y, Takemura S, Minamiyama Y, et al. Inhibition of vancomycin-induced nephrotoxicity by targeting superoxide dismutase to renal proximal tubule cells in the rat. Redox Rep. 2002;7:317-319.

    PubMed  CAS  Google Scholar 

  165. Bailie GR, Neal D. Vancomycin ototoxicity and nephrotoxicity. A review. Med Toxicol Adverse Drug Exp. 1988;3:376-386.

    PubMed  CAS  Google Scholar 

  166. Jeffres MN, Isakow W, Doherty JA, et al. A retrospective analysis of possible renal toxicity associated with vancomycin in patients with health care-associated methicillin-resistant Staphylococcus aureus pneumonia. Clin Ther. 2007;29:1107-1115.

    PubMed  CAS  Google Scholar 

  167. Hidayat LK, Hsu DI, Quist R, et al. High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch Intern Med. 2006;166:2138-2144.

    PubMed  Google Scholar 

  168. Lodise TP, Lomaestro B, Graves J, Drusano GL. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother. 2008;52:1330-1336.

    PubMed  CAS  Google Scholar 

  169. Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet. 2004;43(13):925-942.

    PubMed  CAS  Google Scholar 

  170. Haque NZ, Cahuayme Zuniga L, et al. Relationship of vancomycin MIC to mortality in patients with methicillin-resistant Staphylococcus aureus hospital-acquired, ventilator-associated and healthcare-associated pneumonia. Chest. 2010;138:1356-1362.

    PubMed  CAS  Google Scholar 

  171. Sakoulas G, Moise-Broder PA, Schentag J, et al. Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol. 2004;42:2398-2402.

    PubMed  CAS  Google Scholar 

  172. Soriano A, Marco F, Martínez JA, et al. Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis. 2008;46:193-200.

    PubMed  CAS  Google Scholar 

  173. Wang JL, Wang JT, Sheng WH, et al. Nosocomial methicillin-resistant Staphylococcus aureus (MRSA) bacteremia in Taiwan: mortality analyses and the impact of vancomycin, MIC  =  2 mg/L, by the broth microdilution method. BMC Infect Dis. 2010;10:159.

    PubMed  Google Scholar 

  174. Lodise TP, Graves J, Evans A, et al. Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrob Agents Chemother. 2008;52:3315-3320.

    PubMed  CAS  Google Scholar 

  175. Polk RE. Red man syndrome. Ann Pharmacother. 1998;32:840.

    PubMed  CAS  Google Scholar 

  176. Polk RE, Healy DP, Schwartz LB, et al. Vancomycin and the red-man syndrome: pharmacodynamics of histamine release. J Infect Dis. 1988;157:502-507.

    PubMed  CAS  Google Scholar 

  177. Sivagnanam S, Deleu D. Red man syndrome. Crit Care. 2003;7:119-120.

    PubMed  Google Scholar 

  178. Healy DP, Sahai JV, Fuller SH, et al. Vancomycin-induced histamine release and “red man syndrome”: comparison of 1- and 2-hour infusions. Antimicrob Agents Chemother. 1990;34:550-554.

    PubMed  CAS  Google Scholar 

  179. Von Drygalski A, Curtis BR, Bougie DW, et al. Vancomycin-induced immune thrombocytopenia. N Engl J Med. 2007;356:904-910.

    Google Scholar 

  180. Pea F, Porreca L, Baraldo M, et al. High vancomycin dosage regimens required by intensive care unit patients cotreated with drugs to improve haemodynamics following cardiac surgical procedures. J Antimicrob Chemother. 2000;45:329-335.

    PubMed  CAS  Google Scholar 

  181. Voriconazole (Vfend®) (package insert). New York, NY: Roerig, Division of Pfizer, Inc.; June 2010.

    Google Scholar 

  182. Luke DR, Tomaszewski K, Damle B, Schlamm HT. Review of the basic and clinical pharmacology of sulfobutylether-beta-cyclodextrin (SBECD). J Pharm Sci. 2010;99:3291-3301.

    PubMed  CAS  Google Scholar 

  183. Hafner V, Czock D, Burhenne J, et al. Pharmacokinetics of sulfobutylether-beta-cyclodextrin and voriconazole in patients with end-stage renal failure during treatment with two hemodialysis systems and hemodiafiltration. Antimicrob Agents Chemother. 2010;54:2596-2602.

    PubMed  CAS  Google Scholar 

  184. Robatel C, Rusca M, Padoin C, Marchetti O, Liaudet L, Buclin T. Disposition of voriconazole during continuous veno-venous hemodiafiltration (CVVHDF) in a single patient. J Antimicrob Chemother. 2004;54:269-270.

    PubMed  CAS  Google Scholar 

  185. Etravirine (Intelence®) (package insert). Raritan, NJ: Tibotec Therapeutics, Division of Centocor Ortho Biotech Products, L.P.; July 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothy McCoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Thomas, Z., McCoy, D. (2011). Anti-Infectives. In: Kane-Gill, S., Dasta, J. (eds) High-Risk IV Medications in Special Patient Populations. Springer, London. https://doi.org/10.1007/978-0-85729-606-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-606-1_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-605-4

  • Online ISBN: 978-0-85729-606-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics