Analgesics and Neuromuscular Blocking Agents



Analgesic medications are used routinely in the ICU patient. In general, adverse drug events resulting from analgesic administration are common such as decreased gastrointestinal motility and hypotension. Clinicians are developing a better understanding of other adverse drug events such as delirium and infection. In addition, critically ill patients often have impairments in renal and hepatic function that increase the risk for adverse drug events due to pharmacokinetic alterations. As well, there are specific situations, such as hypothermia, that ICU patients experience which may affect drug dosing. While not used as routine care, neuromuscular blockers are high-risk medications that contribute to adverse events in a population already at high risk of adverse effects. This chapter will review the patient safety concerns associated with analgesics and neuromuscular blocking agents.


Renal Replacement Therapy Liver Dysfunction Continuous Renal Replacement Therapy Adverse Drug Event Neuromuscular Blockade 


  1. 1.
    Lee WH, Kramer WG, Granville GE. The effect of obesity on acetaminophen pharmacokinetics in man. J Clin Pharmacol. 1981;21:284-287.PubMedGoogle Scholar
  2. 2.
    Kurella M, Bennett WM, Chertow GM. Analgesia in patients with ESRD: a review of available evidence. Am J Kidney Dis. 2003;42:217-228.PubMedCrossRefGoogle Scholar
  3. 3.
    Murphy EJ. Acute pain management pharmacology for the patient with concurrent renal or hepatic disease. Anaesth Intensive Care. 2005;33:311-322.PubMedGoogle Scholar
  4. 4.
    Duggan ST, Scott LJ. Intravenous paracetamol (Acetaminophen). Drugs. 2009;69:101-113.PubMedCrossRefGoogle Scholar
  5. 5.
    Martin U, Temple RM, Winney RJ, et al. The disposition of paracetamol and its conjugates during multiple dosing in patients with end-stage renal failure maintained on haemodialysis. Eur J Clin Pharmacol. 1993;45:141-145.PubMedCrossRefGoogle Scholar
  6. 6.
    Ofirmev (acetaminophen) Injection Product Monograph. San Diego, CA: Cadence Pharmaceuticals, Inc. 2010 Nov. 8.Google Scholar
  7. 7.
    Polderman KH, Herold I. Therapeutic hypothermia and controlled normothermia in the intensive care unit: practical considerations, side effects, and cooling methods. Crit Care Med. 2009;37:1101-1120.PubMedCrossRefGoogle Scholar
  8. 8.
    Lat I, Foster DR, Erstad B. Drug-induced acute liver failure and gastrointestinal complications. Crit Care Med. 2010;38:S175-S187.PubMedCrossRefGoogle Scholar
  9. 9.
    de Maat MM, Tijssen TA, Brüggemann RJ, et al. Paracetamol for intravenous use in medium- and intensive care patients: pharmacokinetics and tolerance. Eur J Clin Pharmacol. 2010;66:713-719.PubMedCrossRefGoogle Scholar
  10. 10.
    Boyle M, Hundy S, Torda TA. Paracetamol administration is associated with hypotension in the critically ill. Aust Crit Care. 1997;10:120-122.PubMedCrossRefGoogle Scholar
  11. 11.
    Köppel C, Arndt I, Ibe K. Effects of enzyme induction, renal and cardiac function on ketamine plasma kinetics in patients with ketamine long-term analgesosedation. Eur J Drug Metab Pharmacokinet. 1990;15:259-263.PubMedCrossRefGoogle Scholar
  12. 12.
    Tsubo T, Sakai I, Okawa H, et al. Ketamine and midazolam kinetics during continuous hemodiafiltration in patients with multiple organ dysfunction syndrome. Intensive Care Med. 2001;27:1087-1090.PubMedCrossRefGoogle Scholar
  13. 13.
    Panzer O, Moitra V, Sladen RN. Pharmacology of sedative-analgesic agents: dexmedetomidine, remifentanil, ketamine, volatile anesthetics, and the role of peripheral mu antagonists. Crit Care Clin. 2009;25:451-469.PubMedCrossRefGoogle Scholar
  14. 14.
    Caldolor (Ibuprofen) Injection Product Monograph. Nashville, TN: Cumberland Pharmaceuticals Inc. 2009 June.Google Scholar
  15. 15.
    Antal EJ, Wright CE, Brown BL, et al. The influence of hemodialysis on the pharmacokinetics of ibuprofen and its major metabolites. J Clin Pharmacol. 1986;26:184-190.PubMedGoogle Scholar
  16. 16.
    Marret E, Flahault A, Samama C, et al. Effects of postoperative, nonsteroidal, antiinflammatory drugs on bleeding risk after tonsillectomy meta-analysis of randomized, controlled trials. Anesthesiology. 2003;98:1497-1502.PubMedCrossRefGoogle Scholar
  17. 17.
    Strauss R, Wehler M, Mehler K, et al. Thrombocytopenia in patients in the medical intensive care unit: bleeding prevalence, transfusion requirements, and outcome. Crit Care Med. 2002;30:1765-1771.PubMedCrossRefGoogle Scholar
  18. 18.
    Bentley ML, Corwin HL, Dasta JF. Drug-induced acute kidney injury in the critically ill adult: recognition and prevention strategies. Crit Care Med. 2010;38:S169-S174.PubMedCrossRefGoogle Scholar
  19. 19.
    Whelton A. Nephrotoxicity of nonsteroidal anti-inflammatory drugs: physiologic foundations and clinical implications. Am J Med. 1999;106:13S-24S.PubMedCrossRefGoogle Scholar
  20. 20.
    Swan SK, Rudy DW, Lasseter KC, et al. Effect of cyclooxygenase-2 inhibition on renal function in elderly persons receiving a low-salt diet. A randomized, controlled trial. Ann Intern Med. 2000;133:1-9.PubMedGoogle Scholar
  21. 21.
    Gerstenfeld LC, Einhorn TA. COX inhibitors and their effects on bone healing. Expert Opin Drug Saf. 2004;3:131-136.PubMedCrossRefGoogle Scholar
  22. 22.
    Dodwell ER, Latorre JG, Parisini E, et al. NSAID exposure and risk of nonunion: a ­meta-analysis of case-control and cohort studies. Calcif Tissue Int. 2010;87(3):193-202.PubMedCrossRefGoogle Scholar
  23. 23.
    Shibutani K, Inchiosa MA, Sawada K, et al. Pharmacokinetic mass of fentanyl for postoperative analgesia in lean and obese patients. Br J Anaesth. 2005;95:377-383.PubMedCrossRefGoogle Scholar
  24. 24.
    Devlin JW, Roberts RJ. Pharmacology of commonly used analgesics and sedatives in the ICU: benzodiazepines, propofol, and opioids. Crit Care Clin. 2009;25:431-449.PubMedCrossRefGoogle Scholar
  25. 25.
    Heiskanen T, Matzke S, Haakana S, et al. Transdermal fentanyl in cachectic cancer patients. Pain. 2009;144:218-222.PubMedCrossRefGoogle Scholar
  26. 26.
    Dean M. Opioids in renal failure and dialysis patients. J Pain Symptom Manage. 2004;28:497-504.PubMedCrossRefGoogle Scholar
  27. 27.
    Joh J, Sila MK, Bastani B. Nondialyzability of fentanyl with high-efficiency and high-flux membranes. Anesth Analg. 1998;86:445-451.Google Scholar
  28. 28.
    Tortorici MA, Kochanek PM, Poloyac SM. Effects of hypothermia on drug disposition, metabolism, and response: a focus of hypothermia-mediated alterations on the cytochrome P450 enzyme system. Crit Care Med. 2007;35(9):2196-2204.PubMedCrossRefGoogle Scholar
  29. 29.
    Lee MA, Leng MEF, Tiernan EJJ. Retrospective study of the use of hydromorphone in palliative care patients with normal and abnormal urea and creatinine. Palliat Med. 2001;15(1):26-34. 27:4-419-4-421.PubMedCrossRefGoogle Scholar
  30. 30.
    Davison SN, Mayo PR. Pain management in chronic kidney disease: the pharmacokinetics and pharmacodynamics of hydromorphone and hydromorphone-3-glucuronide in hemodialysis patients. J Opioid Manag. 2008;4(6):335-336. 339–44.PubMedGoogle Scholar
  31. 31.
    Micromedex® Healthcare Series [intranet database]. Version 5.1. Greenwood Village, Colo: Thomson Reuters (Healthcare) Inc.Google Scholar
  32. 32.
    Hassan H, Bastani B, Gellens M. Successful treatment of normeperidine neurotoxicity by hemodialysis. Am J Kidney Dis. 2000;35:146-149.PubMedCrossRefGoogle Scholar
  33. 33.
    Linares CL, Decleves X, Oppert JM, et al. Pharmacology of morphine in obese patients clinical implications. Clin Pharmacokinet. 2009;48(10):635-651.CrossRefGoogle Scholar
  34. 34.
    Choi YK, Brolin RE, Wagner BK, et al. Efficacy and safety of patient-controlled analgesia for morbidly obese patients following gastric bypass surgery. Obes Surg. 2000;10(2):154-159.PubMedCrossRefGoogle Scholar
  35. 35.
    Milne RW, Nation RL, Somogyi AA, et al. The influence of renal function on the renal ­clearance of morphine and its glucuronide metabolites in intensive-care patients. Br J Clin Pharmacol. 1992;34(1):53-59.PubMedCrossRefGoogle Scholar
  36. 36.
    MacNab MS, Macrae DJ, Guy E, et al. Profound reduction in morphine clearance and liver blood flow in shock. Intensive Care Med. 1986;12:366-369.PubMedCrossRefGoogle Scholar
  37. 37.
    Mazoit JX, Sandouk P, Zetlaoui P, et al. Pharmacokinetics of unchanged morphine in normal and cirrhotic subjects. Anesth Analg. 1987;66:293-298.PubMedCrossRefGoogle Scholar
  38. 38.
    Roka A, Melinda KT, Vasarhelyi B, et al. Elevated morphine concentrations in neonates treated with morphine and prolonged hypothermia for hypoxic encephalopathy. Pediatrics. 2008;121(4):e844-e849.PubMedCrossRefGoogle Scholar
  39. 39.
    Puig MM, Warner W, Tang CK, et al. Effects of temperature on the interaction of morphine with opioid receptors. Br J Anaesth. 1987;59:1459-1464.PubMedCrossRefGoogle Scholar
  40. 40.
    van den Broek MPH, Groenendaal F, Egberts ACG, et al. Effects of hypothermia on pharmacokinetics and pharmacodynamics a systematic review of preclinical and clinical studies. Clin Pharmacokinet. 2010;49:277-294.PubMedCrossRefGoogle Scholar
  41. 41.
    Albertin A, La Colla G, La Colla L, et al. Effect site concentrations of remifentanil maintaining cardiovascular homeostasis in response to surgical stimuli during bispectral index guided propofol anesthesia in seriously obese patients. Minerva Anestesiol. 2006;72:915-924.PubMedGoogle Scholar
  42. 42.
    Egan TD, Huizing B, Gupta SK, et al. Remifentantil pharmacokinetics in obese versus lean patients. Anesthesiology. 1998;89:562-573.PubMedCrossRefGoogle Scholar
  43. 43.
    Pitsiu M, Wilmer A, Bodenham A, et al. Pharmacokinetics of remifentanil and its major metabolite, remifentanil acid, in ICU patients with renal impairment. Br J Anaesth. 2004;92:493-503.PubMedCrossRefGoogle Scholar
  44. 44.
    Dahaba AA, Oettl K, von Klobucar F, et al. End-stage renal failure reduces central clearance and prolongs the elimination half-life of remifentanil. Can J Anaesth. 2002;49:369-374.PubMedCrossRefGoogle Scholar
  45. 45.
    Dershwitz M, Hoke F, Rosow CE, et al. Pharmacokinetics and pharmacodynamics of remifenantil in volunteer subjects with severe liver disease. Anesthesiology. 1996;84:812-820.PubMedCrossRefGoogle Scholar
  46. 46.
    Russell D, Royston D, Rees PH, et al. Effect of temperature and cardiopulmonary bypass on the pharmacokinetics of remifentanil. Br J Anaesth. 1997;79:456-459.PubMedCrossRefGoogle Scholar
  47. 47.
    Bowdle TA. Adverse effects of opioid agonists and agonist-antagonists in anaesthesia. Drug Saf. 1998;19:173-189.PubMedCrossRefGoogle Scholar
  48. 48.
    Gaudreau JD, Gagnon P, Roy MA, et al. Opioid medications and longitudinal risk of delirium in hospitalized cancer patients. Cancer. 2007;109:2365-2373.PubMedCrossRefGoogle Scholar
  49. 49.
    Viscusi ER, Gan TJ, Leslie JB, et al. Peripherally acting mu-opioid receptor antagonists and postoperative ileus: mechanisms of action and clinical applicability. Anesth Analg. 2009;108:1811-1822.PubMedCrossRefGoogle Scholar
  50. 50.
    Somogyi AA, Barratt DT, Coller JK. Pharmacogenetics of opioids. Clin Pharmacol Ther. 2007;81:429-444.PubMedCrossRefGoogle Scholar
  51. 51.
    Smith HS. Variations in opioid responsiveness. Pain Physician. 2008;11:237-248.PubMedGoogle Scholar
  52. 52.
    Darrouj J, Karma L, Arora R. Cardiovascular manifestations of sedatives and analgesics in the critical care unit. Am J Ther. 2009;16:339-353.PubMedCrossRefGoogle Scholar
  53. 53.
    Roy S, Wang J, Kelshenbach J, et al. Modulation of immune function by morphine: implications for susceptibility to infection. J Neuroimmune Pharmacol. 2006;1:77-89.PubMedCrossRefGoogle Scholar
  54. 54.
    Beilin B, Shavit Y, Hart J, et al. Effects of anesthesia based on large versus small doses of fentanyl on natural killer cell cytotoxicity in the perioperative period. Anesth Analg. 1996;82:492-497.PubMedGoogle Scholar
  55. 55.
    Wilhelm W, Kreuer S. The place for short-acting opioids: special emphasis on remifentanil. Crit Care. 2008;12(Suppl 3):S5.PubMedCrossRefGoogle Scholar
  56. 56.
    Dahaba AA, Grabner T, Rehak PH, et al. Remifenatnil versus morphine analgesia and sedation for mechanically ventilated critically ill patients: a randomized double blind study. Anesthesiology. 2004;101:640-646.PubMedCrossRefGoogle Scholar
  57. 57.
    D’Honeur GD, Gilton A, Sandouk P, et al. Plasma and cerebrospinal fluid concentrations of morphine and morphine glucuronides after oral morphine: the influence of renal failure. Anesthesiology. 1994;81:87-93.CrossRefGoogle Scholar
  58. 58.
    Lemmens H, Brodsky J. The dose of succinylcholine in morbid obesity. Anesth Analg. 2006;102:438-442.PubMedCrossRefGoogle Scholar
  59. 59.
    Cope T, Hunter J. Selecting neuromuscular-blocking drugs for elderly patients. Drugs Aging. 2003;20:125-140.PubMedCrossRefGoogle Scholar
  60. 60.
    Booij L. Neuromuscular transmission and its pharmacological blockade Part 2: pharmacology of neuromuscular blocking agents. Pharm World Sci. 1997;19:13-34.PubMedCrossRefGoogle Scholar
  61. 61.
    Merck Manual Professional. Succinylcholine monograph. Accessed July 24, 2010.
  62. 62.
    Martyn J, Richtsfeld M. Succinylcholine-induced hyperkalemia in acquired pathologic states. Anesthesiology. 2006;104:158-169.PubMedCrossRefGoogle Scholar
  63. 63.
    Orebaugh S. Succinylcholine: adverse effects and alternatives in emergency medicine. Am J Emerg Med. 1999;17:715-721.PubMedCrossRefGoogle Scholar
  64. 64.
    Book W, Abel M, Eisenkraft J. Adverse effects of depolarizing neuromuscular blocking agents: incidence, prevention, and management. Drug Saf. 1994;10:331-349.PubMedCrossRefGoogle Scholar
  65. 65.
    Leykin Y, Pellis T, Lucca M, et al. The effects of cisatracurium on morbidly obese women. Anesth Analg. 2004;99:1090-1094.PubMedCrossRefGoogle Scholar
  66. 66.
    Adamus M, Gabrehelik T, Marek O. Influence of gender on the course of neuromuscular block following a single bolus dose of cisatracurium or rocuronium. Eur J Anaesthesiol. 2008;25:589-595.PubMedCrossRefGoogle Scholar
  67. 67.
    Atherton D, Hunter J. Clinical pharmacokinetics of the newer neuromuscular blocking drugs. Clin Pharmacokinet. 1999;36:169-189.PubMedCrossRefGoogle Scholar
  68. 68.
    Fassbender P, Geldner G, Blobner M, et al. Clinical predictors of duration of action of cisatracurium and rocuronium administered long-term. Am J Crit Care. 2009;18:439-445.PubMedCrossRefGoogle Scholar
  69. 69.
    Mann R, Blibner M, Probst R, et al. Pharmacokinetics of rocuronium in obese and asthenic patients: reduced clearance in the obese. Anesthesiology. 1997;87:A85.CrossRefGoogle Scholar
  70. 70.
    Puhringer F, Khuenl-Brady K, Mitterschiffhaler G. Rocuronium bromide: time-course of action in underweight, normal weight, overweight and obese patients. Eur J Anaesthesiol Suppl. 1995;11(Suppl 12):107-110.PubMedGoogle Scholar
  71. 71.
    Rocuronium package insert. Irvine, CA: Teva Parenteral Medicines, Inc; 2008 Nov.Google Scholar
  72. 72.
    Matteo R, Ornstein E, Schwartz A, et al. Pharmcokinetics and pharmacodynamics of rocuronium (Org 9426) in elderly surgical patients. Anesth Analg. 1993;77:1193-1197.PubMedCrossRefGoogle Scholar
  73. 73.
    Robertson E, Driessen J, Booij H. Pharmacokinetics and pharmacodynamics of rocuronium in patients with and without renal failure. Eur J Anaesthesiol. 2005;22:4-10.PubMedGoogle Scholar
  74. 74.
    Staals L, Snoeck M, Driessen J, et al. Reduced clearance of rocuronium and sugammadex in patients with severe to end-stage renal failure: a pharmacokinetic study. Br J Anaesth. 2010;104:31-39.PubMedCrossRefGoogle Scholar
  75. 75.
    van Miert M, Eastwood N, Boyd A, et al. The pharmacokinetics and pharmacodynamics of rocuronium in patients with hepatic cirrhosis. Br J Clin Pharmacol. 1997;44:139-144.PubMedCrossRefGoogle Scholar
  76. 76.
    Schwartz A, Matteo R, Ornstein E, et al. Pharmacokinetics and pharmacodynamics of vecuronium in the obese surgical patient. Anesth Analg. 1992;74:515-518.PubMedGoogle Scholar
  77. 77.
    Vecuronium package insert. Bedford, OH: Ben Venue Laboratories, Inc; 2007 June.Google Scholar
  78. 78.
    Caldwell J, Heier R, Wright P, et al. Temperature-dependent pharmacokinetics and pharmacodynamics of vecuronium. Anesthesiology. 2000;92:84-93.PubMedCrossRefGoogle Scholar
  79. 79.
    Xue F, An G, Liao X, et al. The pharmacokinetics of vecuronium in male and female patients. Anesth Analg. 1998;86:1322-1327.PubMedGoogle Scholar
  80. 80.
    Lynam D, Cronnelly R, Castognoli K, et al. The pharmacodynamics and pharmacokinetics of vecuronium in patients anesthetized with isoflurane with normal renal function or renal failure. Anesthesiology. 1988;69:227-231.PubMedCrossRefGoogle Scholar
  81. 81.
    Sakamota H, Takita K, Kemmotsu O, Morimoto Y, Mayumi T. Increased sensitivity to vecuronium and prolonged duration of its action in patients with end-stage renal failure. J Clin Anesth. 2001;13:193-197.CrossRefGoogle Scholar
  82. 82.
    Arden J, Lynam D, Castagnoli K, et al. Vecuronium in alcoholic liver disease: a pharmacokinetic and pharmacodynamic analysis. Anesthesiology. 1988;68:771-776.PubMedCrossRefGoogle Scholar
  83. 83.
    Lebrault C, Berger J, D’Hollander A, et al. Pharamacokinetics and pharmacodynamics of vecuronium (ORG NG 45) in patients with cirrhosis. Anesthesiology. 1985;62:601-605.PubMedCrossRefGoogle Scholar
  84. 84.
    Murray M, Cowen J, DeBlock H, et al. Clinical practice guidelines for sustained neuromuscular blockade in the adult critically ill patient. Crit Care Med. 2002;30:142-156.PubMedCrossRefGoogle Scholar
  85. 85.
    Booij L. Neuromuscular transmission and its pharmacological blockade Part 3: continuous infusion of relaxants and reversal and monitoring of relaxation. Pharm World Sci. 1997;19:35-44.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of PharmacySaint John Regional Hospital (Horizon Health Network)Saint JohnCanada

Personalised recommendations