Vasopressors and Inotropes

  • Scott W. Mueller
  • Robert MacLaren


Medication errors and adverse drug events occur more frequently in the intensive care unit compared to general care units.1 Adverse drug events become more likely as patients receive more medications. Sentinel events and medication errors are more common as the number of failing organs increases.2,3 Vasopressors are frequently associated with adverse drug events and they are considered high-alert drugs by the Institute of Safe Medication Practices due to their increased potential to cause harm.4-6 Vasopressors and inotropes are used in patients with the highest acuity and under stressful situations which adds to the potential for errors. In addition, dosing guidelines, ranges and units are not always standardized across agents at specific institutions or for a certain agent across institutions. The literature is disparate with respect to dosing recommendations. With the exception of vasopressin, we report the dosing of these agents in a weight-based manner. This should enhance dosing consistency to help minimize errors. We encourage institutions to adopt this dosing scheme to reduce discrepancies associated with their administration. Moreover, using a weight based dosing strategy in an era of increasing obesity raises the question of whether actual, adjusted or ideal body weight should be used when administering vasopressors. No data are available to select an appropriate weight and trials evaluating the use of vasopressors rarely report the body weight used in cases of obesity. With the exception of milrinone, we encourage the use of ideal body weight for all weight-based dosing strategies because these agents possess short half-lives, rapid onsets, and low volumes of distribution but may be associated with severe adverse events when higher weights are used resulting in higher doses in heavier patients. Moreover, these agents are rapidly titrated to clinical response, so starting at lower doses based on ideal body weight is prudent.


Renal Replacement Therapy Dose Adjustment Systemic Vascular Resistance Adverse Drug Event Hemodynamic Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bates DW, Cullen DJ, Laird N, et al. Incidence of adverse drug events and potential adverse drug events. Implications for prevention. ADE Prevention Study Group. JAMA. 1995;274:29-34.PubMedCrossRefGoogle Scholar
  2. 2.
    Giraud T, Dhainaut JF, Vaxelaire JF, et al. Iatrogenic complications in adult intensive care units: a prospective two-center study. Crit Care Med. 1993;21:40-51.PubMedCrossRefGoogle Scholar
  3. 3.
    Valentin A, Capuzzo M, Guidet B, et al. Errors in administration of parenteral drugs in intensive care units: multinational prospective study. BMJ. 2009;338:b814.PubMedCrossRefGoogle Scholar
  4. 4.
    Rothschild JM, Landrigan CP, Cronin JW, et al. The critical care safety study: the incidence and nature of adverse events and serious medical errors in intensive care. Crit Care Med. 2005;33:1694-1700.PubMedCrossRefGoogle Scholar
  5. 5.
    Kopp BJ, Erstad BL, Allen ME, et al. Medication errors and adverse drug events in an intensive care unit: direct observation approach for detection. Crit Care Med. 2006;34:415-425.PubMedCrossRefGoogle Scholar
  6. 6.
    Kane-Gill SL, Jacobi J, Rothschild JM. Adverse drug events in intensive care units: risk factors, impact and the role of team care. Crit Care Med. 2010;38(suppl):S38-S89.Google Scholar
  7. 7.
    Overgaard CB, Dzavik V. Inotropes and vasopressors. Circulation. 2008;118:1047-1056.PubMedCrossRefGoogle Scholar
  8. 8.
    Polderman KH. Mechanism of action, physiological effects and complications of hypothermia. Crit Care Med. 2009;37(suppl):S186-S202. doi: 10.1097/ccm.0b013e3181aa5241.PubMedCrossRefGoogle Scholar
  9. 9.
    Ruffolo RR, Massick K. Systemic hemodynamic effects of dopamine, (+/−) dobutamine and the (+) and (−) enantiomers of dobutamine in anesthetized normotensive rats. Eur J Pharmacol. 1985;109:173-181.PubMedCrossRefGoogle Scholar
  10. 10.
    Reed WP, Newman KA, Applefeld MM, Sutton FJ. Drug extravasation as a complication of venous access ports. Ann Intern Med. 1985;102:788-789.PubMedGoogle Scholar
  11. 11.
    Phentolamine [package insert]. Bedford: Bedford Laboratories; 1999.Google Scholar
  12. 12.
    Teerlin JR, Metra M, Zacà V, et al. Agents with inotropic properties for the management of acute heart failure syndromes. Traditional agents and beyond. Heart Fail Rev. 2009;14:243-253.CrossRefGoogle Scholar
  13. 13.
    Endoh M, Hori M. Acute heart failure: inotropic agents and their clinical uses. Expert Opin Pharmacother. 2006;7:2179-2202.PubMedCrossRefGoogle Scholar
  14. 14.
    Annane D, Vignon P, Renault A, et al. Norepinephrine plus dobutamine versus epinephrine alone for the management of septic shock: a randomised trial. Lancet. 2007;370:678-684.Google Scholar
  15. 15.
    Barth E, Albuszies G, Baumgart K, et al. Glucose metabolism and catecholamines. Crit Care Med. 2007;35(suppl):S508-S518.PubMedCrossRefGoogle Scholar
  16. 16.
    Rousseau-Migneron S, Nadeau S, Nadeau A. Hyperglycemic effect of high doses of dobutamine in the rate: studies of insulin and glucagon secretion. Can J Physiol Pharmacol. 1985;63:1308-1311.PubMedCrossRefGoogle Scholar
  17. 17.
    Ginsberg F, Parrillo JE. Eosinophilic myocarditis. Heart Fail Clin. 2005;1:419-429.PubMedCrossRefGoogle Scholar
  18. 18.
    Bellomo R, Chapman M, Finfer S, et al. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomized trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet. 2000;356:2139-2143.PubMedCrossRefGoogle Scholar
  19. 19.
    Montgomery LA, Hanrahan K, Kottman K, Otto A, Barrett T, Hermiston B. Guideline for IV infiltrations in pediatric patients. Pediatr Nurs. 1999;25:167-180.PubMedGoogle Scholar
  20. 20.
    De Backer D, Creteur J, Silva E, Vincent JL. Effects of dopamine, norepinephrine, and epinephrine on the splanchnic circulation in septic shock: which is best? Crit Care Med. 2003;31:1659-1667.PubMedCrossRefGoogle Scholar
  21. 21.
    Woolsey CA, Coopersmith CM. Vasoactive drugs and the gut: is there anything new? Curr Opin Crit Care. 2006;12:155-159.PubMedCrossRefGoogle Scholar
  22. 22.
    Guérin JP, Levraut J, Samat-Long C, Leverve X, Grimaud D, Ichai C. Effects of dopamine and norepinephrine on systemic and hepatosplanchnic hemodynamics, oxygen exchange, and energy balance in vasoplegic septic patients. Shock. 2005;23:18-24.PubMedCrossRefGoogle Scholar
  23. 23.
    Marzio L, Neri M, Pieramico O, Delle Donne M, Peeters TL, Cuccurullo F. Dopamine interrupts gastrointestinal fed motility pattern in humans. Effect on motilin and somatostatin blood levels. Dig Dis Sci. 1990;35:327-332.PubMedCrossRefGoogle Scholar
  24. 24.
    Dive A, Foret F, Jamart J, Bulpa P, Installé E. Effect of dopamine on gastrointestinal motility during critical illness. Intensive Care Med. 2000;26:901-907.PubMedCrossRefGoogle Scholar
  25. 25.
    Leblanc H, Lachelin GC, Abu-Fadil S, Yen SS. The effect of dopamine infusion on insulin and glucagon secretion in man. J Clin Endocrinol Metab. 1977;44:196-198.PubMedCrossRefGoogle Scholar
  26. 26.
    Tisdale JE, Patel RV, Webb CR, Borzak S, Zarowitz BJ. Proarrhythmic effects of intravenous vasopressors. Ann Pharmacother. 1995;29:269-281.PubMedGoogle Scholar
  27. 27.
    Patel GP, Grahe JS, Sperry M, et al. Efficacy and safety of dopamine versus norepinephrine in the management of septic shock. Shock. 2010;33:375-380.PubMedCrossRefGoogle Scholar
  28. 28.
    De Backer D, Biston P, Devriendt J, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362:779-789.PubMedCrossRefGoogle Scholar
  29. 29.
    Bailer AR, Burchett KR. Effect of low-dose dopamine on serum concentrations of prolactin in critically ill patients. Br J Anaesth. 1997;78:97-99.CrossRefGoogle Scholar
  30. 30.
    Schilling T, Strang CM, Wilhelm L, et al. Endocrine effects of dopexamine vs. dopamine in high-risk surgical patients. Intensive Care Med. 2001;27:1908-1915.PubMedCrossRefGoogle Scholar
  31. 31.
    Regnier B, Rapin M, Gory G, Lemaire F, Teisseire B, Harari A. Haemodynamic effects of dopamine in septic shock. Intensive Care Med. 1977;3:47-53.PubMedCrossRefGoogle Scholar
  32. 32.
    Myburgh JA, Higgins A, Jovanovska A, et al. A comparison of epinephrine and norepinephrine in critically ill patients. Intensive Care Med. 2008;34:2226-2234.PubMedCrossRefGoogle Scholar
  33. 33.
    Shaver KJ, Adams C, Weiss SJ. Acute myocardial infarction after administration of low-dose intravenous epinephrine for anaphylaxis. CJEM. 2006;8:289-294.PubMedGoogle Scholar
  34. 34.
    Sakka SG, Hofmann D, Thuemer O, Schelenz C, van Hout N. Increasing cardiac output by epinephrine after cardiac surgery: effects on indocyanine green plasma disappearance rate and splanchnic microcirculation. J Cardiothorac Vasc Anesth. 2007;21:351-356.PubMedCrossRefGoogle Scholar
  35. 35.
    Martikainen TJ, Tenhunen JJ, Giovannini I, Uusaro A, Ruokonen E. Epinephrine induces tissue perfusion deficit in porcine endotoxin shock: evaluation by regional CO(2) content gradients and lactate-to-pyruvate ratios. Am J Physiol Gastrointest Liver Physiol. 2005;288:G586-G592.PubMedCrossRefGoogle Scholar
  36. 36.
    Sacca L, Morrone G, Cicala M, Corso G, Ungaro B. Influence of epinephrine, norepinephrine and isoproterenol on glucose homeostasis in normal man. J Clin Endocrinol Metab. 1980;50:680-684.PubMedCrossRefGoogle Scholar
  37. 37.
    Bellomo R, Wan L, May C. Vasoactive drugs and acute kidney injury. Crit Care Med. 2008;36(suppl):S179-S186.PubMedCrossRefGoogle Scholar
  38. 38.
    Isoproterenol [package insert]. Lake Forest: Hospira Inc.; 2004.Google Scholar
  39. 39.
    Mueller H, Ayres SM, Gregory JJ, et al. Hemodynamics, coronary blood flow and myocardial metabolism in coronary shock: response to l-norepinephrine and isoproterenol. J Clin Invest. 1970;49:1885-1902.PubMedCrossRefGoogle Scholar
  40. 40.
    Lekven J, Kjekshun JK, Mjös OD. Cardiac effects of isoproterenol during graded myocardial ischemia. J Clin Lab Invest. 1974;33:161-171.CrossRefGoogle Scholar
  41. 41.
    Halloway EL, Stinson EB, Derby GC, Harison DC. Action of drugs in patients early after cardiac surgery. I. Comparison of isoproterenol and dopamine. Am J Cardiol. 1975;35:656-659.CrossRefGoogle Scholar
  42. 42.
    Furman WR, Summer WR, Kennedy TP, Sylvester JT. Comparison of the effects of dobutamine, dopamine, and isoproterenol on hypoxic pulmonary vasoconstriction in the pig. Crit Care Med. 1982;10:371-374.PubMedCrossRefGoogle Scholar
  43. 43.
    Russel WJ, James MF. The effects on increasing cardiac output with adrenaline or isoprenaline on arterial haemoglobin oxygen saturation and shunt during one-lung ventilation. Anaesth Intensive Care. 2000;28:636-641.Google Scholar
  44. 44.
    Milrinone [package insert]. Irvine: SICOR Pharmaceuticals, Inc.; 2003Google Scholar
  45. 45.
    Taniguchi T, Shibata K, Saito S, Matsumoto H, Okeie K. Pharmacokinetics of milrinone in patients with congestive heart failure during continuous venovenous hemofiltration. Intensive Care Med. 2000;26:1089-1093.PubMedCrossRefGoogle Scholar
  46. 46.
    Cuffe MS, Calliff RM, Adams KF, et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA. 2002;287:1541-1547.PubMedCrossRefGoogle Scholar
  47. 47.
    Baruch L, Patacsil P, Hameed A, Pina I, Loh E. Pharmacodynamic effects of milrinone with and without a bolus loading infusion. Am Heart J. 2000;141:e6.Google Scholar
  48. 48.
    Levy JH, Bailey JM, Deeb GM. Intravenous milrinone in cardiac surgery. Ann Thorac Surg. 2002;73:325-330.PubMedCrossRefGoogle Scholar
  49. 49.
    Parissis JT, Farmakis D, Nieminen M. Classical inotropes and new cardiac enhancers. Heart Fail Rev. 2007;12:149-156.PubMedCrossRefGoogle Scholar
  50. 50.
    Jeon Y, Ryu JH, Lim YJ, et al. Comparative hemodynamic effects of vasopressin and norepinephrine after milrinone-induced hypotension in off-pump coronary artery bypass surgical patients. Eur J Cardiothorac Surg. 2006;29:952-956.PubMedCrossRefGoogle Scholar
  51. 51.
    Yang G, Li L. In vivo effects of phosphodiesterase III inhibitors on glucose metabolism and insulin sensitivity. J Chin Med Assoc. 2003;66:210-216.PubMedGoogle Scholar
  52. 52.
    Kikura M, Lee MK, Safon R, Bailry JM, Levy JH. The effects of milrinone on platelets in patients undergoing cardiac surgery. Anesth Analg. 1995;81:44-48.PubMedGoogle Scholar
  53. 53.
    Ramamoorthy C, Anderson GD, Williams GD, Lynn AM. Pharmacokinetics and side effects of milrinone in infants and children after open heart surgery. Anesth Analg. 1998;86:283-289.PubMedGoogle Scholar
  54. 54.
    Kikura M, Sato S. Effects of preemptive therapy with milrinone or amrinone on perioperative platelet function and haemostasis in patients undergoing coronary bypass grafting. Platelets. 2003;14:277-282.PubMedCrossRefGoogle Scholar
  55. 55.
    Wesley MC, McGowan FX, Castro RA, Dissanayake S, Zurakowski D, Dinardo JA. The effect of milrinone on platelet activation as determined by TEG platelet mapping. Anesth Analg. 2009;108:1425-1429.PubMedCrossRefGoogle Scholar
  56. 56.
    Phenylephrine [package insert]. Deerfield: Baxter Healthcare Corporation; 2005.Google Scholar
  57. 57.
    Hengstmann JH, Goronzy J. Pharmacokinetics of 3H-phenylephrine in man. Eur J Clin Pharmacol. 1982;21:335-341.PubMedCrossRefGoogle Scholar
  58. 58.
    Morelli A, Ertmer C, Rehberg S, et al. Phenylephrine versus norepinephrine for initial hemodynamic support of patients with septic shock: a randomized, controlled trial. Crit Care. 2008;12:R143. doi: 10.1186/cc7121.PubMedCrossRefGoogle Scholar
  59. 59.
    Morelli A, Lange M, Ertmer C, et al. Short-term effects of phenylephrine on systemic and regional hemodynamics in patients with septic shock: a crossover pilot study. Shock. 2008;29:446-451.PubMedGoogle Scholar
  60. 60.
    van der Zee S, Thompson A, Zimmerman R, et al. Vasopressin administration facilitates fluid removal during hemodialysis. Kidney Int. 2007;71:318-324.PubMedCrossRefGoogle Scholar
  61. 61.
    Russel JA. Vasopressin in vasodilatory and septic shock. Curr Opin Crit Care. 2007;13:383-391.CrossRefGoogle Scholar
  62. 62.
    Dünser MW, Mayr AJ, Tür A, et al. Ischemic skin lesions as a complication of continuous vasopressin infusion in catecholamine-resistant vasodilatory shock: incidence and risk factors. Crit Care Med. 2003;31:1394-1398.PubMedCrossRefGoogle Scholar
  63. 63.
    Russel JA, Walley KR, Singer J, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877-887.CrossRefGoogle Scholar
  64. 64.
    Luckner G, Dünser MW, Jochberger S, et al. Arginine vasopressin in 316 patients with advanced vasodilatory shock. Crit Care Med. 2005;33:2659-2666.PubMedCrossRefGoogle Scholar
  65. 65.
    Asfar P, Radermacher P. Vasopressin and ischaemic heart disease: more than coronary vasoconstriction? Crit Care. 2009;13:169. doi: 10.1186/cc7954.PubMedCrossRefGoogle Scholar
  66. 66.
    Indrambarya T, Boyd JH, Wang Y, McConechy M, Walley KR. Low-dose vasopressin infusion results in increased mortality and cardiac dysfunction following ischemia-reperfusion injury in mice. Crit Care. 2009;13:R98.PubMedCrossRefGoogle Scholar
  67. 67.
    Dünser MW, Fries DR, Schobersberger W, et al. Does arginine vasopressin influence the coagulation system in advanced vasodilatory shock with severe multiorgan dysfunction syndrome? Anesth Analg. 2004;99:201-206.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Clinical PharmacyUniversity of Colorado Denver School of PharmacyAuroraUSA

Personalised recommendations