Skip to main content

Stereotactic Body Radiation Therapy Systems

  • Chapter
  • First Online:
Stereotactic Body Radiotherapy
  • 1458 Accesses

Abstract

With the development of extracranial stereotactic radiation, there has been an evolution of hardware and software technology to cope with the challenges of SBRT. Advances in immobilization, beam characteristics, image guidance and on-line tracking including continuous respiratory motion management have led to the ability to successfully deliver SBRT with confidence. This chapter explores the capabilities of various SBRT systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verhey LJ. Immobilizing and positioning patients for radiotherapy. Semin Radiat Oncol. 1995;5:100–14.

    Article  PubMed  Google Scholar 

  2. Lovelock DM, Hua C, Wng P, et al. Accurate setup of paraspinal patients using a noninvasive patient immobilization cradle and portal imaging. Med Phys. 2005;32:2606–14.

    Article  PubMed  Google Scholar 

  3. Chang SD, Main W, Martin DP, et al. An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system. Neurosurgery. 2003;52:140–7.

    PubMed  Google Scholar 

  4. Shirato H, Shimizu S, Kunieda K, et al. Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int J Radiat Biol. 2000;48:1187–95.

    Article  CAS  Google Scholar 

  5. Yenice KM, Lovelock DM, Hunt MA, et al. CT image-guided intensity-modulated therapy for paraspinal tumors using stereotactic immobilization. Int J Radiat Biol. 2003;55:583–93.

    Article  Google Scholar 

  6. Pouliot J, Bani-Hashemi A, Chen J, et al. Low-dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Biol. 2005;61:552–60.

    Article  Google Scholar 

  7. Jaffray DA, Siewerdsen JH, Wong JW, et al. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Biol. 2002;53:1337–49.

    Article  Google Scholar 

  8. Mackie TR, Kapatoes J, Ruchala K, et al. Image guidance for precise conformal radiotherapy. Int J Radiat Oncol Biol Phys. 2003;56:89–105.

    Article  PubMed  Google Scholar 

  9. Balter JM, Wright JN, Newell LJ, et al. Accuracy of a wireless localization system for radiotherapy. Int J Radiat Oncol Biol Phys. 2005;61:933–7.

    Article  PubMed  Google Scholar 

  10. Willoughby TR, Kupelian PA, Pouliot J, et al. Target localization and real-time tracking using the Calypso 4D localization system with localized prostate cancer. Int J Radiat Oncol Biol Phys. 2006;65:528–34.

    Article  PubMed  Google Scholar 

  11. Meeks SL, Buatti JM, Bouchet LG, et al. Ultrasound-guided extracranial radiosurgery: technique and application. Int J Radiat Oncol Biol Phys. 2003;55:1092–101.

    Article  PubMed  Google Scholar 

  12. Lagendjijk J, Raaymakers B, Raaijmakers A, et al. MRI/linac integration. Radiother Oncol. 2008;86:25–9.

    Article  Google Scholar 

  13. Fallone B, Murray B, Rathee S, et al. First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. Med Phys. 2009;36:2009.

    Google Scholar 

  14. AAPM T. AAPM Report No. 91, The management of respiratory motion in radiation oncology. 2006.

    Google Scholar 

  15. Harada T, Shirato H, Ogura S. Real-time tumor-tracking radiation therapy for lung carcinoma by the aid of insertion of a gold maker using bronchofibroscopy. Cancer. 2002;95:1720–7.

    Article  PubMed  Google Scholar 

  16. Zhang T, Keller H, O’Brien M, et al. Application of the spirometer in respiratory gated radiotherapy. Med Phys. 2003;30:3165–71.

    Article  PubMed  Google Scholar 

  17. Berson AM, Emery R, Rodriguez L, et al. Clinical experience using respiratory gated radiation therapy: comparison of free-breathing and breath-hold techniques. Int J Radiat Oncol Biol Phys. 2004;60:419–26.

    Article  PubMed  Google Scholar 

  18. Berbeco RI, Nishioka S, Shirato H, et al. Residual motion of lung tumors in end-of-inhale respiratory gated radiotherapy based on external surrogates. Med Phys. 2006;33:4149–56.

    Article  PubMed  Google Scholar 

  19. Wong J. Methods to manage respiratory motion in radiation treatment. In: Palta J, Rockwell M, editors. Intensity-modulated radiation therapy. Madison: Medical Physics; 2003. p. 663–702.

    Google Scholar 

  20. Kitamura K, Shirato H, Seppenwoolde Y, et al. Three-dimensional intrafractional movement of prostate measure during real-time tumor-tracking radiotherapy in supine and prone treatment position. Int J Radiat Oncol Biol Phys. 2002;53:1117–23.

    Article  PubMed  Google Scholar 

  21. Rietzel E, Liu A, Doppke K, et al. Design of 4D treatment planning target volumes. Int J Radiat Oncol Biol Phys. 2006;66:287–95.

    Article  PubMed  Google Scholar 

  22. Coolens C, Evans PM, Seco J, et al. The susceptibility of IMRT dose distributions to intrafraction organ motion: an investigation into smoothing filters derived from four dimensional computed tomography data. Med Phys. 2006;33:2809–18.

    Article  PubMed  Google Scholar 

  23. Lu X-Q, Shanmugham LN, Mahadevan A, et al. Organ deformation and dose coverage in robotic respiratory-tracking radiotherapy. Int J Radiat Oncol Biol Phys. 2008;71:281–9.

    Article  PubMed  Google Scholar 

  24. Keall PJ, Chen G, Joshi S. Time-the fourth dimension in radiotherapy (ASTRO panel discussion). Int J Radiat Oncol Biol Phys. 2003;57:88–9.

    Article  Google Scholar 

  25. McQuaid D, Webb S. MRT delivery to a moving target by dynamic MLC tracking: delivery for targets moving in two dimensions in the beam’s-eye view. Med Phys. 2006;33:2296.

    Article  Google Scholar 

  26. Papiez L, Rangaraj D, Keall PJ. Real-time DMLC IMRT delivery for mobile and deforming targets. Med Phys. 2005;32:3037–48.

    Article  PubMed  Google Scholar 

  27. Webb S. Limitations of a simple technique for movement compensation via movement-modified fluence profiles. Phys Med Biol. 2005;50:N155–61.

    Article  CAS  PubMed  Google Scholar 

  28. Neicu T, Berbeco R, Wolfgang J, et al. Synchronized moving aperture radiation therapy (SMART): improvement of breathing pattern reproducibility using respiratory coaching. Phys Med Biol. 2006;61:617–36.

    Article  Google Scholar 

  29. Ahn S, Yi B, Suh Y, et al. A feasibility study on the prediction of tumor location in the lung from skin motion. Br J Radiol. 2004;77:588–96.

    Article  CAS  PubMed  Google Scholar 

  30. Gierga D, Chen G, Kung JH, et al. Quantification of respiration-induced abdominal tumor motion and its impact on IMRT dose distributions. Int J Radiat Oncol Biol Phys. 2004;58:1584–95.

    Article  PubMed  Google Scholar 

  31. Poulsen P, Cho B, Sawant A, et al. Dynamic MLC tracking of moving targets with a single kV imager for 3D conformal and IMRT treatments. Acta Oncol. 2010;49:1092–100.

    Article  PubMed  Google Scholar 

  32. Kauczor HU, Heussel CP, Thelen M. Radiodiagnosis of the lung. Radiologe. 2000;40:870–7.

    Article  CAS  PubMed  Google Scholar 

  33. Komaki R, Putnam JB, Walsh G, et al. The management of superior sulcus tumors. Semin Surg Oncol. 2000;18:152–64.

    Article  CAS  PubMed  Google Scholar 

  34. Kamel IR, Fishman EK. Recent advances in CT imaging of liver metastases. Cancer J. 2004;10:104–20.

    Article  PubMed  Google Scholar 

  35. Coon D, Gokhale AS, Burton SA, et al. Fractionated stereotactic body radiation therapy in the treatment of primary, recurrent, and metastatic lung tumors: the role of position emission tomography/computed tomography-based treatment planning. Clin Lung Cancer. 2008;9:217–21.

    Article  PubMed  Google Scholar 

  36. Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010;37:4078–101.

    Article  PubMed  Google Scholar 

  37. Jin JY, Yin FF, Ryu S. Dosimetric study using different leaf-width MLCs for treatment planning of dynamic conformal arcs and intensity-modulated radiosurgery. Med Phys. 2005;32:405–11.

    Article  PubMed  Google Scholar 

  38. Vassiliev O, Kry S, Kuban D, et al. Treatment planning study of prostate cancer intensity modulated radiotherapy with a Varian clinac operated without a flattening filter. Int J Radiat Oncol Biol Phys. 2007;68:1567–71.

    Article  PubMed  Google Scholar 

  39. Georg D, Knoos T, McClean B. Current status and future perspective of flattening filter free photon beams. Med Phys. 2011;38:1280–93.

    Article  PubMed  Google Scholar 

  40. Fox C, Romeijn H, Lynch B, et al. Comparative analysis of 60 Co intensity-modulated radiation therapy. Phys Med Biol. 2008;53:3175–88.

    Article  CAS  PubMed  Google Scholar 

  41. Petersen J, Lassen Y, Hansen A, et al. Normal liver tissue sparing by intensity-modulated proton stereotactic body radiotherapy for solitary liver tumors. Acta Oncol. 2011;50:823–8.

    Article  PubMed  Google Scholar 

  42. Register S, Zhang X, Mohan R, et al. Proton stereotactic body radiation therapy for clinically challenging cases of centrally and superiorly located stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2011;80:1015–22.

    Article  PubMed Central  PubMed  Google Scholar 

  43. ICRU50. Prescribing, recording, and reporting photon beam therapy. ICRU Report 50. Bethesda: International Commission on Radiation Units and Measurements; 1993.

    Google Scholar 

  44. ICRU62. Prescribing, recording and reporting photon beam therapy (supplement to ICRU Report 50). ICRU Report 62. Bethesda: International Commission on Radiation Units and Measurements; 1999.

    Google Scholar 

  45. Herfarth K, Debus J, Lohr F, et al. Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial 19. J Clin Oncol. 2001;19:164–70.

    CAS  PubMed  Google Scholar 

  46. Bilsky Y, Yamada KM, Yenice K, et al. Intensity-modulated stereotactic radiotherapy of paraspinal tumors: a preliminary report. Neurosurgery. 2004;54:823–30.

    Article  PubMed  Google Scholar 

  47. Takayama K, Nagata Y, Negoro Y, et al. Treatment planning of stereotactic radiotherapy for solitary lung tumor. Int J Radiat Oncol Biol Phys. 2005;61:1565–71.

    Article  PubMed  Google Scholar 

  48. Hadinger U, Thiele W, Wulf J. Extracranial stereotactic radiotherapy: evaluation of PTV coverage and dose conformity. Z Med Phys. 2002;12:221–9.

    Article  PubMed  Google Scholar 

  49. Hara R, Itami J, Kondo T, et al. Stereotactic single high dose irradiation of lung tumors under respiratory gating. Radiother Oncol. 2002;63:159–63.

    Article  PubMed  Google Scholar 

  50. Onishi H, Kuriyama K, Komiyama T, et al. A new irradiation system for lung cancer combining linear accelerator, computed tomography, patient self-breath-holding, and patient-directed beam-control without respiratory monitoring devices. Int J Radiat Oncol Biol Phys. 2003;56:14–20.

    Article  PubMed  Google Scholar 

  51. Feuvret L, Noel G, Mazeron JJ, et al. Conformity index: a review. Int J Radiat Oncol Biol Phys. 2006;64:333–42.

    Article  PubMed  Google Scholar 

  52. Papiez L, Timmerman R, DesRosiers C, et al. Extracranial stereotactic radioablation: physical principles. Acta Oncol. 2003;42:882–94.

    Article  PubMed  Google Scholar 

  53. Fowler JF, Tome WA, Fenwich JD, et al. A challenge to traditional radiation oncology. Int J Radiat Oncol Biol Phys. 2004;60:1241–56.

    Article  PubMed  Google Scholar 

  54. Hall EJ, Wuu C-S. Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys. 2003;56:83–8.

    Article  PubMed  Google Scholar 

  55. Kutcher GJ, et al. Comprehensive QA for radiation oncology: report of AAPM Radiation Therapy Committee Task Group 40. Med Phys. 1994;21:581–618.

    Article  CAS  PubMed  Google Scholar 

  56. Klein EE, Hanley J, Bayouth J, et al. AAPM Task Group 142 report: quality assurance of medical accelerators. Med Phys. 2009;36:4197–211.

    Article  PubMed  Google Scholar 

  57. Xia T, Li H, Sun Q, et al. Promising clinical outcome of stereotactic body radiation therapy for patients with inoperable stage I/II non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2006;66:117–25.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Qi Lu PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Lu, XQ. (2015). Stereotactic Body Radiation Therapy Systems. In: Gaya, A., Mahadevan, A. (eds) Stereotactic Body Radiotherapy. Springer, London. https://doi.org/10.1007/978-0-85729-597-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-597-2_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-596-5

  • Online ISBN: 978-0-85729-597-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics