Advertisement

Mobile Robots

  • Ángel Gaspar González Rodríguez
  • Antonio González Rodríguez
Chapter

Abstract

This chapter presents an introduction to mobile robots in the field of the service robots, paying special attention to the mechanical structure of wheeled, legged, hybrid and tracked robots. The issues regarding to the maneuverability and capability of overcoming obstacles are discussed for the wheeled robots. A classification of the wheeled robots is made according to the way they are steered and driven, exposing the forward kinematics equations for every basic scheme. The common characteristics of hybrid and tracked robots are also presented, together with their advantages and drawbacks. A classification of legged robots is also included, focusing mainly on the structure of the leg and discussing relevant issues regarding controlability and efficiency.

Keywords

Mobile Robot Industrial Robot Automate Guide Vehicle Parallel Robot Biped Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aarnio P, Koskinen K, Salmi S (2000) Simulation of the hybtor robot. International conference climbinng walking robots. Professional Engineering Publishing, pp 267–274Google Scholar
  2. Apostolopoulos D, Bares J (1995) Locomotion configuration of a robust rappelling robot. International conference on intelligent robots and systems, human robot interaction and cooperative robots proceedings, vol 3, pp 280–284Google Scholar
  3. Ashely S (2003) Artificial muscles. Sci Am 289(4):53–59Google Scholar
  4. Bekey GA (2005) Autonomous robots. From biological inspiration to implementation and control. MIT Press, Cambridge, MAGoogle Scholar
  5. Campion G, Bastin G, D’Andréa-Novel B (1996) Structural properties and classification of kinematics and dynamic models of wheeled mobile robots. IEEE Trans Robotics Autom 23(1) pp 47–62Google Scholar
  6. Campion G, Chung W (2008) Wheeled Robots. In: Siciliano B, Khatib O Springer Book of Robotics, Springer, Gale virtual reference libraryGoogle Scholar
  7. Chao H, Cao Y, Chen YQ (2007) Autopilots for small fixed-wing unmanned air vehicles: a survey. Int Conf on Mechat Autom ICMA 3144–3149Google Scholar
  8. Collins S, Ruina A, Tedrake R, Wisse M (2005) Efficient bipedal robots based on passive-dynamic walkers. Science 307(5712):1082CrossRefGoogle Scholar
  9. Cubero, SN (2000) A 6-legged hybrid walking and wheeled vehicle. Int Conf Mechatron Mach Vis Pract (M2VIP) pp 293–302Google Scholar
  10. Dudek G, Jenkin M (2000) Computational principles of mobile robotic. Cambridge University Press, CambridgeGoogle Scholar
  11. Duncheon C (2005) Robots will be of service with muscles, not motors. Int J Indus Robots 32(6):452–455CrossRefGoogle Scholar
  12. Fu Y, Li Z, Yang H et al (2007) Development of a wall climbing robot with wheel-leg hybrid locomotion mechanism. IEEE Int Conf Robot Biomim ROBIO pp 1876–1881Google Scholar
  13. García E, Jiménez MA, González de Santos P, Armada M (2007) The evolution of robotic research from industrial robotics to field and service robotics. IEEE Robotics Autom Mag 14(1):90–103CrossRefGoogle Scholar
  14. Germann D, Hiller M, Schramm D (2005) Design and control of the quadruped walking robot ALDURO. Int Symp Autom Robot Constr ISARCGoogle Scholar
  15. Gonzalez Rodriguez A, Morales R, Batlle V, Pintado P (2007) Improving the mechanical design of new staircase wheelchair. Indus Robot 34(2):110–115CrossRefGoogle Scholar
  16. Gonzalez Rodriguez AG, Gonzalez Rodriguez A, Nieto AJ, Morales R (2009) Design and simulation of an easy operating leg for walking robots. International Conference on Mechatronic pp 1–6Google Scholar
  17. Grand C, Benamar F, Plumet P et al (2004) Stability and traction optimized of a reconfigurable wheel-legged robot. Int J Robot Res 23(10–11):1041–1058CrossRefGoogle Scholar
  18. Guardabrazo TA, Gonzalez de Santos P (2004) Building an energetic model to evaluate and optimize power consumption in walking robots. Ind Robot Int J 31(2):201–208CrossRefGoogle Scholar
  19. Guccione S, Muscato G (2003) The wheeleg robot. IEEE Robot Autom Mag 10(4):33–43CrossRefGoogle Scholar
  20. Ham R, Sugar T, Vanderborght B, Hollander K, Lefeber D (2009) Compliant actuator designs. Robot Autom Mag 16(3):81–94CrossRefGoogle Scholar
  21. Harwin W (2003) GENTLE/S: Robotic assistance in neuro and motor rehabilitation. Resource document. Cybernetics. http://www.gentle.reading.ac.uk. Accessed Oct 2010
  22. Hirose S and Takeuchi H (1996) Study on roller-walk (basic characteristics and its control). IEEE Int Conf on Robot Autom 3265–3270Google Scholar
  23. Hirose S, Sensu T, Aoki S (1992) The TAQT Carrier: A practical terrain-adaptive Quadru-Track carrier Robot. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems 2069–2073Google Scholar
  24. Hirose S, Fukushima F, Damoto R, Nakamoto H (2001) Design of terrain adaptative versatile crawler vehicle Helios-VI. Proceedings of the IEEE/RSJ International Conference Intelligent Robots and SystemGoogle Scholar
  25. Howard RM, Kaminer I (1995) Survey of unmanned air vehicles. Proc Am Control Conf 5:2950–2953Google Scholar
  26. Ishihara H, Kuroi K (2006) A four-leg locomotion robot for heavy load transportation. International Conference on Intelligent Robots and Systems, pp 5731–5736Google Scholar
  27. Kar DC (2003) Design of statically stable walking robot: a review. J Robotic Syst 20:671–686MATHCrossRefGoogle Scholar
  28. Lawn MJ (2002) Study of stair-climbing assistive mechanisms for the disabled. PhD thesis, http://murraylawn.org/MJLnewW/StaiCPhD.pdf. Accessed Oct 2010
  29. Lawn MJ, Ishimatzu T (2003) Modeling of a stair-climbing wheelchair mechanism with high single-step capability. IEEE Trans Neural Syst Rehabil Res 11(3)Google Scholar
  30. Lawn MJ, Sakai T, Kuroiwa M, Ishimatzu T (2001) Development and practical application of a stairclimbing wheelchair in Nagasaki. J Hum Friendly Welf Robotic Syst 33–39Google Scholar
  31. McCaffrey EJ (2003) Kinematic analysis and evaluation of wheelchair mounted robotic arms. Thesis, University of South Florida, http://etd.fcla.edu/SF/SFE0000195/McCaffreyThesis.pdf. Accessed Oct 2010
  32. McGeer T (1990a) Passive dynamic walking. Int J Robot Res 9(2):62–82CrossRefGoogle Scholar
  33. McGeer T (1990b) Passive walking with knees. IEEE Int Conf Robot Autom 3:1640–1645CrossRefGoogle Scholar
  34. McGeer T (1990c) Passive Bipedal running. Roy Soc London B 240(1297):107–134CrossRefGoogle Scholar
  35. Nagakubo A, Hirose S (1994) Walking and running of the quadruped wall-climbing robot. Proc IEEE Int Conf Robot Autom 2:1005–1012Google Scholar
  36. Pisla DL, Itul TP, Pisla A et al (2009) Dynamics of a parallel platform for helicopter flight simulation considering friction. SYROM 2009:365–378Google Scholar
  37. Pratt G, Williamson M (1995) Series elastic actuators. International conference on intelligent robots IROS, pp 399–406Google Scholar
  38. Raibert MH, Brown HB, Chepponis M (1984) Experiments in balance with a 3D one-legged hopping machine. Int J Robotics Res 3(1):75–92Google Scholar
  39. Schulte HF (1961) The characteristics of the mcKibben artificial muscle.The application of external power in prosthetics and orthotics. Natl Acad Sci Natl Res Counc 874:94–115Google Scholar
  40. Siegwart R, Lamon P, Estier T et al (2002) Innovative design for wheeled locomotion in rough terrain. J Robot Auton Sys. doi: 10.1016/S0921-8890(02)00240-3
  41. Stewart D (1965) A platform with 6 degrees of freedom. Instit Mech Eng 180(1):371–386CrossRefGoogle Scholar
  42. Terada Y (2000) A trial for animatronic systems including aquatic robots. J Robotic Soc Japan 18(2):37–39Google Scholar
  43. Trevelyan JP, Kang S-C, Hamel WR (2008) Robotics in hazardous applications. In Springer Handbook of Robotics Part F. pp 1101–1126Google Scholar
  44. Uchida Y, Furuichi K, Hirose S (1999) Fundamental performance of 6 wheeled off-road vehicle helios-V. Int Conf Robot AutomGoogle Scholar
  45. Vanderborght B, Verrelst B, Van Ham R, Lefeber D (2006) Controlling a bipedal walking robot actuated by pleated pneumatic artificial muscles. Robotica 24(4):401–410CrossRefGoogle Scholar
  46. Welch RV, Edmonds GO (1993) Applying robotics to hazmat. Resource document http://hdl.handle.net/2014/36468. Accessed Oct 2010
  47. Yuh J (2000) Design and control of autonomous underwater robots: A survey. Auton Robots 8:7–24CrossRefGoogle Scholar
  48. Zhao J, Liu G, Liu Y, Zhu Y (2008) Research on the application of a marsupial robot for coal mine rescue. Intell Robotics Appl. doi:  10.1007/978-3-540-88518-4_120

Copyright information

© Springer-Verlag London Limited  2011

Authors and Affiliations

  • Ángel Gaspar González Rodríguez
    • 1
  • Antonio González Rodríguez
    • 2
  1. 1.Electronic Engineering and Automation DepartmentUniversity of JaénJaénSpain
  2. 2.Applied Mechanical DepartementUniversity of Castilla-La ManchaMadridSpain

Personalised recommendations