Skip to main content

Abstract

In Chap. 2, some basic results on Lyapunov-based control, model predictive control and Lyapunov-based model predictive control of nonlinear systems are first reviewed and then two Lyapunov-based model predictive control (LMPC) designs for systems subject to data losses and time-varying measurement delays are presented. In order to provide guaranteed closed-loop stability results, the constraints that define the LMPC optimization problems as well as the implementation procedures are carefully designed to account for data losses (or asynchronous measurements) and time-varying measurement delays. The presented LMPC designs possess an explicit characterization of the closed-loop system stability region. Using a nonlinear chemical reactor example, it is demonstrated that the presented LMPC approaches are robust to data losses and measurement delays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allgöwer, F., & Chen, H. (1998). Nonlinear model predictive control schemes with guaranteed stability. In R. Berber & C. Kravaris (Eds.), NATO ASI on nonlinear model based process control (pp. 465–494). Dordrecht: Kluwer Academic.

    Google Scholar 

  2. Antoniades, C., & Christofides, P. D. (1999). Feedback control of nonlinear differential difference equation systems. Chemical Engineering Science, 54, 5677–5709.

    Article  Google Scholar 

  3. Bemporad, A., & Morari, M. (1999). Control of systems integrating logic, dynamics and constraints. Automatica, 35, 407–427.

    Article  MATH  MathSciNet  Google Scholar 

  4. Bitmead, R. R., Gevers, M., & Wertz, V. (1990). Adaptive optimal control—the thinking man’s GPC. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  5. Christofides, P. D., & El-Farra, N. H. (2005). Control of nonlinear and hybrid process systems: Designs for uncertainty, constraints and time-delays. Berlin: Springer.

    Google Scholar 

  6. Clarke, F., Ledyaev, Y., & Sontag, E. (1997). Asymptotic controllability implies feedback stabilization. IEEE Transactions on Automatic Control, 42, 1394–1407.

    Article  MATH  MathSciNet  Google Scholar 

  7. El-Farra, N. H., & Christofides, P. D. (2001). Integrating robustness, optimality and constraints in control of nonlinear processes. Chemical Engineering Science, 56, 1841–1868.

    Article  Google Scholar 

  8. El-Farra, N. H., & Christofides, P. D. (2003). Bounded robust control of constrained multivariable nonlinear processes. Chemical Engineering Science, 58, 3025–3047.

    Article  Google Scholar 

  9. Fogler, H. S. (1999). Elements of chemical reaction engineering. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  10. García, C. E., Prett, D. M., & Morari, M. (1989). Model predictive control: theory and practice—a survey. Automatica, 25, 335–348.

    Article  MATH  Google Scholar 

  11. Jeong, S. C., & Park, P. (2005). Constrained MPC algorithm for uncertain time-varying systems with state-delay. IEEE Transactions on Automatic Control, 50, 257–263.

    Article  MathSciNet  Google Scholar 

  12. Khalil, H. K. (1996). Nonlinear systems (2nd ed.). New York: Prentice Hall.

    Google Scholar 

  13. Kokotovic, P., & Arcak, M. (2001). Constructive nonlinear control: a historical perspective. Automatica, 37, 637–662.

    MATH  MathSciNet  Google Scholar 

  14. Kothare, S. L. D., & Morari, M. (2000). Contractive model predictive control for constrained nonlinear systems. IEEE Transactions on Automatic Control, 45, 1053–1071.

    Article  MATH  Google Scholar 

  15. Lin, Y., & Sontag, E. D. (1991). A universal formula for stabilization with bounded controls. Systems & Control Letters, 16, 393–397.

    Article  MATH  MathSciNet  Google Scholar 

  16. Lin, Y., Sontag, E. D., & Wang, Y. (1996). A smooth converse Lyapunov theorem for robust stability. SIAM Journal on Control and Optimization, 34, 124–160.

    Article  MATH  MathSciNet  Google Scholar 

  17. Liu, G.-P., Xia, Y., Chen, J., Rees, D., & Hu, W. (2007). Networked predictive control of systems with random networked delays in both forward and feedback channels. IEEE Transactions on Industrial Electronics, 54, 1282–1297.

    Article  Google Scholar 

  18. Liu, J., Muñoz de la Peña, D., Christofides, P. D., & Davis, J. F. (2008a). Lyapunov-based model predictive control of particulate processes subject to asynchronous measurements. Particle & Particle Systems Characterization, 25, 360–375.

    Article  Google Scholar 

  19. Liu, J., Muñoz de la Peña, D., Christofides, P. D., & Davis, J. F. (2009). Lyapunov-based model predictive control of nonlinear systems subject to time-varying measurement delays. International Journal of Adaptive Control and Signal Processing, 23, 788–807.

    Article  MATH  Google Scholar 

  20. Maeder, U., Cagienard, R., & Morari, M. (2007). Explicit model predictive control. In S. Tarbouriech, G. Garcia, & A. H. Glattfelder (Eds.), Lecture notes in control and information sciences: Vol. 346. Advanced strategies in control systems with input and output constraints (pp. 237–271). Berlin: Springer.

    Chapter  Google Scholar 

  21. Massera, J. L. (1956). Contributions to stability theory. Annals of Mathematics, 64, 182–206.

    Article  MathSciNet  Google Scholar 

  22. Mayne, D. Q., Rawlings, J. B., Rao, C. V., & Scokaert, P. O. M. (2000). Constrained model predictive control: stability and optimality. Automatica, 36, 789–814.

    Article  MATH  MathSciNet  Google Scholar 

  23. Mhaskar, P., El-Farra, N. H., & Christofides, P. D. (2005). Predictive control of switched nonlinear systems with scheduled mode transitions. IEEE Transactions on Automatic Control, 50, 1670–1680.

    Article  MathSciNet  Google Scholar 

  24. Mhaskar, P., El-Farra, N. H., & Christofides, P. D. (2006). Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control. Systems & Control Letters, 55, 650–659.

    Article  MATH  MathSciNet  Google Scholar 

  25. Mhaskar, P., Gani, A., McFall, C., Christofides, P. D., & Davis, J. F. (2007). Fault-tolerant control of nonlinear process systems subject to sensor faults. AIChE Journal, 53, 654–668.

    Article  Google Scholar 

  26. Montestruque, L. A., & Antsaklis, P. J. (2003). On the model-based control of networked systems. Automatica, 39, 1837–1843.

    Article  MATH  MathSciNet  Google Scholar 

  27. Montestruque, L. A., & Antsaklis, P. J. (2004). Stability of model-based networked control systems with time-varying transmission times. IEEE Transactions on Automatic Control, 49, 1562–1572.

    Article  MathSciNet  Google Scholar 

  28. Muñoz de la Peña, D., & Christofides, P. D. (2008). Lyapunov-based model predictive control of nonlinear systems subject to data losses. IEEE Transactions on Automatic Control, 53, 2076–2089.

    Article  Google Scholar 

  29. Naghshtabrizi, P., & Hespanha, J. (2005). Designing an observer-based controller for a network control system. In Proceedings of the 44th IEEE conference on decision and control and the European control conference 2005 (pp. 848–853). Seville, Spain.

    Chapter  Google Scholar 

  30. Naghshtabrizi, P., & Hespanha, J. (2006). Anticipative and non-anticipative controller design for network control systems. In Lecture notes in control and information sciences: Vol. 331. Networked embedded sensing and control (pp. 203–218).

    Chapter  Google Scholar 

  31. Nešić, D., & Teel, A. R. (2004b). Input-to-state stability of networked control systems. Automatica, 40, 2121–2128.

    MATH  Google Scholar 

  32. Nešić, D., Teel, A., & Kokotovic, P. (1999). Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete time approximations. Systems & Control Letters, 38, 259–270.

    Article  MATH  MathSciNet  Google Scholar 

  33. Primbs, J. A., Nevistic, V., & Doyle, J. C. (2000). A receding horizon generalization of pointwise min-norm controllers. IEEE Transactions on Automatic Control, 45, 898–909.

    Article  MATH  MathSciNet  Google Scholar 

  34. Qin, S. J., & Badgwell, T. A. (2003). A survey of industrial model predictive control technology. Control Engineering Practice, 11, 733–764.

    Article  Google Scholar 

  35. Rawlings, J. B. (2000). Tutorial overview of model predictive control. IEEE Control Systems Magazine, 20, 38–52.

    Article  Google Scholar 

  36. Sontag, E. (1989). A ‘universal’ construction of Artstein’s theorem on nonlinear stabilization. Systems & Control Letters, 13, 117–123.

    Article  MATH  MathSciNet  Google Scholar 

  37. Walsh, G., Beldiman, O., & Bushnell, L. (2001). Asymptotic behavior of nonlinear networked control systems. IEEE Transactions on Automatic Control, 46, 1093–1097.

    Article  MATH  MathSciNet  Google Scholar 

  38. Walsh, G., Ye, H., & Bushnell, L. (2002). Stability analysis of networked control systems. IEEE Transactions on Control Systems Technology, 10, 438–446.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis D. Christofides .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Christofides, P.D., Liu, J., Muñoz de la Peña, D. (2011). Lyapunov-Based Model Predictive Control. In: Networked and Distributed Predictive Control. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-0-85729-582-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-582-8_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-581-1

  • Online ISBN: 978-0-85729-582-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics